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Abstract

This paper reconciles the two explanations of a financial crisis, the self-fulfilling prophecy
and the fundamental causes, in an empirically-relevant framework, by explicitly modeling the
costly voluntary acquisition of information about fundamentals in a variant of Diamond and
Dybvig (1983). The model exhibits strategic complementarity in information acquisition. In
the “partial run” equilibrium investors engage in costly evaluation of projects, so that banks
with lower-return projects fail. There also exist the classic “full-run” and “no-run” equilibria
in which there is no project evaluation. Investors’ coordination on a specific equilibrium is
triggered by a self-fulfilling prophecy. So, financial crises are seen as both fundamentals-based
and self-fulfilling prophecies-based phenomena.
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1 Introduction

Theoretical analysis of recent financial crises in Mexico in 1994, South-East Asia in 1997, Russia

in 1998, Argentina in 2001-2002 emphasizes the international illiquidity of the domestic financial

system. Chang and Velasco (2000, 2001) extend the Diamond and Dybvig (1983) closed-economy

bank run model to an open economy setting and show how a sudden capital outflow brings about

costly liquidation of investment projects rendering the domestic banks insolvent. Chang and Ve-

lasco’s approach focuses on self-fulfilling prophecies as the main cause of financial crises. However,

empirical studies of financial crises emphasize that normally banks or currencies with certain “fun-

damental” problems are the ones that suffer from a sudden loss of confidence by investors, and that

financial crises are often preceded by shocks to fundamentals.

Our paper reconciles these two explanations of a financial crisis—the self-fulfilling prophecy

and the fundamentals-based crises—in an empirically-relevant framework, by explicitly modeling

the costly voluntary acquisition of information about fundamentals. Our framework is a variant of

Diamond and Dybvig’s model with an open-economy interpretation. While Diamond and Dybvig

consider one bank in a closed-economy setting, we consider a continuum of countries, each with

one bank. Our model allows for two types of banks: “good” banks with a high rate of return

to illiquid assets (projects), and “bad” banks with a low return. We find conditions under which

three different equilibria are possible: the “verification” equilibrium in which all global investors

verify types of banks, and withdraw funds from the bad ones, leaving them insolvent, the no-run

equilibrium in which all banks remain solvent, and the full-run equilibrium, in which investors

withdraw funds from all the banks.1 On the one hand, in the verification equilibrium only bad

banks go bust, so the run on them has a fundamental cause. On the other hand, a switch from the

no-run to the verification equilibrium can be triggered by a self-fulfilling prophecy. Therefore the

financial crisis is inherently fundamentals-based and panic-based at the same time.

Our model exhibits strategic complementarity in information acquisition. The intuition behind

this complementarity is that the value of information increases in the share of agents who acquire

the information about fundamentals. In particular, the value of information exceeds its cost when

all agents acquire the information, but not when other agents refrain from information acquisition.

A stylized fact that supports our model is the alternation of periods of lending booms and

1The last two equilibria are similar to the two equilibria of Diamond and Dybvig’s model.
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busts, with dramatically different approaches towards risk. During lending booms, investors’ en-

thusiasm for particular segments of the domestic or the world economy, or for particular financial

instruments, brings about a narrowing of spreads and lack of concern for credit quality, as funds

flow indiscriminately to all borrowers in these segments. The busts are accompanied by the “flight

to quality,” and a widening of spreads, which are devastating to borrowers with particularly weak

fundamentals.2

Our model is close in spirit to Hellwig and Veldkamp (2005) who also link strategic comple-

mentarities in information acquisition with actions. If an agent wants to do what others do, then

he wants to know what others know. Hellwig and Veldkamp (2005) show that the complemen-

tarity in information acquisition creates the room for multiplicity of equilibria. For a range of

information costs, there are two equilibria, one where no one buys the information, and one where

everyone does. They discuss their idea in the context of several applications (an investment model

with externalities, a ‘beauty contest’ game, and the costly planning problem (Reis, 2005)), but not

financial crises.

Our approach is complementary to the recent ‘global games’ literature that eliminates the mul-

tiplicity of equilibria in a Diamond-Dybvig style coordination game in a way that preserves the

panic-based nature of the bank runs, but also relates the probability of the run to fundamentals.

Morris and Shin (2000) and Goldstein and Pauzner (2005) develop models in which agents receive

a slightly noisy signal about fundamentals (the return to illiquid asset). This information het-

erogeneity allows the modelers to pin down the range of values of fundamentals in which a bank

run takes place, calculate the unconditional probability of a run, and show that improvement in

fundamentals reduces the likelihood of a run. At the same time, a run is panic-based, because

agents demand early withdrawal from a bank just because they fear others would. Other impor-

tant contributions to the ‘global games’ literature include Morris and Shin (1998) and Heinemann

and Illing (2002) who reconciled the self-fulfilling prophecies and fundamentals approaches to cur-

rency crises, Morris and Shin (2004) who studied self-fulfilling debt crises, and Rochet and Vives

(2004), who analyzed the role of the lender of last resort in a model of bank runs. However, further

contributions to the literature suggested that information heterogeneity is not a panacea to achieve

uniqueness of equilibrium. Angeletos and Werning (2005) introduce a financial market in a stylized

2Schadler et al.(1993) document periods of overlending and capital outflow in emerging markets. The
Economist(1998) describes how changes in investors’ sentiments made risk “a four-letter word” in the aftermath
of the Russian default in September 1998.

3



‘global’ coordination game with imperfect private information so that the asset price acts as a

public signal aggregating dispersed private information. They show that equilibrium multiplicity

is still ensured with small noise. Angeletos, Hellwig and Pavan (2003) add endogenous defensive

central bank policies to the model of speculative currency attack of Morris and Shin (1998) and

show that self-fulfilling market expectations still determine the equilibrium: “In her attempt to

fashion the equilibrium outcome, the policy maker reveals information that market participants

can use to coordinate on multiple courses of action.”

The limitation of the ‘global games’ approach is that it preserves the assumption that all infor-

mation received by agents is exogenous (in a sense that an agent cannot choose what information

to receive) and free. However, in real-world settings the information acquired by investors is po-

tentially available to other investors and is costly.3

The remainder of the paper is structured as follows. Part 2 is a presentation of the basic setup

of the model. Part 3 comprises the derivation of the model solution. Part 4 presents a modification

of the basic model in which strategic complementarity in information acquisition gives rise to more

than one equilibrium with verification. Part 5 concludes the analysis.

2 Model Setup

Consider a world economy populated by a continuum of agents (global investors) of measure one.

All agents live for three periods: 0, 1, and 2. Each agent is endowed with one unit of divisible good

in period 0. However, he derives his utility from consumption in periods 1 or 2 (depending on his

type). In order to transfer wealth across time, he has two options. The first option is storage. The

storage is liquid and risk-free, and its gross rate of return is one in both periods.4

Alternatively, the agent can use illiquid productive technologies (illiquid projects), which have

a high expected return if left for two periods, but a low return if interrupted after one period.

There is a continuum of country-specific illiquid projects, also of measure one (this is a departure

from the original Diamond-Dybvig setup). The projects are risky: α projects yield the gross return

3Even if the data is available free of charge (for example, released by government statistics offices), investors need
time (and other resources, e.g. computers) to process it. Furthermore, most of the economic and financial research
is conducted by the private sector and is available for a fee.

4A possible interpretation of storage in the open-economy context is the investment in government securities of
the OECD countries.
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R > 1, and (1−α) projects yield q < 1. There is no aggregate uncertainty about the productivity:

α is non-stochastic. If interrupted during period 1, the illiquid technology yields only r < 1. We

assume also that αR + (1 − α)q > 1, so illiquid projects have a higher expected return than the

return on storage.

Productivity shocks are realized in period 1. In that period an agent can learn which country

projects are highly productive, and which are not, at a cost ε > 0 per unit of investment.

Similarly to the original Diamond-Dybvig setup, agents face a preference risk. With probability

λ, their utility function is u(C1) = C1−σ
1 −1
1−σ , i.e. they derive utility from consumption in period 1

only. Henceforth we will refer to them as impatient agents. With probability (1− λ), their utility

function is u(C2) = C1−σ
2 −1
1−σ . We will refer to them as patient agents. We assume that σ, the

coefficient of relative risk aversion, is greater than or equal to 1.5 The preference shock is realized

during the first period, i.e. after agents have made their investment decisions. Moreover, the shock

is not publicly observable.

3 Model Solution

3.1 Social Optimum

The problem of the (world) social planner is to maximize the expected welfare of a representative

agent.

We will focus on the range of parameter values under which the social planner should never

interrupt illiquid technology investment in period 1, i.e. even inefficient projects should be com-

pleted and resources on verification should not be spent. (The restriction on parameter values that

ensures this will be derived at the end of this subsection.) The social planner should use storage

to provide for consumption of impatient agents.6 This approach is consistent with the literature.
The planner maximizes:

EU = λu(X) + (1− λ)u(Y ), (1)

subject to
λX ≤ b (2)

5Virtually all empirical estimates of σ lie between 1 and 10 (Auerbach and Kotlikoff, 1987, p.50.)
6It is inefficient to interrupt an illiquid technology, because the return on storage is greater than the return on the

interrupted illiquid technology, r < 1.
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(1− λ)Y = R̃k + (b− λX) (3)

k + b = 1 (4)

X ≤ Y, (5)

where b is the amount invested in storage, k is the amount invested in illiquid technology, X is the

consumption of impatient agents, Y is the consumption of patient agents, and R̃ = αR + (1− α)q

is the average return on illiquid projects. Maximization is with respect to X, Y, k and b.

The objective function (1) is the expected utility of an agent. Inequality (2) is the first-period

resource constraint. It states that the consumption of impatient agents comes from storage, b.

Equation (3) is the second-period resource constraint. It shows that the consumption of the patient

agents comes from the illiquid technology, k, and the storage of the good that is available but not

consumed in period 1, (b−λX). Equation (4) is the budget constraint of period 0. It demonstrates

that the social planner must either store or invest all the endowment. Finally, inequality (5) is the

incentive-compatibility constraint. The patient agent should not have the incentive to mimic the

behavior of the impatient agents and attempt to acquire the consumption good in period 1.

Proposition 1: The problem (1)-(5) has the following solution:

b∗ =
λR̃(σ−1)/σ

1− λ + λR̃(σ−1)/σ
(6)

k∗ = 1− b∗ =
1− λ

1− λ + λR̃(σ−1)/σ
(7)

X∗ =
b∗

λ
=

R̃(σ−1)/σ

1− λ + λR̃(σ−1)/σ
(8)

Y ∗ =
R̃(1− b∗)

1− λ
=

R̃

1− λ + λR̃(σ−1)/σ
, (9)

where the asterisk denotes the socially optimal values of the variables.

The proof is straightforward and is omitted for brevity.

Proposition 1 says that the social planner should invest in storage just enough to satisfy the

impatient agents and not store anything between periods 1 and 2. Over two periods the average

return on the illiquid technology dominates the return on storage.

In the particular case of σ = 1 (the case of the logarithmic utility function) b∗ = λ, X∗ = 1,

k∗ = 1 − λ, Y ∗ = R̃. In words, the share of investment in storage should be equal to the share

of impatient agents in the economy, and they should get exactly the return on storage. Patient
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agents earn the average return on the illiquid technology. The social planner does not redistribute

investment earnings from the patient to impatient agents, or vice versa.

If σ > 1, that is, if agents are more risk-averse than the agents with logarithmic utility, the

social planner should reduce the difference between the earnings of patient and impatient agents.

Hence X∗ > 1, and Y ∗ < R̃.

We derive the threshold value of the verification cost, ε, (the social planner verifies, if and only

if ε < ε∗) in the following way. We are searching for the value of the verification cost, such that

the social planner is indifferent between verifying and not verifying a unit of investment. When

the social planner verifies one unit of investment (and interrupts low-return investments), he gets

(1 − α)r − ε in period 1, and αR in period 2. To have an unchanged amount of consumption

good in period 1 (to provide for impatient agents) when he verifies an extra unit of investment,

he should reduce storage by (1− α)r− ε and increase unverified investment by the same amount.7

Indifference is achieved if he gets the same amount of consumption good in period 2 as well.

Switching to verification of one unit gives him period-2 returns of R̃[(1−α)r− ε]+αR, but he loses

R̃. Therefore, the indifference condition is:

R̃[(1− α)r − ε∗] + αR = R̃ (10)

Solving for ε yields:

ε∗ = (1− α)
[
r − q

αR + (1− α)q

]
The right-hand side of the last expression can be positive, or negative. We assume that the

verification cost is always non-negative. Therefore, to ensure that verification is never socially

optimal, we assume that

ε ≥ max
{

(1− α)
[
r − q

αR + (1− α)q

]
, 0

}
(11)

3.2 Decentralized Equilibria and Runs

Decentralization of the socially optimal allocation can be achieved in the same way as in the

original Diamond-Dybvig model. Each bank issues demand deposits. These deposits pay X∗ = b∗

λ

7A marginal reduction in storage is possible, because the social planner stores a part of the endowment and invests
another part.

7



if withdrawn in the first period, provided that the bank is solvent. In the second period all remaining

assets are liquidated and allocated among deposit holders on pro rata basis.

Each bank stores the b∗ share of the period 0 deposit, and invests the rest in the illiquid

technology. The amount of storage should suffice to just satisfy the liquidity needs of impatient

agents. If there is no run, i.e., if in period 1 patient agents do not attempt to withdraw, then

impatient agents get X∗, and patient agents get Y ∗, i.e., the socially optimal allocation is attained.

The demand deposit contract is the optimal arrangement because the type of the agent is his

private information. The bank is unable to condition the first-period payout on the type of the

agent.

Given that agents are risk-averse, and the bank type may be revealed only in period 1, it is

optimal for agents to spread their deposits across the banking system, i.e. to make an equal deposit

in every bank.

The decentralized equilibrium is prone to runs. If a sufficient number of patient agents decide

to withdraw in period 1, it is indeed optimal for all patient agents to withdraw in period 1. The

run becomes self-fulfilling, because X∗ > r, and hence the banks have to destroy illiquid investment

to meet the unexpected withdrawal demand. Therefore the return on deposits in period 2 can fall

below X∗.8

In this setup three different equilibria are feasible: a no-run equilibrium, or an equilibrium in

which the socially optimal allocation is achieved, a “verification,” or “partial run,” equilibrium,

and a “full-run” equilibrium. In the full-run equilibrium, agents do not verify the type of banks,

but attempt to withdraw their deposits from all of them. Hence all the banks liquidate all their

investment and shut down. In the verification equilibrium, all patient agents verify the type of the

banks and withdraw from the inefficient ones. Hence the inefficient banks, though not the efficient

ones, have to liquidate all their investment and shut down in the first period.

Proposition 2 below describes conditions for existence of equilibria. The proof is relegated to

the Appendix.

8We acknowledge that the demand-deposit contract presented above decentralizes the socially optimal allocation
only if runs never occur. In the case of a run autarky may be welfare superior to the use of a banking system.
Goldstein and Pauzner (2005) present a demand-deposit contract that is optimal given the probability of a run, i.e.
they construct a demand-deposit contract that trades off the benefits from liquidity shocks insurance against the
costs of runs. Such a contract cannot be constructed in our model, because the probability of a run (endogenously
determined in Goldstein and Pauzner, 2005) is indeterminate here.
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Proposition 2: Under conditions (12)-(14) below there exist three Nash equilibria of the coordination
game: the no-run equilibrium, the verification equilibrium, and the full-run equilibrium:

[b∗ + k∗r](1− α) > ε (12)

k∗

1− λ
αR− ε > αX∗ (13)

(1− α)
(

X∗ − k∗

1− λ
q

)
< ε (14)

where b∗, k∗ and X∗ are determined by equations (6)-(9).

Remark: Conditions (12)-(14) do not depend on whether the sequential service constraint applies.

This is true for two reasons. First, the sequential service constraint does not affect the expected

return on a bank deposit in case of a run on this bank. The expected return depends only on the

amount of resources available at the bank in period 1.9 Second, given that agents diversify their

portfolios and hold their deposits in a continuum of banks, by the law of large numbers, the return

on a portfolio is non-stochastic in any of the three equilibria even if the sequential service constraint

applies.

Conditions (12)-(13) ensure that if all patient agents play the verification equilibrium, it is not

optimal for any agent to deviate. If a patient agent verifies the type of banks and withdraws from

inefficient ones, his expected return is
[
αR k∗

1−λ + (1− α)[b∗ + k∗r]− ε
]
. If he neither verifies nor

withdraws from any bank in period 1, the inefficient banks go bust and his return is
[
αR k∗

1−λ

]
(he

earns the return on deposits in efficient banks only). Hence inequality (12) guarantees that the

patient agent does not wait until period 2. Inequality (13) ensures that withdrawing from all the

banks in period 1 would not benefit a patient agent either. Specifically, withdrawing from all banks

in period 1 gives a patient agent [αX∗ + (1− α)[b∗ + k∗r]] per unit of investment. But if he verifies

the type of banks and withdraws from inefficient ones, he gets
[
αR k∗

1−λ + (1− α)[b∗ + k∗r]− ε
]
.10

Intuitively, it is clear from (12)-(13) that the verification equilibrium exists only if the verification

cost, ε, is not too large.

9The following example clarifies the idea. Assume that the demand deposit rate is X, and the amount of resources
(per depositor) available at the bank in period 1 is m < X. Then, if the sequential service constraint is present, and
all depositors run (which is the only equilibrium outcome, if there is a run), a depositor will get X with probability
m/X and 0 with probability 1−m/X. Therefore, the expected return is m, the same as if the bank first collects all
the withdrawal requests, and then makes an equal payment to every depositor.

10There are other possible strategies available to patient agents but all of these are necessarily dominated by the
payoff from playing the equilibrium strategy (see the proof of Proposition 2).

9



Inequality (14) is the sole condition for the no-run Nash equilibrium—patient agents choose

not to verify and not to withdraw from any banks. Intuitively, the existence of this equilibrium

requires that the verification cost, ε, not be too small; otherwise patient agents could improve their

situation by verifying and withdrawing from inefficient banks. All other potential strategies are

necessarily dominated by the equilibrium strategy.

Finally, the full-run equilibrium always exists in this model. Other potential equilibria, such

as verification in tandem with withdrawing from all banks or perhaps just efficient banks, are not

possible (see the proof of Proposition 2).

Note that conditions (12)-(14) can be written as a single constraint on the magnitude of the

verification cost:

min
[
(1− α)(b∗ + k∗r), α

(
k∗R

1− λ
−X∗

)]
> ε > (1− α)

(
X∗ − k∗q

1− λ

)
(15)

If the verification cost is so high that it violates the left inequality then only the two classic equilibria

exist: the full-run and no-run equilibria (with no verification in either case). If the verification cost

is so low that it violates the right inequality then the only equilibria that exist are the verification

equilibrium and the full-run equilibrium. Next we show that for a positive measure of parameter

values the joint inequality (15) as well as (11) are satisfied, which means that all three equilibria

co-exist for a positive measure of the parameter space.

3.3 Existence of the Three Equilibria

Given the large number of the parameters, we restrict our analysis to the simplest case, when

σ = 1. Below we show that under that restriction, the intersection of (11) and (12)-(14) has

positive measure. By continuity, the intersection of (11) and (12)-(14) has a positive measure at

least for some values of σ > 1.

If σ = 1, (12)-(14) become:

[λ + (1− λ)r](1− α) > ε (16)

αR− ε > α (17)

(1− α)(1− q) < ε (18)
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To ensure that (17) is satisfied it is sufficient to choose sufficiently large values of R. Inequalities

(11), (16) and (18) can be rewritten as a single restriction on ε:

max
[
1− q, r − q

αR + (1− α)q

]
<

ε

1− α
< λ + (1− λ)r (19)

The last inequality is satisfied for a positive measure of ε, if

max
[
1− q, r − q

αR + (1− α)q

]
< λ + (1− λ)r (20)

It immediately follows from r < 1, that r − q
αR+(1−α)q < r < r + λ(1 − r) = λ + (1 − λ)r. Hence

inequality (20)is satisfied if q is sufficiently large (and 1−q is sufficiently small). The above analysis

proves the following proposition:

Proposition 3: Suppose σ = 1. For any value of λ, α and r there exist R0 > 1 and q0 < 1, such

that for any R > R0 and for any q > q0, a positive measure of ε satisfy (11) and (12)-(14).

Numerical example 1: If σ = 1, R = 2, r = q = 0.9, λ = α = 0.5, then conditions (11) and (12)-(14)

are satisfied for any ε ∈ (0.14, 0.50).

3.4 Implications of the Verification Equilibrium.

A first implication of our model is that the partial run, i.e. the verification equilibrium, is

fundamentals-based and panic-based at the same time. During a partial run only inefficient banks

suffer from the run and shut down in the first period. This does not mean that bad fundamentals

of these banks per se cause the run. Their fundamentals are as bad as in the no-run equilibrium.

However, in the partial run equilibrium it is optimal for the agents to investigate the fundamentals

of the banks just because other agents do that.

Second, empirical studies show high correlation between banking crises and recessions/economic

slowdowns. This has been sometimes interpreted as the evidence that banking crises are just a

natural outgrowth of the business cycle (Gorton, 1988, Allen and Gale, 1998). An alternative

view states that the causality goes from the banking crisis to the economic slowdown (Chang and

Velasco, 1998). Our model is consistent with this latter view. In the verification equilibrium, the

GDP (global income) is:

Iv = α[b∗+(1−b∗)R]+(1−α)[b∗+(1−b∗)r]−(1−λ)ε = b∗+(1−b∗)(αR+(1−α)r)−(1−λ)ε (21)
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In the no-run equilibrium the global income is:

Inr = b∗ + (1− b∗)R̃ = b∗ + (1− b∗)[αR + (1− α)q] (22)

From equations (21) and (22) it follows that the global income is always greater in the no-run

equilibrium than in the verification equilibrium.

Therefore the model explains the positive correlation of GDP and bank runs. But the causality

goes from the bank run to GDP and not the other way around. The direction of causality is assured,

because aggregate uncertainty is ruled out by assumption.

4 An Extension of the Model: The Case of “Good” and “Not-

too-bad” Fundamentals.

We now consider a modification of the basic model in which the return on illiquid technology can

be either “good,” R > 1, or “not-too-bad,” q > 1, but q < R. The rest of the assumptions still

hold. We will show that now there is a possibility of a fourth equilibrium in which all patient

agents verify the type of banks, but withdraw funds from the “good” banks only. In that case

we still have a strategic complementarity in information acquisition, i.e., the value of information

depends on the number of verifying agents, and so agents verify the type of banks as long as other

agents do the same. However, the existence of that counterintuitive equilibrium does not refute the

findings of the previous sections. The assumption q > 1 implies that even inefficient banks (banks

with the lower return on illiquid asset) are good enough, as their return dominates the return on

liquid technology (storage). The run on either type of banks arises as a pure coordination failure.

In contrast to the model of this section, the assumption q < 1 in the basic model implies that

fundamentals of the inefficient banks are “bad,” as the return on storage is higher than the return

on illiquid technology in these banks. Hence “bad” fundamentals in the basic model (but not the

“not-too-bad” fundamentals in the model of this section) matter in a well-defined and intuitive

way: when a partial run takes place, only “bad” banks are affected.11

Let us call the partial run equilibrium in which all patient agents verify the type of banks and

withdraw from “not-too-bad” banks only, the type 1 partial run, and the equilibrium in which all
11We are grateful to the anonymous referee for pointing out this to us.
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patient agents verify banks and withdraw from “good” banks only, the type 2 partial run.

Proposition 4: Under conditions (12)-(14) and (23)-(24) below there exist four Nash equilibria of

the coordination game: the no-run equilibrium, the full-run equilibrium, the type 1 partial run

equilibrium and the type 2 partial run equilibrium.

q > X∗ +
ε

1− α
(23)

[b∗ + k∗r]α > ε (24)

where b∗, k∗ and X∗ are determined by equations (6)-(9).

Conditions (23)-(24) ensure that if all patient agents verify the type of banks and withdraw from

“good” ones only, it is not optimal to deviate and engage in indiscriminate withdrawal (condition

(23)12) or not run at all (condition (24)). It is straightforward to show that condition (24) suffices

to ensure that in case of type 2 partial run, it is not optimal to deviate and withdraw from “not-too-

bad” banks only. It is also easy to show that withdrawal from “not-too-bad” banks is suboptimal

when all other agents play other equilibria, i.e. full run, no-run, or type 1 partial run (see the proof

of Proposition 4 in the Appendix for details).

Taking into account that
(
X∗ − k∗q

1−λ

)
can be smaller than 0, when q < 1, the conditions (12)-

(14) and (23)-(24) can be written as a single constraint on the magnitude of the verification cost

in the following way:

min
[
min[α, (1− α)](b∗ + k∗r), (1− α)(q −X∗), α

(
k∗R

1− λ
−X∗

)]
> ε >

max
[
(1− α)

(
X∗ − k∗q

1− λ

)
, 0

]
(25)

Numerical example 2: If σ = 1, R = 2, q = 1.5, r = 0.9, λ = α = 0.5, then conditions (12)-(14) and

(23)-(24) are satisfied for any ε ∈ (0, 0.25).

5 Conclusions

The paper presents a coordination game in which there is a strategic complementarity in acquisition

of information about fundamentals. Our paper reconciles the two explanations of a financial crisis,
12Condition (23) also shows that the type 2 partial run equilibrium is feasible only if q > 1, as X∗ ≥ 1.
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the self-fulfilling prophecy and the fundamental causes in an empirically-relevant framework, by

explicitly modeling the costly voluntary acquisition of information about fundamentals. Agents

verify the type of banks and withdraw funds from inefficient ones if and only if other agents do the

same. Therefore runs on inefficient banks have a fundamental cause, although they are triggered

not by an exogenous shock, but by a self-fulfilling prophecy.

An avenue for further research would be to introduce endogenous information acquisition in a

‘global games’ environment similar to Morris and Shin (2000) or Goldstein and Pauzner (2004) and

check if (and if yes under what conditions) the model will possess multiple equilibria.13

13We are grateful to Alessandro Pavan who pointed out this possibility to us.
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Appendix

Proof of Proposition 2:

Consider first the equilibrium in which patient agents verify and withdraw from inefficient
banks. Conditions (12)-(13) ensure that if all patient agents play the verification equilibrium, it
is not optimal for any agent to deviate. In the equilibrium, a patient agent verifies the type of
banks and withdraws from inefficient ones; his expected return is

[
αR k∗

1−λ + (1− α)[b∗ + k∗r]− ε
]
.

Alternatively, if he does not verify and does not withdraw from any banks then inefficient banks
go bust and his return is

[
αR k∗

1−λ

]
(he earns the return on deposits in efficient banks only). Hence

inequality (12) guarantees that the patient agent does not wait until period 2. Inequality (13)
ensures that an indiscriminate withdrawal from all the banks (and no verification) in period 1
would not benefit a patient agent either. In case of an indiscriminate withdrawal, the patient agent
gets only [αX∗ + [b∗ + k∗r](1− α)] per unit of investment. But if he verifies the type of banks and
withdraws from inefficient ones, he gets

[
αR k∗

1−λ − ε + [b∗ + k∗r](1− α)
]
. There are three other

possible strategies for a patient agent besides playing the equilibrium strategy, all of which involve
verification: (i) no withdrawals (ii) withdraw from efficient banks only, and (iii) withdraw from all
banks. It is readily verified that the payoffs in all of these are necessarily lower than the payoff of
playing the equilibrium strategy.

Consider next the no-run equilibrium (and no verification). First, if a patient agent does not
verify and waits until the second period to withdraw he earns

[
R̃ k∗

1−λ

]
per unit of investment, but

attains only X∗ if he withdraws in period 1. The former exceeds the latter for any σ ≥ 1 and R̃ > 1,
both of which are true by assumption. Second, if he verifies the type of banks and withdraws from
inefficient ones, his gain,

[
(1− α)(X∗ − k∗

1−λq)
]
, must be lower than the verification cost, ε, for the

agent not to want to deviate. This condition is inequality (14). Third, if a patient agent verifies but
does not withdraw in period 1 then clearly his payoff is lower than the equilibrium strategy since he
pays the verification cost and receives the same return from banks. Finally, the agent could verify
and run on all banks or just efficient banks. It is apparent that both of these strategies necessarily
produce lower payoffs than the equilibrium strategy.

Consider the full-run equilibrium. The existence of the full-run equilibrium is ensured, because
X∗ ≥ 1 > r. This condition guarantees that if all patient agents decide to withdraw in the first
period, neither efficient nor inefficient banks have enough resources to pay X∗ to all the agents
wishing to withdraw. Therefore the payout to the patient agents waiting until the period 2 is 0. In
comparison, the return to the patient agents joining the full run is b∗ + k∗r > 0. Second, it follows
that verifying but not running on the banks is also dominated by the equilibrium strategy. Third,
if a patient agent verifies the type of banks during the full run he incurs the verification cost but
gains nothing in payoff. Finally, it follows directly that the agent would be worse off by verifying
and running on just the efficient or just the inefficient banks.

To complete the proof we show the impossibility of the three other potential equilibria: those
in which the patient agents verify the type of banks in period 1, but 1) withdraw from the efficient
banks only; 2) withdraw from all banks; 3) do not withdraw from either type of banks.

1)When all patient agents verify, but withdraw from efficient banks only, a patient agent will
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get α(b∗ + k∗r)− ε + (1− α) k∗q
1−λ . If, instead, a patient agent deviates and verifies and runs on all

banks he gets (1 − α)X∗ + α(b∗ + k∗r). The latter is greater than the former since R̃ > 1 > q.
Thus, the conjectured equilibrium cannot be supported.

2)When all patient agents verify, but withdraw from all banks, each of them gets b∗+k∗r−ε. The
last expression is smaller than b∗+k∗r, the payoff an agent gets, if he does not verify, but withdraws
indiscriminately while others withdraw indiscriminately as well. Hence there is an incentive to
deviate from the equilibrium.

3)When all patient agents verify, but do not withdraw from any bank, each of them gets R̃k∗

1−λ−ε.

The last expression is smaller than R̃k∗

1−λ , the payoff an agent gets, if he deviates by not verifying
and not withdrawing. Hence the conjectured equilibrium is not a Nash equilibrium. Q.E.D.

Proof of Proposition 4:
Proposition 4 asserts the existence of the three equilibria of the coordination game of the basic

model, plus the fourth one, the type 2 partial run equilibrium. Hence, conditions (12)-(14) that
ensure the existence of those three equilibria must hold. Furthermore, we have to show that: 1)If
all patient agents play the type 2 partial run equilibrium, no deviation is profitable. 2)If all patient
agents play any other equilibrium, a switch to the type 2 partial run equilibrium is not profitable.

1)If all patient agents play type 2 partial run equilibrium, the expected return for each of them
equals α(b∗ + k∗r) + (1− α)q − ε. If a patient agent withdraws indiscriminately, his return equals
α(b∗ + k∗r) + (1−α)X∗. Hence no agent would deviate and withdraw indiscriminately, if and only
if:

α(b∗ + k∗r) + (1− α)q − ε > α(b∗ + k∗r) + (1− α)X∗

The last inequality simplifies to (23).
If all patient agents play type 2 partial run equilibrium, then the return for an agent who does

not withdraw at all equals α ∗ 0 + (1− α)q. Hence no agent would deviate to keep all the deposits
in banks, if and only if:

α(b∗ + k∗r) + (1− α)q − ε > (1− α)q

The last inequality simplifies to (24).
Finally, if all patient agents play type 2 partial run equilibrium, then the return for an agent

who withdraws from “not-too-bad” banks only equals (1−α)X∗− ε. Hence no agent would deviate
to withdraw from “not-too-bad” banks only, if and only if

α(b∗ + k∗r) + (1− α)q − ε > (1− α)X∗ − ε

The last inequality holds whenever (23) holds.

2) If all patient agents do not verify the type of banks and do not withdraw, their expected
return equals αR + (1 − α)q. When an agent deviates, verifies the type of banks and withdraws
from “good” banks, his return equals αX∗ + (1− α)q − ε. It is straightforward to verify that

R > R̃ >
R̃

1− λ + λR̃
>

R̃
σ−1

σ

1− λ + λR̃
σ−1

σ

= X∗
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Hence,
αR + (1− α)q > αX∗ + (1− α)q − ε

And no patient agent has an incentive to deviate from the no-run to the type 2 partial run equi-
librium.

If all patient agents engage in indiscriminate withdrawal (full run equilibrium), their expected
return equals (b∗ + k∗r). If a patient agent deviates, verifies the type of banks and withdraws from
“good” ones, his return equals α(b∗+k∗r)+ (1−α) ∗ 0− ε, which is clearly smaller than (b∗+k∗r).
Hence no agent has an incentive to deviate from the full run to the type 2 partial run equilibrium.

Finally, if all agents play type 1 partial run equilibrium, their expected return equals αR+(1−
α)(b∗ + k∗r)− ε. If a patient agent deviates, verifies the type of banks but withdraws from “good”
ones instead of “not-too-bad” ones, his expected return equals αX∗ − ε, which is clearly smaller
than αR + (1 − α)(b∗ + k∗r) − ε. Hence no agent has an incentive to deviate from type 1 partial
run to the type 2 partial run equilibrium. Q.E.D.
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