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Abstract. A metric modular on a set X is a function w :
(0,∞) × X × X → [0,∞] such that, for all x, y, z ∈ X, one
has [V. V. Chistyakov, Metric modulars and their application,
Dokl. Math. 73 (2006) 32–35]: x = y iff w(λ, x, y) = 0 for all
λ > 0; w(λ, x, y) = w(λ, y, x) for all λ > 0; w(λ + µ, x, y) ≤
w(λ, x, z) + w(µ, y, z) for all λ, µ > 0. Given x0 ∈ X, the set
Xw = {x ∈ X : limλ→∞w(λ, x, x0) = 0} is a metric space with
metric dw(x, y) = inf{λ > 0 : w(λ, x, y) ≤ λ}, called modu-
lar space. The modular w is said to be convex if (λ, x, y) �→
λw(λ, x, y) is also a metric modular on X. In this case Xw co-
incides with the set of all x ∈ X such that w(λ, x, x0) < ∞ for
some λ = λ(x) > 0 and is metrizable by d∗w(x, y) = inf{λ > 0 :
w(λ, x, y) ≤ 1}. Moreover, (dw(x, y))2 ≤ d∗w(x, y) ≤ dw(x, y) if
dw(x, y) < 1 or d∗w(x, y) < 1; otherwise, the reverse inequalities
hold. In this paper the notion of a metric modular is extended
with respect to a generalized addition operation (called F -opera-
tion) on the set of nonnegative reals, several metrics are defined
and compared on the respective modular metric space and the
assertions above are generalized to a more general setting.
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1. Introduction

A modular on a real linear space X is a functional ρ : X → [0,∞]
satisfying the conditions [14]: (A.1) ρ(0) = 0; (A.2) if x ∈ X and ρ(αx) = 0
for all α > 0, then x = 0; (A.3) ρ(−x) = ρ(x) for all x ∈ X; and (A.4)
ρ(αx + βy) ≤ ρ(x) + ρ(y) for all α, β ≥ 0 with α + β = 1 and x, y ∈ X;
if the inequality ρ(αx + βy) ≤ αρ(x) + βρ(y) holds in (A.4), the modu-
lar ρ is called convex [12]. It is known from [11] that Xρ = {x ∈ X :
limα→+0 ρ(αx) = 0} is a linear space, called modular space, which can be
endowed with an F -norm by setting |x|ρ = inf{ε > 0 : ρ(x/ε) ≤ ε} for
x ∈ Xρ. In addition, if ρ is convex, the modular space Xρ coincides with
X∗

ρ = {x ∈ X : ∃α = α(x) > 0 such that ρ(αx) <∞} and the functional
|x|∗ρ = inf{ε > 0 : ρ(x/ε) ≤ 1} is an ordinary norm on X∗

ρ , which is “equiv-
alent” to |x|ρ in the following sense [12]: if |x|ρ < 1 or |x|∗ρ < 1, then
|x|2ρ ≤ |x|∗ρ ≤ |x|ρ; otherwise, |x|ρ ≤ |x|∗ρ ≤ |x|2ρ.

By now the theory of modular linear (or close to linear) spaces is well
known and well developed including several generalizations (e.g., [8], [13],
[16]) and a number of textbooks is devoted to the theory and applications
([7], [9], [15], to mention only a few), which contain comprehensive bibliogra-
phy on the subject and historical comments. However, for certain problems
from set-valued analysis ([1]–[4]) the notion of a modular on a set X with an
additional algebraic structure is too limited, and “linear” modular theory
fails. In order to overcome this insufficiency, in [5] the following approach
to the modular theory on an arbitrary set X is proposed. For the sake of
clarity and comparison, in the next paragraph we describe the basic ideas
in a fashion parallel to the first paragraph above.

A metric modular on a set X is a function w : (0,∞)×X×X → [0,∞]
satisfying, for all x, y, z ∈ X, the following conditions: (i) w(λ, x, y) = 0
for all λ > 0 iff x = y; (ii) w(λ, x, y) = w(λ, y, x) for all λ > 0; and
(iii) w(λ + µ, x, y) ≤ w(λ, x, z) + w(µ, y, z) for all λ, µ > 0; if the func-
tion (λ, x, y) �→ λw(λ, x, y) is also a metric modular on X, the metric
modular w is called convex. Given x0 ∈ X, the set Xw = {x ∈ X :
limλ→∞w(λ, x, x0) = 0} is a metric space, called modular space, whose met-
ric is given by dw(x, y) = inf{λ > 0 : w(λ, x, y) ≤ λ} for x, y ∈ Xw.
Moreover, if w is convex, the modular set Xw is equal to X∗

w = {x ∈ X :
∃λ = λ(x) > 0 such that w(λ, x, x0) <∞} and metrizable by d∗w(x, y) =
inf{λ > 0 : w(λ, x, y) ≤ 1} for x, y ∈ X∗

w, and metrics dw and d∗w are “equiv-
alent” in the sense that if dw(x, y) < 1 or d∗w(x, y) < 1 for x, y ∈ X∗

w = Xw,
then (dw(x, y))2 ≤ d∗w(x, y) ≤ dw(x, y); otherwise, the last two inequalities
should be reversed. The resulting theory agrees with the classical one in
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that if X is a real linear space, ρ : X → [0,∞] and w(λ, x, y) = ρ((x−y)/λ)
for all λ > 0 and x, y ∈ X, then ρ is a (convex) modular on X in the sense
of (A.1)–(A.4) iff w is a (convex) modular in the sense of (i)–(iii).

The aim of this paper is to extend the notion of a (convex) metric mod-
ular to that of a (convex) F -modular where F is an F -operation (i.e., a
generalized addition) on the set of all nonnegative reals in the sense of [9,
Section 3], [13]. The main results of the paper are concerned with metriz-
ability of modular sets Xw and X∗

w by different metrics (Theorems 1, 4 and
5) and, further, their comparison (Theorems 4 and 6). Also, we establish
specific inequalities between a metric F -modular w and the corresponding
metric dw (Theorem 2), which proved to be useful in the study of abstract
superposition (Nemytskii) operators in [4] and in establishing the equiva-
lence of dw-metric convergence and w-modular convergence in Theorem 3.
We make no attempt to present any applications aiming at the general the-
ory, which is of interest in its own right (for applications of convex metric
modulars see [4] and [5]).

The paper is organized as follows. In Section 2 we recall the notion of
an F -operation on R

+ and its main properties, which are needed for our
results. Metric F -modulars are introduced in Section 3, which also contains
their properties and examples. In Section 4 two different metrics dw and
d1

w are defined on modular sets and a relation between them is established.
Finally, in Section 5 we present a generalization of the notion of convexity
for metric F -modulars and study the relations between appropriate metrics
in convex and non-convex settings.

2. F -operations on R
+ revisited

Throughout the paper R
+ = [0,∞) denotes the set of all nonnegative

real numbers.

In this section we recall the notions and properties of an F -operation on
R

+, an equivalence relation between F -operations and an F -superadditive
function needed below (for the classical exposition, which we generally follow
here, see [9, Section 3, 3.1–3.10] and [13]).

2.1. A continuous function F : R
+ × R

+ → R
+ is said to be an F -

operation (or generalized addition operation) on R
+ if, for all u, v, w ∈ R

+,
the following conditions hold: (a) F (u, 0) = u; (b) F (u, v) = F (v, u); (c)
if u ≤ v, then F (u, w) ≤ F (v, w); and (d) F (u, F (v, w)) = F (F (u, v), w).
If, instead of (c), u < v implies F (u, w) < F (v, w), the F -operation F
is called strict. We denote by F(R+) the set of all F -operations on R

+.

Any F ∈ F(R+) may be formally extended to R
+

= [0,∞] by setting
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F (u, v) = ∞ provided u = ∞ or v = ∞. Also, in extending an F to any
finite number of terms it is convenient to set u ⊕ v ≡ u⊕F v = F (u, v) for
u, v ∈ R

+ and, given u1, . . . , un ∈ R
+ with n ∈ N,

⊕1
i=1ui = u1, ⊕2

i=1ui = u1 ⊕ u2 and ⊕n
i=1 ui = F

(⊕n−1
i=1 ui, un

)
, n ≥ 3.

Clearly, the set F(R+) is closed under the uniform convergence. The
following properties of an F -operation F are straightforward: F (0, 0) = 0,
F (u1, v1) ≤ F (u2, v2) if 0 ≤ u1 ≤ u2 and 0 ≤ v1 ≤ v2, and F (u, v) ≥
F∞(u, v) = max{u, v}, i.e., the F -operation F∞ is the minimal element of
F(R+). For more examples of F -operations see 2.4 below.

2.2. A function ϕ : R
+ → R

+ is said to be a ϕ-function if it is nonde-
creasing, continuous, vanishes at zero only and ϕ(u) → ∞ as u → ∞; if,
moreover, ϕ is strictly increasing (or convex), then it is called an increasing
(or convex ) ϕ-function.

2.3. Given an increasing ϕ-function ϕ, the following function ϕ∗ :
F(R+) → F(R+) is well defined:

(ϕ∗F )(u, v) = ϕ−1
(
F (ϕ(u), ϕ(v))

)
, F ∈ F(R+), u, v ∈ R

+,

where ϕ∗F = ϕ∗(F ) and ϕ−1 is the inverse function of ϕ. Clearly, (idR+)∗ =
idF(R+) where idX is the identity function of the set X, i.e., idX(x) = x for
all x ∈ X. Given two ϕ-functions ϕ and ψ, we have (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗,
where ◦ denotes the usual composition of functions. It follows that the
relation

∗∼, defined for F,G ∈ F(R+) by: G
∗∼ F if and only if there exists

an increasing ϕ-function ϕ such that G = ϕ∗F , is an equivalence relation
on F(R+). The equivalence class [F ] of F ∈ F(R+) under

∗∼ is given by
[F ] = {ϕ∗F : ϕ is an increasing ϕ-function} ⊂ F(R+).

2.4. Examples of F -operations. Given u, v ∈ R
+ and p > 0, we have:

(a) F∞(u, v) = max{u, v}, and ϕ∗F∞ = F∞ for any increasing ϕ-func-
tion ϕ;

(b) F1(u, v) = u+ v, the usual addition operation in R
+;

(c) Fp(u, v) = (up + vp)1/p, and Fp = ϕ∗F1 with ϕ(u) = up;
(d) Fe(u, v) = 1

p
log(epu + epv − 1), and Fe = ϕ∗F1 with ϕ(u) = epu − 1;

(e) Flog(u, v) = u+ v + puv, and Flog = ϕ∗F1 with ϕ(u) = log(1 + pu);

(f) F
(u, v) =

⎧⎨
⎩

u+ v if u < 1, v < 1 and u+ v < 1,

1 if u < 1, v < 1 and u+ v ≥ 1,

max{u, v} if u ≥ 1 or v ≥ 1.

The F -operations F1, Fp, Fe and Flog are equivalent (under
∗∼) and

strict, while [F∞] = {F∞}.
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2.5. Given F ∈ F(R+), a function κ : R
+ → R

+ is said to be F -super-
additive if κ(u) > 0 for all u > 0 and

F (κ(u), κ(v)) ≤ κ(u+ v) for all u, v ∈ R
+. (1)

The function κ is nondecreasing (strictly increasing if F is strict) on R
+,

for if 0 ≤ u < v, then, by virtue of (1),

κ(u) = F (κ(u), 0) ≤ F (κ(u), κ(v − u)) ≤ κ(u+ (v − u)) = κ(v).

2.6. Examples of F -superadditive functions.
(a) Any nondecreasing function κ : R

+ → R
+ with κ(u) > 0 for u > 0

is F∞-superadditive.
(b) Any convex ϕ-function κ is F1-superadditive (in particular, κ(u) =

u): in fact, the convexity of κ implies κ(θu) ≤ θκ(u) for all 0 ≤ θ ≤ 1 and
u ∈ R

+, and so, given u > 0 and v > 0, we have:

κ(u) = κ
( u

u+ v
· (u+ v)

)
≤ u

u+ v
κ(u+ v) and κ(v) ≤ v

u+ v
κ(u+ v),

which gives F1(κ(u), κ(v)) = κ(u) + κ(v) ≤ κ(u+ v) for all u, v ∈ R
+.

(c) The following assertion holds: given F ∈ F(R+) and an increasing
ϕ-function ϕ, a function κ : R

+ → R
+ is F -superadditive if and only if the

function ϕ−1 ◦ κ is ϕ∗F -superadditive.
(d) Example (b) and assertion (c) provide a large number of examples

of functions κ. According to (b), the convex function κ(u) = equ − 1 is F1-
superadditive for all q > 0. Employing examples 2.4(c)–(e), respectively, by
virtue of 2.6(c), we find that κ1(u) = (equ−1)1/p is Fp-superadditive, κ2(u) =
(q/p)u is Fe-superadditive and κ3(u) = 1

p
(eκ(u) − 1) is Flog-superadditive.

3. Metric F -modulars

In what follows X is a nonempty set, λ > 0 is understood in the sense
that λ ∈ (0,∞), and if the domain of a function w is (0,∞) ×X ×X, we
always write wλ(x, y) = w(λ, x, y) for λ > 0 and x, y ∈ X.

3.1. Definition. A function w : (0,∞)×X×X → [0,∞] is said to be
a metric F -modular on X, where F is a given F -operation, if the following
three axioms are satisfied:

(F.i) for all x, y ∈ X we have: wλ(x, y) = 0 for all λ > 0 iff x = y;
(F.ii) wλ(x, y) = wλ(y, x) for all λ > 0 and x, y ∈ X;
(F.iii) wλ+µ(x, y) ≤ F

(
wλ(x, z), wµ(y, z)

)
for all λ, µ>0 and x, y, z∈X.

If instead of (F.i) we have only
(F.i′) wλ(x, x) = 0 for all λ > 0 and x ∈ X,

then the function w is called a metric F -pseudomodular on X.
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3.2. Properties of F -(pseudo)modulars. Let w be a metric F -
pseudomodular on a set X with F ∈ F(R+). We have:

(a) The function 0 < λ �→ wλ(x, y) ∈ [0,∞] is nonincreasing on (0,∞)
for all x, y ∈ X: in fact, if 0 < µ < λ, then (F.iii), (F.i′), (F.ii) and 2.1
imply

wλ(x, y) ≤ F
(
wλ−µ(x, x), wµ(y, x)

)
= F (0, wµ(x, y)) = wµ(x, y).

It follows that for any λ > 0 the following finite or infinite right and left
limits exist:

wλ+0(x, y) = lim
ε→+0

wλ+ε(x, y), wλ−0(x, y) = lim
µ→λ−0

wµ(x, y),

such that

wλ+0(x, y) ≤ wλ(x, y) ≤ wλ−0(x, y), λ > 0, x, y ∈ X. (2)

(b) Given λ1 > 0, . . . , λn > 0 and x0, x1, . . . , xn ∈ X, the standard
induction on n ∈ N gives:

wλ1+···+λn(x0, xn) ≤ ⊕n
i=1wλi

(xi−1, xi) with ⊕ = ⊕F .

(c) Given an increasing ϕ-function ϕ, we have: w is a metric F -(pseudo)-
modular on X if and only if ϕ−1 ◦ w is a metric ϕ∗F -(pseudo)modular on
X. In fact, the axioms (F.i) and (F.ii) are clear, and as for (F.iii), we have:

wλ+µ(x, y) ≤ F
(
wλ(x, z), wµ(y, z)

)
, x, y, z ∈ X, λ > 0,

is equivalent to (cf. 2.3)

ϕ−1
(
wλ+µ(x, y)

) ≤ ϕ−1
(
F

[
ϕ
(
ϕ−1(wλ(x, z))

)
, ϕ

(
ϕ−1(wµ(y, z))

)])
.

3.3. Examples of F -modulars. Here we present mainly examples of
metric F1-modulars, since this case is the basic one in the theory. Applying
property 3.2(c) one obtains further examples of metric F -modulars. Let
λ > 0 and x, y ∈ X in (a), (b) and (c).

(a) If wλ(x, x) = 0 and wλ(x, y) = ∞ for x �= y, then w is a metric
F -modular on X for every F ∈ F(R+).

Now let (X, d) be a metric space (or a pseudometric space).
(b) Setting wλ(x, y) = ∞ if λ ≤ d(x, y) and wλ(x, y) = 0 if λ > d(x, y),

we find that w is a metric F -modular on X for every F ∈ F(R+).
(c) Let wλ(x, y) = λϕ

(
d(x, y)/λ

)
where ϕ is a convex ϕ-function or

wλ(x, y) = d(x, y)/(ϕ(λ) + d(x, y)) where ϕ : (0,∞) → (0,∞) is a nonde-
creasing function. Then w is a metric F1-modular on X.
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(d) Let Y = XN be the set of all sequences x : N → X. If

wλ(x, y) = sup
n∈N

(d(x(n), y(n))

ϕ(λ)

)1/n

for x, y ∈ Y and λ > 0, (3)

where ϕ : (0,∞) → (0,∞) is a nondecreasing function, then w is a metric
F1-modular on Y . Another example of an F1-modular in this context is

wλ(x, y) =

∞∑
n=1

Φn

(d(x(n), y(n))

ϕn(λ)

)
, λ > 0 and x, y ∈ Y, (4)

where Φn is a ϕ-function and ϕn is a convex ϕ-function for each n ∈ N (in
checking the axiom (F.iii) relations (6) and (7) below can be helpful).

(e) Let (X, d,+) be a metric semigroup, i.e., (X, d) is a metric space,
(X,+) is an Abelian semigroup and d(x, y) = d(x+z, y+z) for all x, y, z∈X.
Given x, y, x, y ∈ X, the following inequalities hold:

d(x, y) ≤ d(x+ x, y + y) + d(x, y), d(x+ x, y + y) ≤ d(x, y) + d(x, y).

Let I = [a, b] be a closed interval in R and Y = XI be the set of all
functions x : I → X. Given a ϕ-function Φ, a convex ϕ-function ϕ, λ > 0
and x, y ∈ Y , we set

wλ(x, y) = sup

m∑
i=1

Φ
(d(x(ti) + y(ti−1), y(ti) + x(ti−1)

)
ϕ(λ)

)
, (5)

where the supremum is taken over all m ∈ N and a = t0 < t1 < · · · <
tm−1 < tm = b. Then w is a metric F1-pseudomodular on Y . Let us verify
only axiom (F.iii). In order to do it, we first note that if α, β ≥ 0, α+β ≤ 1
and A, B ≥ 0, then

Φ(αA+ βB) ≤ max{Φ(A),Φ(B)} ≤ Φ(A) + Φ(B). (6)

Now if λ, µ > 0, x, y, z ∈ Y , m ∈ N, a = t0 < t1 < · · · < tm−1 < tm = b
and i ∈ {1, . . . , m}, then by virtue of the inequalities for d above, we have:

Ci ≡ d
(
x(ti) + y(ti−1), y(ti) + x(ti−1)

)
≤ d

(
x(ti) + y(ti−1) + y(ti) + z(ti−1), y(ti) + x(ti−1) + z(ti) + y(ti−1)

)
+ d

(
y(ti) + z(ti−1), z(ti) + y(ti−1)

)
=

= d
(
x(ti) + z(ti−1), z(ti) + x(ti−1)

)
+d

(
y(ti) + z(ti−1), z(ti) + y(ti−1)

)
≡ Ai +Bi,
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whence the monotonicity of Φ, inequality ϕ(λ)+ϕ(µ) ≤ ϕ(λ+µ) (cf. 2.6(b))
and (6) imply

Φ
( Ci

ϕ(λ+ µ)

)
≤Φ

( ϕ(λ)

ϕ(λ+ µ)
· Ai

ϕ(λ)
+

ϕ(µ)

ϕ(λ+ µ)
· Bi

ϕ(µ)

)

≤Φ
( Ai

ϕ(λ)

)
+ Φ

( Bi

ϕ(µ)

)
. (7)

Summing over i = 1, . . . , m and taking the supremum as in (5), we arrive
at wλ+µ(x, y) ≤ wλ(x, z) + wµ(y, z) = F1

(
wλ(x, z), wµ(y, z)

)
.

If we set wλ(x, y) = d(x(a), y(a)) +wλ(x, y) with w from (5), then w is
an F1-modular on Y . In fact, suppose that wλ(x, y) = 0 for all λ > 0. Then
d(x(a), y(a)) = 0, wλ(x, y) = 0 and (5) implies

Φ
(d(x(t) + y(s), y(t) + x(s))

ϕ(λ)

)
≤ wλ(x, y) = 0 for all t, s ∈ I,

and so, d(x(t) + y(s), y(t) + x(s)) = 0. Thus, for any t ∈ I it follows that

d(x(t), y(t)) = |d(x(t), y(t))−d(x(a), y(a))| ≤ d(x(t)+y(a), y(t)+x(a)) = 0,

that is, x = y as elements of Y = XI .
Note that F -modulars from examples 3.3(c), (d), (e) are not allowed in

the classical linear modular theory where usually ϕ(λ) = λ. The modular
(5) generates the modular set (see the next subsection) related to the space
of functions x : I → X of generalized Φ-variation in the sense of N. Wiener
and L. C. Young (see also [4] and [10]).

3.4. Modular sets. Given an F -pseudomodular on a set X, we define
a relation

w∼ on X as follows: if x, y ∈ X, we set

x
w∼ y if and only if lim

λ→∞
wλ(x, y) = 0. (8)

Then
w∼ is an equivalence relation on X: this is a consequence of defini-

tion 3.1; for instance, if x
w∼ z and z

w∼ y for x, y, z ∈ X, then, by virtue of
(F.iii), continuity of F and (8), we have:

wλ(x, y) ≤ F
(
wλ/2(x, z), wλ/2(y, z)

) → 0 as λ→ ∞, (9)

and so, x
w∼ y.

Let X/
w∼ be the quotient set of X under

w∼. Given x ∈ X, the equiva-
lence class of x in X/

w∼ is given by

Xw(x) ≡ x̃ = {y ∈ X : y
w∼ x},

and it is called a modular set. In particular, X/
w∼= {x̃ : x ∈ X}, and it is

shown in (9) that x
w∼ y iff x, y ∈ Xw(z) iff x̃ = ỹ = Xw(z) for some z ∈ X.
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3.5. Space (X/
w∼, d̃ ). If w is an F -pseudomodular on X, we set

d̃(x̃, ỹ) = lim
λ→∞

wλ(x, y) for x̃, ỹ ∈ X/
w∼ . (10)

The function d̃ : (X/
w∼) × (X/

w∼) → [0,∞] has the following properties:

(a) d̃(x̃, ỹ) = 0 if and only if x̃ = ỹ in X/
w∼;

(b) d̃(x̃, ỹ) = d̃(ỹ, x̃);

(c) d̃(x̃, ỹ) ≤ F
(
d̃(x̃, z̃), d̃(ỹ, z̃)

)
.

According to 3.2(a), the limit (10) exists in [0,∞]; moreover, d̃ is well
defined, that is, the value (10) does not depend on the choice of repre-
sentatives: in fact, if x̃1 = x̃ and ỹ1 = ỹ, then x1

w∼ x and y1
w∼ y, and

so,

wλ(x1, y1) ≤ F
(
wλ/3(x1, x), F (wλ/3(x, y), wλ/3(y, y1))

)
, λ > 0.

By the continuity of F and 2.1(a), (b), we get

lim
λ→∞

wλ(x1, y1) ≤ F
(
0, F

(
lim

λ→∞
wλ(x, y), 0

))
= lim

λ→∞
wλ(x, y),

and, in a similar manner, we obtain the reverse inequality.
We remark that if F (u, v) ≤ u + v for u, v ∈ R

+, then d̃ satisfies the
axioms of a metric on X/

w∼, but may assume the value ∞ (see 3.3(a)).

In some interesting and important cases X/
w∼ and d̃ may degenerate,

i.e., X/
w∼= {X} and d̃ = 0: this is the case, for instance, for the metric

F1-modular wλ(x, y) = d(x, y)/ϕ(λ) on a metric space (X, d) where ϕ :
(0,∞)→(0,∞) is a nondecreasing function such that ϕ(λ)→∞ as λ→∞.
So in what follows the equivalence classes x̃ ∈ X/

w∼ (modular sets) will be
under consideration.

3.6. Convention. Throughout the rest of the paper we arbitrarily
fix x0 ∈ X and define the modular set by Xw = x̃0 = Xw(x0). If not
specified otherwise, inf ∅ = ∞ and F ∈ F(R+) is an F -operation. Metric
F -(pseudo)modulars will be termed simply as F -(pseudo)modulars. If a
function κ (as in 2.5) appears in a context, it will be assumed to be F -
superadditive. Additional assumptions on κ may involve the limits κ(+0) =
limu→+0 κ(u) ∈ R

+ and κ(∞) = limu→∞ κ(u) ∈ [0,∞].

4. Metrizability theorems

4.1. Now we are ready to define the basic metric dw on the modular
set Xw generalizing the corresponding F -norm from [13].
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Theorem 1. Suppose that w is an F -pseudomodular on X. Then the
function dw : X ×X → [0,∞] defined by

dw(x, y) ≡ dw,F,κ(x, y) = inf{λ > 0 : wλ(x, y) ≤ κ(λ)}, x, y ∈ X, (11)

is a pseudometric on X assuming the value ∞, i.e., for all x, y, z ∈ X
we have: (a) dw(x, x) = 0; (b) dw(x, y) = dw(y, x); and (c) dw(x, y) ≤
dw(x, z) + dw(y, z).

Assume, moreover, that w is an F -modular on X and κ(+0) = 0. Then
(d) given x, y ∈ X, dw(x, y) = 0 if and only if x = y; (e) dw is a metric on
each set X ′ ⊂ X such that dw(x, y) <∞ for all x, y ∈ X ′ and, in particular,
one may always set X ′ = Xw.

Proof. (a) Given x ∈ X, axiom (F.i′) and 2.5 imply wλ(x, x) = 0 <
κ(λ) for all λ > 0, and so, {λ > 0 : wλ(x, x) ≤ κ(λ)} = (0,∞) yielding
dw(x, x) = inf(0,∞) = 0.

Since (b) is clear by virtue of (F.ii), we prove (c). If dw(x, z) = ∞ or
dw(y, z) = ∞, the inequality is clear. Suppose that the right hand side in
(c) is finite. Then for any λ > dw(x, z) and µ > dw(y, z) we have from (11):
wλ(x, z) ≤ κ(λ) and wµ(y, z) ≤ κ(µ), and so, by (F.iii) and properties of F ,

wλ+µ(x, y) ≤ F
(
wλ(x, z), wµ(y, z)

) ≤ F
(
κ(λ), κ(µ)

) ≤ κ(λ+ µ).

This gives dw(x, y) ≤ λ + µ, and it remains to pass to the limit as λ →
dw(x, z) and µ→ dw(y, z).

Now let w be an F -modular on X and κ(+0) = 0.
(d) Let x, y ∈ X and dw(x, y) = 0. It follows from (11) that wµ(x, y) ≤

κ(µ) for all µ > 0. Given λ > 0, for any 0 < µ < λ we have, according to
3.2(a),

wλ(x, y) ≤ wµ(x, y) ≤ κ(µ) → κ(+0) = 0 as µ → +0.

Thus, wλ(x, y) = 0 for all λ > 0, and so, by (F.i), x = y.
(e) Let us show that dw(x, y) < ∞ for all x, y ∈ Xw. Since x

w∼ x0

and y
w∼ x0, then x

w∼ y, and so, by (8) there exists λ0 > 0 such that
wλ(x, y) ≤ κ(1) for all λ ≥ λ0. Setting λ1 = max{1, λ0}, we find λ1 ≥ λ0,
and so, wλ1(x, y) ≤ κ(1). Also, since κ is nondecreasing (see 2.5) and λ1 ≥ 1,
then κ(λ1) ≥ κ(1), and it follows that wλ1(x, y) ≤ κ(1) ≤ κ(λ1), which gives
dw(x, y) ≤ λ1 <∞. �

4.2. Particular cases. Unlike the other parts of the paper, here we
consider the ordinary addition operation F1(u, v) = u+ v and the function
κ(u) = u, which, of course, is F1-superadditive.
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(a) An F1-(pseudo)modular w on a set X, called simply (pseudo)modu-
lar, satisfies conditions (F.i′) or (F.i) and (F.ii) of 3.1 and

wλ+µ(x, y) ≤ wλ(x, z) + wµ(y, z), λ, µ > 0, x, y, z ∈ X. (12)

By Theorem 1, the (pseudo)metric dw on the modular set Xw is given by
(cf. [5])

dw(x, y) = inf{λ > 0 : wλ(x, y) ≤ λ} ∈ R
+, x, y ∈ Xw. (13)

(b) A (pseudo)modular w on X (in the sense of (a)) is said to be convex
(cf. [5, Section 2]) if, instead of (12), it satisfies the condition:

wλ+µ(x, y) ≤ λ

λ+ µ
wλ(x, z) +

µ

λ+ µ
wµ(y, z), λ, µ > 0, x, y, z ∈ X,

(14)

or, in other words, if the function ŵλ(x, y) = λwλ(x, y), λ > 0, x, y ∈ X, is
also a (pseudo)modular on X.

Everywhere in this example we assume that w is a convex (pseudo)mo-
dular on X.

If the set X∗
w ⊂ X is given by

X∗
w ≡ X∗

w(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that wλ(x, x0) <∞}, (15)

then
Xw = X∗

w;

in fact, the inclusion Xw ⊂ X∗
w is always true, and if x ∈ X∗

w, then
wµ(x, x0) < ∞ for some constant µ = µ(x) > 0, and since by virtue of
3.2(a) the function λ �→ ŵλ(x, x0) = λwλ(x, x0) is nonincreasing on (0,∞),
for any λ > µ we have

wλ(x, x0) ≤ (µ/λ)wµ(x, x0) → 0 as λ→ ∞,

and so, x ∈ Xw.
Along with the (pseudo)metric dw on Xw (cf. (13)), another (pseudo)-

metric d∗w on Xw = X∗
w can be defined from the fact that ŵ is also a

(pseudo)modular on X, i.e.,

d∗w(x, y)≡ dŵ(x, y) = inf{λ > 0 : ŵλ(x, y) = λwλ(x, y) ≤ λ} =

= inf{λ > 0 : wλ(x, y) ≤ 1}, x, y ∈ Xw = X∗
w. (16)

That d∗w is well defined will follow from Theorem 1 if we verify that d∗w(x, y)
is finite for all x, y ∈ X ′ = X∗

w (note that Xw = X∗
w = X∗

ŵ ⊃ Xŵ in
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general): indeed, if x, y ∈ X∗
w, then wλ(x, x0) < ∞ and wµ(y, x0) < ∞ for

some numbers λ = λ(x) > 0 and µ = µ(y) > 0, and so, since λ �→ λwλ(x, y)
in nonincreasing, applying (14), for any ν ≥ λ+ µ we have:

wν(x, y)≤ λ + µ

ν
wλ+µ(x, y) ≤ λ+ µ

ν

( λ

λ+ µ
wλ(x, x0) +

µ

λ+ µ
wµ(y, x0)

)

=
1

ν

(
λwλ(x, x0) + µwµ(y, x0)

) → 0 as ν → ∞.

Thus, there exists ν0 = ν0(x, y) > 0 such that wν(x, y) ≤ 1 for all ν ≥ ν0,
and so, d∗w(x, y) ≤ ν0 <∞.

(c) The modulars from examples 3.3(a), (b) and wλ(x, y) = d(x, y)/λ
are convex; (4) is convex if Φn is convex and ϕn(λ) = λ for all n ∈ N; and
(5) is convex if Φ is convex and ϕ(λ) = λ. On the other hand, the modulars
from 3.3(c) are not convex (see Remark 5.5(c) below). In order to see that
(3) is non-convex, let us show that Yw(x0) �= Y ∗

w(x0) for some x0 ∈ Y (cf.
notation in 3.4). Choose x, x0 ∈ X, x �= x0, and define the corresponding
constant sequences x,x0 ∈ Y = XN by x(n) = x and x0(n) = x0 for all
n ∈ N. Then for λ > ϕ−1(d(x, x0)) we have

wλ(x,x0) = sup
n∈N

(d(x(n),x0(n))

ϕ(λ)

)1/n

= lim
n→∞

(d(x, x0)

ϕ(λ)

)1/n

= 1,

and so, x ∈ Y ∗
w(x0) \ Yw(x0).

4.3. Now we present specific inequalities between an F -pseudomodular
and the pseudometric, which the F -pseudomodular generates according to
Theorem 1.

Theorem 2. Let w be an F -pseudomodular on X, κ an F -superadditive
function, λ > 0 and x, y ∈ Xw. We have:

(a) if dw(x, y) < λ, then wλ(x, y) ≤ κ
(
dw(x, y) + 0

) ≤ κ(λ);
(b) if dw(x, y) = λ, then wλ+0(x, y) ≤ κ(λ+0) and κ(λ−0) ≤ wλ−0(x, y);
(c) if µ �→ wµ(x, y) and κ are continuous from the right on (0,∞), then

the inequalities dw(x, y) ≤ λ and wλ(x, y) ≤ κ(λ) are equivalent.
Suppose also that F is strict or κ is increasing. Then we have:
(d) if dw(x, y) < λ, then wλ(x, y) < κ(λ), and wλ(x, y) = κ(λ) implies

dw(x, y) = λ;
(e) if µ �→ wµ(x, y) and κ are continuous from the left on (0,∞), then

the inequalities dw(x, y) < λ and wλ(x, y) < κ(λ) are equivalent ;
(f) if µ �→ wµ(x, y) and κ are continuous on (0,∞), then dw(x, y) = λ

if and only if wλ(x, y) = κ(λ).
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Proof. (a) By 3.2(a), (11) and 2.5, for any µ > 0 such that dw(x, y) <
µ < λ we have: wλ(x, y) ≤ wµ(x, y) ≤ κ(µ) ≤ κ(λ), and it suffices to pass
to the limit as µ → dw(x, y) + 0.

(b) By the definition of dw, for any µ > λ = dw(x, y) we find wµ(x, y) ≤
κ(µ), and so, letting µ go to λ+ 0, we get:

wλ+0(x, y) = lim
µ→λ+0

wµ(x, y) ≤ lim
µ→λ+0

κ(µ) = κ(λ+ 0).

For any 0 < µ < λ we find wµ(x, y) > κ(µ) (for otherwise if wµ(x, y) ≤
κ(µ), the definition of dw would give λ = dw(x, y) ≤ µ), and, as above, it
remains to pass to the limit as µ→ λ− 0.

(c) If wλ(x, y) ≤ κ(λ), then dw(x, y) ≤ λ follows from the definition of
dw. Suppose that dw(x, y) ≤ λ. If dw(x, y) < λ, then, by (a), wλ(x, y) ≤
κ(λ), and if dw(x, y) = λ, then, by (b) and the continuity from the right of
functions κ and µ �→ wµ(x, y), wλ(x, y) = wλ+0(x, y) ≤ κ(λ+ 0) = κ(λ).

(d) If F is strict, then we know from 2.5 that κ is strictly increasing.
By (a), if dw(x, y) < µ < λ, then wλ(x, y) ≤ wµ(x, y) ≤ κ(µ) < κ(λ). Now
suppose that wλ(x, y) = κ(λ). The definition of dw implies dw(x, y) ≤ λ.
The inequality dw(x, y) < λ cannot hold, because by the just proved fact,
wλ(x, y) < κ(λ). Therefore, dw(x, y) = λ.

(e) The part “dw(x, y) < λ implies wλ(x, y) < κ(λ)” follows from (d).
Let wλ(x, y) < κ(λ). By definition (11), dw(x, y) ≤ λ, and the equality
here is impossible, for if dw(x, y) = λ, then, by (b), wλ(x, y) = wλ−0(x, y) ≥
κ(λ− 0) = κ(λ), which contradicts the assumption.

(f) Part “⇐” follows from (d), and part “⇒” follows from (b):

wλ(x, y) = wλ+0(x, y) ≤ κ(λ+0) = κ(λ) = κ(λ−0) ≤ wλ−0(x, y) = wλ(x, y).

This finishes the proof of Theorem 2. �

4.4. Examples. (a) The one-sided limits used in the previous theorem
are essential for its validity. Let (X, d) be a metric space, λ > 0, x, y ∈ X,
and set wλ(x, y) = ∞ if λ < d(x, y) and wλ(x, y) = 0 if λ ≥ d(x, y). Then
w is an F1-modular on X (actually, an F -modular for every F ∈ F(R+), cf.
3.3(b)), for which the function µ �→ wµ(x, y) is continuous from the right
on (0,∞) and discontinuous from the left at λ = d(x, y) > 0. If κ(u) = u
and x �= y in Theorem 2(b), then for λ = dw(x, y) = d(x, y) > 0 we find

wλ+0(x, y) = wλ(x, y) = 0 < κ(λ) = λ = d(x, y) <∞ = wλ−0(x, y),

and so, wλ−0(x, y) cannot be replaced by wλ(x, y). Similarly, 3.3(b) shows
that wλ+0(x, y) cannot be replaced by wλ(x, y) in Theorem 2(b). As a
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consequence, assertions (c), (e) and (f) in that theorem may not be valid
without the assumptions of one-sided continuity.

(b) An example of an F -pseudomodular with property (c) from Theo-
rem 2 is (5) from example 3.3(e). In order to see that wλ+0(x, y) = wλ(x, y)
for all λ > 0 and x, y ∈ Y , by virtue of (2) it suffices to show that
wλ(x, y) ≤ wλ+0(x, y). If a = t0 < t1 < · · · < tm−1 < tm = b, definition (5)
implies

m∑
i=1

Φ
(d(x(ti) + y(ti−1), y(ti) + x(ti−1)

)
ϕ(µ)

)
≤ wµ(x, y) for all µ > λ.

Taking into account the continuity of Φ and ϕ, we have, as µ→ λ+ 0,

m∑
i=1

Φ
(d(x(ti) + y(ti−1), y(ti) + x(ti−1)

)
ϕ(λ)

)
≤ wλ+0(x, y),

and it remains to take the supremum such as in (5). Similarly, for w from
3.3(d) one can show that the function µ �→ wµ(x, y) is continuous from the
right on (0,∞) provided that the function ϕ from 3.3(d) is continuous from
the right on (0,∞).

4.5. Now we study to what extent the modular convergence is related
to the metric convergence:

Theorem 3. Let w be an F -pseudomodular on X, κ an F -superadditive
function, x ∈ Xw and {xn}∞n=1 ⊂ Xw be a sequence. (a) If wλ(xn, x) → 0
as n → ∞ for all λ > 0, then dw(xn, x) → 0 as n → ∞. (b) Conversely, if
κ is continuous from the left on (0,∞), κ(0) = 0 and κ(∞) = ∞, then the
condition dw(xn, x) → 0 as n→ ∞ implies wλ(xn, x) → 0 as n→ ∞ for all
λ > 0. (c) Assertions, similar to (a) and (b), hold for Cauchy sequences
{xn}∞n=1 ⊂ Xw.

Proof. (a) Given ε > 0, wε(xn, x) → 0 as n → ∞, and so, since
κ(ε) > 0, there exists n0(ε) ∈ N such that wε(xn, x) ≤ κ(ε) for all n ≥ n0(ε).
By the definition of dw, this means that dw(xn, x) ≤ ε for all n ≥ n0(ε), and
the assertion follows.

(b) Let us fix λ > 0 arbitrarily. Given ε > 0, we set µ(ε) ≡ κ−1
+ (ε) =

sup{u ∈ R
+ : κ(u) ≤ ε} (the right inverse of κ) and note that κ(µ(ε)) ≤ ε:

in fact, κ(u) ≤ ε for all u < µ(ε), and it remains to pass to the limit as
u → µ(ε) − 0 and take into account the left continuity of κ. We consider
two possibilities: (i) 0 < ε < κ(λ), and (ii) ε ≥ κ(λ).
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(i) Let 0 < ε < κ(λ). Since µ(ε) > 0, by the assumption there exists
n0(ε) ∈ N such that dw(xn, x) < µ(ε) for all n ≥ n0(ε), and so, by Theo-
rem 2(a), wµ(ε)(xn, x) ≤ κ(µ(ε)) ≤ ε. Since ε < κ(λ), we have µ(ε) ≤ λ
(otherwise, condition λ < µ(ε) and the definition of µ(ε) imply κ(λ) ≤ ε),
and the property in 3.2(a) gives:

wλ(xn, x) ≤ wµ(ε)(xn, x) ≤ ε for all n ≥ n0(ε).

(ii) If ε ≥ κ(λ), we set ε1 = κ(λ)/2 < κ(λ) and apply the arguments in
(i) for ε = ε1: because, as above, 0 < µ(ε1) ≤ λ, we get

wλ(xn, x) ≤ wµ(ε1)(xn, x) ≤ ε1 =
κ(λ)

2
< κ(λ) ≤ ε

for all n ≥ n0(ε1). �

4.6. The pseudometric dw in Theorem 1 is defined for any F -super-
additive function κ. Under additional restrictions on κ (with respect to
F ) another pseudometric can be defined on X as Theorem 4 below shows.
Also, in the next theorem the function d1

w corresponding to κ(u) = u is a
more general variant of the F -norm from [6].

Theorem 4. Let w be an F -(pseudo)modular on X and κ be an in-
creasing ϕ-function. Then the function d1

w : X × X → [0,∞] defined by
(with the convention that κ−1(∞) = ∞)

d1
w(x, y) = inf

λ>0

(
λ+ κ−1(wλ(x, y))

)
for x, y ∈ X (17)

is a (pseudo)metric on X assuming the value ∞ (cf. Theorem 1(a)–(d))
such that

dw(x, y) ≤ d1
w(x, y) ≤ 2dw(x, y) for all x, y ∈ X. (18)

In particular, the function d1
w is finite on each set X ′ ⊂ X such that

dw(x, y) <∞ for all x, y ∈ X ′, and one may always set X ′ = Xw.

Proof. Let w be an F -pseudomodular on X (recall that the function
κ is F -superadditive according to convention 3.6).

1. To show that d1
w(x, x) = 0 for all x ∈ X, we note that wλ(x, x) = 0

for all λ > 0 implying κ−1
(
wλ(x, x)

)
= 0, and so, d1

w(x, x) = infλ>0 λ = 0.
2. Since the symmetry of d1

w is clear including the value ∞, we prove
the triangle inequality d1

w(x, y) ≤ d1
w(x, z) + d1

w(y, z) for all x, y, z ∈ X. If
d1

w(x, z) = ∞ or d1
w(y, z) = ∞, this inequality is obvious, and so, we suppose
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that d1
w(x, z) and d1

w(y, z) are finite. By the definition of these quantities,
for each ε > 0 there exist λ = λ(ε) > 0 and µ = µ(ε) > 0 such that

λ+ κ−1
(
wλ(x, z)

) ≤ d1
w(x, z) + ε and µ+ κ−1

(
wµ(y, z)

) ≤ d1
w(y, z) + ε

or, equivalently,

wλ(x, z) ≤ κ
(
d1

w(x, z) + ε− λ
)

and wµ(y, z) ≤ κ
(
d1

w(y, z) + ε− µ
)
.

(19)

Because κ is F -superadditive, inequality (1) can be equivalently rewritten
in the form

κ−1
(
F (κ(u), κ(v))

) ≤ u+ v for all u, v ∈ R
+. (20)

Then applying (17), 3.1(F.iii), (19), the monotonicity of F and κ−1 and
(20), we get:

d1
w(x, y)≤λ+ µ+ κ−1

(
wλ+µ(x, y)

)
≤λ+ µ+ κ−1

(
F

(
wλ(x, z), wµ(y, z)

))
≤λ+ µ+ κ−1

(
F

(
κ(d1

w(x, z) + ε− λ), κ(d1
w(y, z) + ε− µ)

))
≤λ+ µ+

(
d1

w(x, z) + ε− λ
)

+
(
d1

w(y, z) + ε− µ
)

= d1
w(x, z) + d1

w(y, z) + 2ε,

and it remains to take into account the arbitrariness of ε > 0.
3. Let us prove the inequalities in (18). The right hand side inequality

is clear if dw(x, y) = ∞, so we suppose that it is finite. Then for any λ > 0
such that dw(x, y) < λ the definition of dw(x, y) implies wλ(x, y) ≤ κ(λ),
whence

d1
w(x, y) ≤ λ+ κ−1

(
wλ(x, y)

) ≤ λ+ κ−1(κ(λ)) = 2λ.

Passing to the limit as λ→ dw(x, y), we get d1
w(x, y) ≤ 2dw(x, y), x, y ∈ X.

In order to prove the left hand side inequality, let λ > 0 be arbitrary
and x, y ∈ X. If wλ(x, y) ≤ κ(λ), then, according to the definition of
dw(x, y), dw(x, y) ≤ λ. Let us show that if wλ(x, y) > κ(λ), then dw(x, y) ≤
κ−1(wλ(x, y)). In fact, this inequality is clear if wλ(x, y) = ∞, and if
wλ(x, y) <∞, then by the continuity of κ and the fact that κ(R+) = R

+ we
find µ > λ such that κ(µ) = wλ(x, y) (otherwise, if µ ≤ λ, then wλ(x, y) =
κ(µ) ≤ κ(λ)), and it follows from 3.2(a) that wµ(x, y) ≤ wλ(x, y) = κ(µ).
Then the definition of dw(x, y) implies dw(x, y) ≤ µ = κ−1(wλ(x, y)). Thus,

dw(x, y) ≤ max{λ, κ−1(wλ(x, y))} ≤ λ+ κ−1(wλ(x, y)) for all λ > 0.
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Taking the infimum over all λ > 0, we arrive at dw(x, y) ≤ d1
w(x, y).

Inequalities (18) mean that the quantities dw(x, y) and d1
w(x, y) are finite

or infinite simultaneously, proving the last assertion of our theorem.
4. Now let w be an F -modular on X, and let us prove that, given x, y ∈

X, condition d1
w(x, y) = 0 implies x = y or, equivalently, that wλ(x, y) = 0

for all λ > 0. On the contrary, suppose that there exists λ0 > 0 such that
wλ0(x, y) > 0. Then we have

λ+ κ−1(wλ(x, y)) ≥ λ0 for all λ ≥ λ0,

and if 0 < λ < λ0, then by virtue of the monotonicity of functions λ �→
wλ(x, y) and κ−1, we find 0 < wλ0(x, y) ≤ wλ(x, y), and so,

0 < κ−1(wλ0(x, y)) ≤ κ−1(wλ(x, y)) ≤ λ+ κ−1(wλ(x, y)).

It follows that

λ+ κ−1(wλ(x, y)) ≥ min
{
λ0, κ

−1(wλ0(x, y))
} ≡ λ1 for all λ > 0,

and the definition of d1
w(x, y) implies d1

w(x, y) ≥ λ1 > 0, a contradiction.
This completes the proof of Theorem 4. �

5. ϕ-convex metric F -modulars

Throughout this section ϕ is an increasing ϕ-function.

5.1. Definition. A function w : (0,∞)×X×X → [0,∞] is said to be
a ϕ-convex (metric) F -(pseudo)modular on the set X if it satisfies axioms
(F.i′) or (F.i) and (F.ii) from 3.1 and, for all λ, µ > 0 and x, y, z ∈ X,

(F.ϕ) (λ+ µ)wϕ(λ+µ)(x, y) ≤ F
(
λwϕ(λ)(x, z), µwϕ(µ)(y, z)

)
.

In other words, w is a ϕ-convex F -(pseudo)modular on X if and only if
the function ŵ : (0,∞) ×X ×X → [0,∞] given by ŵλ(x, y) = λwϕ(λ)(x, y)
for all λ > 0 and x, y ∈ X is an F -(pseudo)modular on X in the sense of
3.1. We recover the ordinary convex (pseudo)modular w from [5, Section 2]
(see also 4.2(b)) by setting ϕ(λ) = λ and F (u, v) = u + v in the axiom
(F.ϕ).

Given w : (0,∞) × X × X → [0,∞], we set wλ(x, y) = wϕ(λ)(x, y) for
λ > 0 and x, y ∈ X, so that wλ(x, y) = wϕ−1(λ)(x, y). We have: w is a
ϕ-convex F -modular on X iff w satisfies (F.i), (F.ii) and

(λ+ µ)wλ+µ(x, y) ≤ F
(
λwλ(x, z), µwµ(y, z)

)
.

In particular, if ρ is a convex modular on a real linear space X, then the
function wλ(x, y) = ρ

(
(x− y)/ϕ−1(λ)

)
is a ϕ-convex metric modular on X,

which is not considered in the classical theory.
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5.2. Some properties of w. (a) If the function w satisfies 5.1, then
the functions λ �→ wϕ(λ)(x, y), λ �→ λwϕ(λ)(x, y) and λ �→ ϕ−1(λ)wλ(x, y)
are nonincreasing on (0,∞) for all x, y ∈ X: in fact, if 0 < µ < λ, then
(F.ϕ) with z = x, (F.i′) and (F.ii) yield:

λwϕ(λ)(x, y)≤F
(
(λ− µ)wϕ(λ−µ)(x, x), µwϕ(µ)(y, x)

)
=F

(
0, µwϕ(µ)(x, y)

)
= µwϕ(µ)(x, y),

whence

wϕ(λ)(x, y) ≤ µ

λ
wϕ(µ)(x, y) ≤ wϕ(µ)(x, y), 0 < µ < λ, x, y ∈ X, (21)

or, equivalently, the first inequality can be rewritten as

wλ(x, y) ≤ ϕ−1(µ)

ϕ−1(λ)
wµ(x, y) for all 0 < µ < λ and x, y ∈ X. (22)

(b) If w is a ϕ-convex F -(pseudo)modular on X, then Xw = X∗
w (cf.

(15)). It suffices to show that X∗
w ⊂ Xw. Let x ∈ X∗

w. Then there exists
µ = µ(x) > 0 such that wµ(x, x0) < ∞, and it follows from (22) that if
0 < µ < λ, then

wλ(x, x0) ≤ ϕ−1(µ)

ϕ−1(λ)
wµ(x, x0) → 0 as λ→ ∞,

and so, x ∈ Xw.

5.3. In the next theorem we introduce a metric on the modular space
corresponding to the case under consideration.

Theorem 5. Let w be a ϕ-convex F -(pseudo)modular on X and the
function κ be such that κ(+0) = 0 and

lim sup
λ→∞

λ

κ(λ)
<∞. (23)

Then the function dϕ
w defined by

dϕ
w(x, y) = inf{λ > 0 : λwϕ(λ)(x, y) ≤ κ(λ)}, x, y ∈ X∗

w,

is a (pseudo)metric on the set X∗
w.

Proof. According to the assumption, the function ŵλ(x, y) from 5.1 is
an F -(pseudo)modular on X, and so, Theorem 1 applies to dϕ

w = dŵ.
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All we are left to verify is that dϕ
w(x, y) < ∞ for all x, y ∈ X∗

w. There
exist λ = λ(x) > 0 and µ = µ(y) > 0 such that wλ(x, x0) < ∞ and
wµ(y, x0) <∞. Setting λ′ = ϕ−1(λ) and µ′ = ϕ−1(µ), by virtue of (21) and
(F.ϕ), for ν ≥ λ′ + µ′ we find

wϕ(ν)(x, y)≤ λ′ + µ′

ν
wϕ(λ′+µ′)(x, y)

≤ 1

ν
F

(
λ′wϕ(λ′)(x, x0), µ

′wϕ(µ′)(y, x0)
)

=
1

ν
F

(
ϕ−1(λ)wλ(x, x0), ϕ

−1(µ)wµ(y, x0)
) → 0 (24)

as ν → ∞. Condition (23) implies the existence of c1 > 0 and c2 > 0 such
that κ(λ) ≥ c2λ for all λ ≥ c1. By (24), there exists λ0 > 0 such that
wϕ(ν)(x, y) ≤ c2 for all ν ≥ λ0. We set λ1 = max{λ0, c1}. Since λ1 ≥ λ0,
we have wϕ(λ1)(x, y) ≤ c2, and λ1 ≥ c1 implies c2 ≤ κ(λ1)/λ1, and so,
λ1wϕ(λ1)(x, y) ≤ κ(λ1), proving that dϕ

w(x, y) ≤ λ1 <∞. �

5.4. In the special case when κ(u) = u is F -superadditive, that is,
F (u, v) ≤ u+ v (examples of such F are contained in 2.4(c) with p ≥ 1 and
2.4(d) for any p > 0), the functions dw from Theorem 1 given by (13) and
dϕ

w from Theorem 5 defined by (cf. (16))

dϕ
w(x, y) = inf{λ > 0 : wϕ(λ)(x, y) ≤ 1}, x, y ∈ X∗

w = Xw, (25)

are specifically equivalent as can be seen from the following theorem.

Theorem 6. Let w be a ϕ-convex F -(pseudo)modular on X, κ(u) = u
be F -superadditive and x, y ∈ X∗

w = Xw. Then we have:
(a) if dw(x, y) < 1, then dϕ

w(x, y) < ϕ−1(1), and vice versa, and the
following two inequalities hold :

dw(x, y) · ϕ−1(dw(x, y)) ≤ dϕ
w(x, y) ≤ ϕ−1(dw(x, y));

(b) if dw(x, y) ≥ 1, then dϕ
w(x, y) ≥ ϕ−1(1), and vice versa, and the

following two inequalities hold :

ϕ−1(dw(x, y)) ≤ dϕ
w(x, y) ≤ dw(x, y) · ϕ−1(dw(x, y)).

Proof. We divide the proof into four steps for clarity. The first two
steps are devoted to the proof of (a).

1. First we show that dw(x, y) < 1 implies dϕ
w(x, y) ≤ ϕ−1(dw(x, y)). In

fact, since dw(x, y) < 1, then ϕ−1(dw(x, y)) < ϕ−1(1), and so, for any num-
ber λ > 0 such that ϕ−1(dw(x, y)) < λ < ϕ−1(1) we find dw(x, y)<ϕ(λ)<1.
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By (13), wϕ(λ)(x, y) ≤ ϕ(λ), and so, wϕ(λ)(x, y) < 1, which, by virtue of (25),
gives dϕ

w(x, y) ≤ λ. Passing to the limit as λ → ϕ−1(dw(x, y)) we arrive at
the desired inequality. This inequality also shows that if dw(x, y) < 1, then
dϕ

w(x, y) < ϕ−1(1).
2. Let us prove that if dϕ

w(x, y) < ϕ−1(1), then dw(x, y) ·ϕ−1(dw(x, y)) ≤
dϕ

w(x, y). For this, we define an auxiliary ϕ-function by ϕ̂(λ) = λϕ(λ),
λ ∈ R

+, and note that

ϕ̂(ϕ−1(λ)) = ϕ−1(λ) · ϕ(ϕ−1(λ)) = λϕ−1(λ), λ ∈ R
+. (26)

Since dϕ
w(x, y) < ϕ−1(1) or, equivalently, ϕ(dϕ

w(x, y)) < 1, we have
dϕ

w(x, y)ϕ(dϕ
w(x, y)) ≤ dϕ

w(x, y), and so, ϕ̂(dϕ
w(x, y)) ≤ dϕ

w(x, y) implying
dϕ

w(x, y) ≤ ϕ̂−1(dϕ
w(x, y)). Again, since dϕ

w(x, y) < ϕ−1(1) and (26) implies
ϕ−1(1) = ϕ̂(ϕ−1(1)), we get ϕ̂−1(dϕ

w(x, y)) < ϕ−1(1). Thus, we have shown
that

if dϕ
w(x, y) < ϕ−1(1), then dϕ

w(x, y) ≤ ϕ̂−1(dϕ
w(x, y)) < ϕ−1(1). (27)

Now let λ > 0 be arbitrary such that

ϕ̂−1(dϕ
w(x, y)) < λ < ϕ−1(1). (28)

Then the first inequality in (27) and the first inequality in (28) yield

dϕ
w(x, y) < λ, (29)

and the first inequality in (28) implies also dϕ
w(x, y) < ϕ̂(λ) = λϕ(λ), whence

dϕ
w(x, y)/λ < ϕ(λ). (30)

Taking into account (29), for any µ > 0 such that dϕ
w(x, y) < µ < λ we get,

in view of (25), wϕ(µ)(x, y) ≤ 1, and so, (21) gives

wϕ(λ)(x, y) ≤ (µ/λ)wϕ(µ)(x, y) ≤ µ/λ.

Passing to the limit as µ → dϕ
w(x, y) we find wϕ(λ)(x, y) ≤ dϕ

w(x, y)/λ. It
follows from (30) now that wϕ(λ)(x, y) < ϕ(λ), and so, (13) implies that
dw(x, y) ≤ ϕ(λ) for all λ such as in (28). Letting λ tend to ϕ̂−1(dϕ

w(x, y)),
we get

dw(x, y) ≤ ϕ
(
ϕ̂−1(dϕ

w(x, y))
)
. (31)

Taking ϕ−1 and then ϕ̂ in (31) and applying (26), we obtain the desired
inequality in step 2.
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That dw(x, y) < 1 and dϕ
w(x, y) < ϕ−1(1) are equivalent can be exposed

as follows: we know from step 1 that dw(x, y) < 1 implies dϕ
w(x, y) < ϕ−1(1);

conversely, noting that, by (26), ϕ̂(ϕ−1(1)) = ϕ−1(1) or ϕ̂−1(ϕ−1(1)) =
ϕ−1(1), we find that if dϕ

w(x, y) < ϕ−1(1), then by virtue of (31),

dw(x, y) ≤ ϕ
(
ϕ̂−1(dϕ

w(x, y))
)
< ϕ

(
ϕ̂−1(ϕ−1(1))

)
= ϕ(ϕ−1(1)) = 1.

It follows that the inequalities dw(x, y) ≥ 1 and dϕ
w(x, y) ≥ ϕ−1(1) are

equivalent, as well.
Now we turn to the proof of (b) in steps 3 and 4.
3. Let us show that if dϕ

w(x, y) ≥ ϕ−1(1), then ϕ−1(dw(x, y)) ≤ dϕ
w(x, y).

In fact, condition dϕ
w(x, y) ≥ ϕ−1(1) implies 1 ≤ ϕ(dϕ

w(x, y)), and so, given
λ > dϕ

w(x, y), definition (25) gives

wϕ(λ)(x, y) ≤ 1 ≤ ϕ(dϕ
w(x, y)) < ϕ(λ),

whence (13) yields dw(x, y) ≤ ϕ(λ). Passing to the limit as λ → dϕ
w(x, y),

we get dw(x, y) ≤ ϕ(dϕ
w(x, y)), and the desired inequality follows.

4. Finally, we show that dw(x, y) ≥ 1 implies the right hand side in-
equality in (b). Let dw(x, y) ≥ 1. Then for any λ > dw(x, y) we have, by
(13), wλ(x, y) ≤ λ. Noting that λ > 1, we get λϕ−1(λ) > ϕ−1(λ), and so,
setting λ′ = ϕ(λϕ−1(λ)) > λ, by virtue of (22), we find

wλ′(x, y) ≤ ϕ−1(λ)

ϕ−1(λ′)
wλ(x, y) ≤ ϕ−1(λ)

λϕ−1(λ)
· λ = 1

or wϕ(λϕ−1(λ))(x, y) ≤ 1, which in accordance with (25) gives dϕ
w(x, y) ≤

λϕ−1(λ). So, letting λ go to dw(x, y) we arrive at the desired inequality.
This finishes the proof of Theorem 6. �

5.5. Remarks. (a) The inequalities in (a) and (b) in Theorem 6 may
be rewritten equivalently as

(a′) ϕ(dϕ
w(x, y)) ≤ dw(x, y) ≤ ϕ

(
ϕ̂−1(dϕ

w(x, y))
)
,

(b′) ϕ
(
ϕ̂−1(dϕ

w(x, y))
) ≤ dw(x, y) ≤ ϕ(dϕ

w(x, y)),

respectively. In fact, (a′) follows from the right hand side inequality in
(a) and (31). Since the inequality at the right in (b′) is equivalent to the
inequality at the left in (b), we establish only the left hand side inequality
in (b′): noting that ϕ̂(λ) = λϕ(λ) iff λ = ϕ̂−1(λϕ(λ)) and setting λ =
ϕ−1(dw(x, y)) in the inequality dϕ

w(x, y) ≤ dw(x, y)ϕ−1(dw(x, y)), we get

ϕ̂−1(dϕ
w(x, y)) ≤ ϕ̂−1(ϕ(λ) · λ) = λ = ϕ−1(dw(x, y)),

and so, ϕ
(
ϕ̂−1(dϕ

w(x, y))
) ≤ dw(x, y), as desired.
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(b) In Theorem 6 we have assumed that w satisfies definition 5.1, but
not definition 3.1 (i.e., axiom (F.iii) may fail). So, according to Theorem 5,
function dϕ

w from (25) is a (pseudo)metric in Theorem 6, and function dw

from (13) is not, in general. Now if we assume in Theorem 6 that w is
also an F -(pseudo)modular in the sense of definition 3.1, then, by virtue of
Theorem 1, function dw is a (pseudo)metric on any set X ′ ⊂ X, on which it
is finite. The right hand sides in (a′) and (b′) clearly show that dw is finite
on X ′ = X∗

w (which also follows from Theorem 1 and equality X∗
w = Xw).

(c) We also note that without the “ϕ-convexity” assumption in The-
orem 6 the inequalities at the left in (a) and at the right in (b) may not
be true, while the other two inequalities always hold (for ϕ(λ) = λ see [5,
Section 2.3]). In our more general situation this can be seen as follows. For
a metric space (X, d) and a number p > 0 we set

wλ(x, y) =
d(x, y)

λp + d(x, y)
, λ > 0, x, y ∈ X.

According to 3.3(c), w is an F1-modular on X, and Xw = X∗
w = X. For any

increasing ϕ-function ϕ we have wϕ(λ)(x, y) < 1 for all λ > 0 and x, y ∈ X,
and so, dϕ

w ≡ 0 on X identically. On the other hand, if x �= y, then
0 < dw(x, y) < 1: this follows from (13), Theorem 2(f) and the fact that if
λ ≥ 0 is the solution of λp+1 = d−λd with d > 0, then 0 < λ < 1 (draw the
picture of the graphs). Thus, the left hand side inequality in Theorem 6(a)
does not hold. This example shows that the modular w above is not ϕ-
convex for any increasing ϕ-function ϕ (which can be also verified by the
definition).

(d) Definition 5.1 generalizes the notions of: 1) an s-convex modular
from [9, Chapter I], [14] corresponding to ϕ(λ) = λ1/s with 0 < s ≤ 1; 2)
an (F, ϕ)-modular from [8] where ϕ additionally satisfies ϕ(uv) ≥ ϕ(u)ϕ(v)
for all u, v ∈ R

+; 3) a ϕ-convex modular from [5] for F (u, v) = u + v and
general function ϕ. In the case where ϕ(λ) = λ1/s with 0 < s ≤ 1 the
inequalities in Theorem 6 are of the form known from the classical theory of
modulars on linear spaces [7, p. 7, Remark 3], [12] (see also Introduction):

(
dw(x, y)

)s+1 ≤ dϕ
w(x, y) ≤ (

dw(x, y)
)s

if dw(x, y) < 1 or dϕ
w(x, y) < 1,

and these inequalities should be reversed if dw(x, y) ≥ 1 or dϕ
w(x, y) ≥ 1.

The inequalities in Theorem 6 are new if ϕ is a general increasing ϕ-function.
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