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1 Introduction

Hurwitz theory is one of the rapidly developing branches of modern mathematical

physics [1]–[34]. It has its origins in the enumeration problem of ramified coverings of

CP 1, and it is brought into modern context with the formula due to Frobenius, [4]

Covern(∆1, . . . ,∆m) =
∑

R

d2
RϕR(∆1) . . . ϕR(∆m)δ|R|,n (1.1)

expressing the covering multiplicities through the quantities ϕR(∆) proportional to the

characters of the symmetric group Sn [35–37]:1

CharR(∆) = dRz(∆)ϕR(∆) (1.2)

The combinatorial coefficient z(∆) =
∏

k
1

kmkmk ! here that counts the order of the auto-

morphism group of the Young diagram, appears everywhere in the theory of symmetric

functions and symmetric group S(∞), ∆i is the Young diagram (integer partition), char-

acterizing the type (conjugation class) of ramification point, all sizes of the diagrams being

the same and equal to the number of sheets in the covering, |∆1| = . . . = |∆m| = n, and the

sum runs over the Young diagrams R of the same size |R| = n, but this time they label rep-

resentations of the symmetric group. The symmetric group characters are among the most

important objects in combinatorics, more sophisticated then the GL(∞) characters χR(t),

very well-known and used in physical applications [38]. Still the two sets of characters are

directly related by the Frobenius formula, which is a sort of Fourier transform [35–37],

χR(t) =
∑

∆

dRϕR(∆)p(∆)δ|∆|,|R| (1.3)

1They are generated by the command Chi(R, ∆) in Maple in the package combinat.
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where ∆ = [. . . ≥ δ2 ≥ δ1] = [. . . , 3m3 , 2m2 , 1m1 ], its size |∆| =
∑

k δk =
∑

k kmk, the time

monomial

p(∆) =
∏

k

pδk
=
∏

k

pmk

k (1.4)

and pk = ktk. These two character sets are further unified through the concept [10] of

cut-and-join operators Ŵ (∆), commuting differential operators of degree |∆| in t-variables,

for which they serve as eigenvectors and eigenvalues respectively [32, 33]:

Ŵ (∆)χR(t) = ϕR(∆)χR(t) (1.5)

The problem with these operators is that they look rather complicated (they belong to

the class of W -operators, made from powers of the U(1) current). In [32, 33] we explained

that the cut-and-join operators acquire a very simple form if expressed in terms of the

matrix Miwa variables pk = tr Xk, then

Ŵ∆ = :
∏

k

1

kmkmk!

(
tr D̂k)mk : (1.6)

for the GL(∞) matrix generator D = X ∂
∂Xtr

. This representation opens a constructive way

to evaluation of the structure constants C∆
∆1∆2

, which appear in the CAA of cut-and-join

operators and, as a consequence, in the ordinary multiplication algebra of symmetric group

characters (this algebra was earlier considered from combinatorial point of view in [39]

where it is claimed to be equivalent to the algebra of shifted symmetric functions of [40]):

Ŵ∆1
Ŵ∆2

=
∑

∆

C∆
∆1∆2

Ŵ∆,

ϕR(∆1)ϕR(∆2) =
∑

∆

C∆
∆1∆2

ϕR(∆) (1.7)

It is important in these formulae that the sums over ∆ are not restricted to |∆| = |∆1,2|,

moreover, |∆1| can be different from |∆2|. Note that already in (1.5) there is no restriction

to |R| = |∆|, and ϕR(∆)’s in this formula are more general than those in (1.3). They are

defined for the Young with r unit rows, [∆] = [∆̃, 1r] by adding additional unit rows to

reach |R| = |∆| in accordance with the rule

ϕR([∆]) ≡







0 for |∆| > |R|
(|R|−|∆|+r)!
r!(|R|−|∆|)! ϕR([∆, 1, . . . , 1

︸ ︷︷ ︸

|R|−|∆|

]) for |∆| ≤ |R| (1.8)

This naturally leads to extension of (1.1) by removing the projector δ|R|,n and lifting the

restriction |∆1| = . . . = |∆m| = n, which defines what was called generalized Hurwitz

numbers in [32, 33].

Note that the CAA of cut-and-join operators induces the multiplication on the Young

diagrams:

∆1 ∗ ∆2 =
∑

∆

C∆
∆1∆2

∆ (1.9)

– 2 –



J
H
E
P
1
1
(
2
0
1
1
)
0
9
7

This multiplication can be considered as extension of another ◦-multiplication on the

Young diagrams, given by the composition of permutations and related to the ordinary

Hurwitz numbers. This latter is connected with the *-multiplication by restricting onto

diagrams of the same size:

∆1 ◦ ∆2 =
∑

∆

C∆
∆1∆2

∆ δ|∆1|,|∆| (1.10)

with |∆1| = |∆2|. Inversely, one can construct ∗-multiplication from the ◦-one by the

procedure described in section 3.

In this paper we discuss one of the immediate implications of the extension to the

generalized Hurwitz numbers: their generating function is the partition function of a

topological field theory associated with the CAA (1.7) and, hence, satisfies the WDVV

equations of [42]. The ordinary Hurwitz partition functions, based on the ordinary

◦-multiplication in symmetric group S(n), also satisfy WDVV for each given n, but

they provide only trivial solutions (which, however, were not discussed in the existing

literature). The WDVV equations are imposed on ”quasiclassical τ -functions”, which

are obtained by one or another kind of Whitham averaging procedure [43–46] from the

KP/Toda hierarchy and a particular set of Riemann surfaces (background) with additional

data. The quasiclassical hierarchies are well studied in the case when the background is a

Riemann sphere, but in the case of Hurwitz theory it should be different (a Lambert curve,

for example, [24, 26, 27]), and such hierarchies are not yet described (see, however, [47]).

An advantage of the quasiclassical hierarchy would be that particular equations involve

only derivatives w.r.t. the finite number of time-variables, while the WDVV equations

involve inversion of an infinite size matrix. Derivation of such reducible equations for

Hurwitz partition functions remains an open problem.

This paper is the second in the series which describes properties of the generating

functions in Hurwitz theory. The first paper, [34] contains a summary of integrable

properties, which will be described in detail in our next paper, [41].

In section 2 we begin with reminding the general construction of topological theory

for any CAA and explain why its partition function always satisfy the WDVV equations

(their original form is a little more general than in [42], and far more general than

in [48–52], the triple derivative equations of [42] being a direct corollary, but not vice

versa!). Then, in sections 3 we provide discuss the two multiplications: ◦ and *-products.

The corresponding multiplication tables can be found in appendices I and II. Knowledge

of these tables allows one to examine concrete examples illuminating following sections.

In section 4 we construct two types of generating functions which are associated with

two multiplications, and in section 5 the corresponding WDVV equations satisfied by

these generating functions are discussed. As a particular example, in sections 6 and 7 we

provide details about the [1p] subring of the *-algebra, describing cut-and-join operators,

associated with the single row diagrams (the ”complementary” single column operators

would instead generate the entire algebra).

– 3 –
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2 Topological theories and WDVV

2.1 Topological theory on sphere (tree level)

At the tree (string) level (i.e. on sphere) a topological theory is defined by three ingredients:

• a vector space with the basis of ”observables” {φi},

• an associative and commutative multiplication

φi ∗ φj =
∑

k

Ck
ijφk (2.1)

• and a linear form (c-valued function) on this space 〈φi〉 = Ki.

At the loop (string) level (i.e. on higher genera Riemann surfaces) one needs also to

define traces and impose an additional constraint on the toric 1-point function (in addition

to associativity and commutativity of the multiplication), but we do not need this in the

present text, which is fully devoted to the tree level topological theories.

The tree correlators are defined as

Ki1...in = 〈φi1 , . . . , φin〉 = 〈φi1 ∗ . . . ∗ φin〉 =
∑

k

Ck
i1...in

〈φk〉 =
∑

k

Ck
i1...in

Kk (2.2)

where the coefficients C are products of the original 3-valent structure constants Ck
ij . These

correlators are totally symmetric under permutations of i1, . . . , in.

It is also convenient to introduce ”the bare metric”

Gij ≡ 〈φi, φj〉 = 〈φi ∗ φj〉 =
∑

k

Ck
ij〈φk〉 (2.3)

and use it and its inverse Gij to raise and lower indices, in particular, to construct the

totally symmetric tensors

Cijk ≡ 〈φi, φj , φk〉 =
∑

m

Cm
ij Gmk =

∑

m

Cm
jkGmi =

∑

m

Cm
ikGmj (2.4)

and

〈φi, φj , φk, φl〉 =
∑

m

Cm
ij Cmkl =

∑

m

Cm
ikCmjl =

∑

m

Cm
il Cmjk = . . . (2.5)

Next one defines the tree partition function

Z[β] =
〈

e
P

i βiφi

∗

〉

= 〈E[β]〉 ≡ 〈〈1〉〉 (2.6)

where e∗(φ) =
∑

n
1
n! φ ∗ φ ∗ . . . ∗ φ
︸ ︷︷ ︸

n

. Then,

Cijk =
∂3Z[β]

∂βi∂βj∂βk

∣
∣
∣
∣
β=0

(2.7)
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2.2 Deformation by coupling constants β and WDVV equations

One can now introduce deformed, β-dependent algebra with a β-dependent multiplication

φi∗̂φj ≡ φi ∗ φj ∗ E[β] ≡
∑

k

Ĉk
ijφk (2.8)

where E[β] is a family of elements of the algebra. The new multiplication is still commu-

tative and associative:

(φi∗̂φj)∗̂φk = φi ∗ φj ∗ φk ∗ E[β] ∗ E[β] = φi∗̂(φj ∗̂φk) (2.9)

It is also possible to introduce the deformed observables φ̂i = φi ∗ E[β], then

φ̂i ∗ φ̂j = φi ∗ φj ∗ E[β] ∗ E[β] = (φi∗̂φj) ∗ E[β] = ̂(φi∗̂φj) =
∑

k

Ĉk
ij φ̂k (2.10)

is also a commutative associative algebra.

Now one can introduces the β-dependent correlators:

〈〈φi1 , . . . , φin〉〉 ≡ 〈φi1 ∗ . . . ∗ φin ∗ E[β]〉 (2.11)

Then the triple correlator possesses two alternative representations (the last two sums in

this formula):

Ĉijk ≡
∂3Z[β]

∂βi∂βj∂βk
= 〈〈φi, φj , φk〉〉 = 〈φi ∗ φj ∗ φk ∗ E[β]〉

=
∑

m

Ĉm
ij Gmk =

∑

m

Cm
ij Ĝmk (2.12)

The first representation is in terms of deformed Ĉk
ij and the bare metric Gmk = 〈φk ∗ φm〉,

while the second one is in terms of the bare (undeformed) Ck
ij and the deformed metric

Ĝmk ≡ 〈〈φm, φk〉〉 = 〈φm ∗ φk ∗ E[β]〉 =
∂2Z[β]

∂βk∂βm
(2.13)

Associativity of original and deformed algebras is expressed in the commutativity condition

of the structure constants
(
Či

)k

j
≡ Ck

ij

ČiČj = ČjČi (2.14)

In its turn, this implies that

ĈijmGmnĈkln = ĈikmGmnĈjln (2.15)

and

ĈijmĜmnĈkln = ĈikmĜmnĈjln (2.16)

which we respectively call as bare and full [42, 52, 54–60] WDVV equations for the

partition function Z[β] (in the case of the full WDVV equation all ingredients are triple

– 5 –
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derivatives of Z[β], the deformed metric is the triple correlator with the unity operator

φ0 = I: Ĝmn = Ĉ0mn).

In some cases the choice of the vector space and observables φi is not unique. The

same algebra may possess different realizations (representations) and one can ask if the

β-deformed topological theory respects this freedom. The problem is very similar to the

representation theory of Lie algebras and to the concept of the universal group elements etc.

2.3 Hurwitz topological theory

Consider here an explicit example when φi depends on an additional label, R such that the

structure constants in the product

φi(R) ∗ φj(R) =
∑

k

Ck
ijφk(R) (2.17)

do not depend on R and the mean value is defined by averaging over R (this is much

similar to an ordinary functional integral over the field φ(x) with the variable x substituted

by the discrete label R). An example of such topological theory is provided by the theory

of Hurwitz numbers, and the role of index R can be played by different structures, for

instance, the Young diagrams in the Frobenius formula (1.1). In this case, we define the

correlators involving the sum over R:

〈i1, . . . , in〉 = 〈φi1(R) ∗ . . . ∗ φin(R)〉 =
∑

R

d2
Rφi1(R) . . . φin(R) (2.18)

Now, it is clear that the equality

Ĉijk ≡ 〈〈i, j, k〉〉 = 〈φi(R) ∗ φj(R) ∗ φk(R) ∗ E[β,R]〉 =

=
∑

m

Cm
ij 〈φm(R) ∗ φk(R) ∗ E[β,R]〉 =

∑

m

Cm
ij Ĝmk =

∑

m

Ĉm
ij Gmk (2.19)

with

E[β,R] = e
P

i βiφi(R)
∗ (2.20)

continues to hold in this case.

As follows from the discussion above, the Hurwitz partition function as a function of

β satisfies the full WDVV equations (2.16). Sometime, for restricted sets of β-variables, it

happen to be also KP τ -functions [34] but this is beyond our consideration here. Instead

we note that the weight E[β,R] can be made more general than (2.20), without changing

anything in the content of the previous consideration. Namely, one can change (2.20) for

P∗(φ(R)) ∗ e
P

i βiφi(R)
∗ (2.21)

with an arbitrary ∗-polynomial of observables φi(R) with the same R. Sometimes

new integrability properties can occur for the partition function as a function on these

additional parameters [34].

– 6 –
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In Hurwitz theory per se, the role of observables φi(R) is played by the characters of

the symmetric group S∞, denoted by ϕR(∆), where the label i → ∆ is now the Young dia-

gram. The most interesting choice for P∗(φ(R)) is a product of several GL(∞) characters,

χR(t)χR(t′)χR(t′′) . . ., where χR(t) is related to ϕR(∆) by formula (1.3). With so modi-

fied E[β,R] the Hurwitz partition function becomes a function of both t- and β-variables.

While in β-variables (when considering their complete set, not a subset) it is usually a

”quasiclassical τ -function”, i.e. a solution to the full WDVV equations, in t-variables it can

be a KP τ -function. This is, indeed, the case when there is one (t) and two (t, t′) sets of

t-variables, see [11, 34, 41, 61]. Surprisingly or not, the KP integrability in t disappears

for three (t, t′, t′′) or more sets of t-variables. This peculiar pattern of (non)-integrability

structures is discussed in the next paper of this series [41].

In variance with our construction in this section, in [53] there was suggested another,

polynomial class of solutions to the WDVV equations. In the Hurwitz theory context this

would correspond to a power series instead of polynomial solutions.

3 Two multiplications of Young diagrams

As we mentioned above, there are two natural multiplications on the Young diagrams:

one, ◦-multiplication given by the composition of permutations, and the other one, *-

multiplication induced by the algebra of cut-and-join operators (1.6).

3.1 ◦-multiplication of Young diagrams from composition of permutations

The ◦-multiplication is given on the Young diagrams (integer partitions) labeling elements

of the group algebra of the symmetric group, i.e. the sum of all permutations2 from the

corresponding conjugation class:

[211] = (12) + (13) + (14) + (23) + (24) + (34)

etc. The number of items is denoted by ||∆||.

The naive ◦-multiplication of Young diagrams, induced by the (non-commutative

but associative) composition of permutations is commutative and associative. Of course,

||∆1 ◦ ∆2|| = ||∆1|| · ||∆2||.

Examples of the multiplication tables for different symmetric groups can be found in

appendix II.

• For any k the ◦-multiplication by [1k] acts like unity:

[1k] ◦ ∆ = ∆ ∀∆ : |∆| = k (3.1)

• Multiplication by [2, 1k] can be deduced from the cut-and-join property. Namely, if

permutations are written in the cyclic notations, then permutation (12) ∈ Sk+2 acts

as follows:

(12) ◦ (12)K = K,

2The composition of permutations is done in Maple by the command mulperms of the package group.

– 7 –
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(12) ◦ (12C)K = (1C)K,

(12) ◦ (21C)K = (2C)K,

(12) ◦ (1C)K = (12C)K,

(12) ◦ (C)K = (12)(C)K,

(12) ◦ (1C1)(2C2)K = (1C22C1)K (3.2)

where C denotes any set of elements, and K any set of non-intersecting cycles (of

course, it is assumed that 1, 2 /∈ C,C1, C2,K and C,C1, C2 /∈ K). If for a given

level k all the ”powers” ||∆|| are known, this is enough to construct all the entries

[2, 1k]◦∆ in the ◦-multiplication table: the coefficient for each line in (3.2) is given by

the ratio of items of the given type at the l.h.s. of (3.2) to the ”power” at the r.h.s.,

multiplied by ||2, 1k ||. These rules are illustrated in manifest examples of appendix I.

3.2 *-multiplication of Young diagrams

The *-multiplication of Young diagrams is associated with the product of the differential

cut-and-join operators (1.6): if

Ŵ [∆1]Ŵ [∆2] =
∑

∆

C∆
∆1∆2

Ŵ [∆], (3.3)

then

∆1 ∗ ∆2 =
∑

∆

C∆
∆1∆2

∆ (3.4)

and thus it is commutative and associative. The sums are actually finite: the size of the

diagrams ∆ is restricted to

max(|∆1|, |∆2|) ≤ |∆| ≤ |∆1| + |∆2| (3.5)

As it was already mentioned in the Introduction, these commuting Ŵ -operators have

all the GL(∞) characters as common eigenfunctions, while S∞ characters are the

corresponding eigenvalues (1.5). Representations of GL(∞) characters through the first

and second Weyl formulas are associated to representations of the cut-and-join operators

in time and matrix variables. It follows from (1.5) that the symmetric group characters

form the same commutative associative algebra:

ϕR(∆1)ϕR(∆2) =
∑

∆

C∆
∆1∆2

ϕR(∆) (3.6)

with the same R-independent structure constants C∆
∆1∆2

.

3.3 Connection between the two multiplications

The *-multiplication (3.4) can be expressed through the ◦-multiplication of Young dia-

grams. It is a rather long recursive formula, but actually a very constructive one:

∆1 ∗ ∆2 =

|∆1|+|∆2|∑

n=max(|∆1|,|∆2|)

{∆1,∆2}n

– 8 –
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{∆1,∆2}n =
∑

∆:|∆|=n

C∆
∆1∆2

∆=ρn−|∆1|(∆1) ◦ ρn−|∆2|(∆2) −
n−1∑

k=max(|∆1|,|∆2|)

ρn−k ({∆1,∆2}k) (3.7)

and ρk is a lift of the Young diagram to the size |∆|+ k, achieved by adding k unit length

rows with additional numeric factor: if ∆ already has r rows of the length 1, then

ρk([∆]) =
(r + k)!

r!k!
[∆, 1, . . . , 1
︸ ︷︷ ︸

k

], or ρk([∆̃, 1r]) =
(r + k)!

r!k!
[∆̃, 1r+k] (3.8)

where [∆] ≡ [∆̃, 1r] and ∆̃ does not contains unit rows. According to this definition,

ρ0(∆) = ∆. Note that

ρk (ρl(∆)) =
(k + l + r)!

k!l!r!
[∆, 1k+l] 6= ρk+l(∆) =

(k + l + r)!

(k + l)!r!
[∆, 1k+l] (3.9)

The highest term in the product (3.7) is

{∆1,∆2}|∆1|+|∆2| = C
[∆1,∆2]
∆1∆2

[∆1,∆2] (3.10)

and for ∆1 = [kmk ], ∆2 = [knk ], [∆1,∆2] = [kmk+nk ] the combinatorial coefficient is

C
[∆1,∆2]
∆1∆2

=
∏

k

(mk + nk)!

mk!nk!
(3.11)

This follows from the definition (1.6) of the Ŵ operator [32, 33].

If ∆1 ∗ ∆2 =
∑

∆ C∆
∆1∆2

∆, formula (3.7) can be rewritten as

ρn−|∆|1(∆1) ◦ ρn−|∆|2(∆2) =
∑

m

ρn−m

(

{∆1,∆2}m

)

=
∑

∆

C∆
∆1∆2

ρn−|∆|(∆) (3.12)

Expressed in terms of the generating functions J∆(u) =
∑∞

m=0 u|∆|+mρm(∆) this multipli-

cation formula becomes
∮

J∆1
(u) ◦ J∆2

(v

u

) du

u
=
∑

∆

C∆
∆1∆2

J∆(v) = J∆1∗∆2
(v) (3.13)

Note that the contour integral over u at the l.h.s. selects diagrams of the same weight, so

that the operation ◦ is well defined.

Examples of the ∗-multiplication tables can be found in section 6 and in appendix

II, here we consider only the case of product [1] ∗ [∆] which will be of use for our further

consideration.

3.4 Example of level (1,m)

For ∆ of the size |∆| = m, which already has r columns of height 1, one gets

[1] ∗ [∆] = {1, ∆}m + {1, ∆}m+1,

{1, ∆}m = ρm−1[1] ◦ ∆ = m[1m] ◦ ∆ = m∆,

{1, ∆}m+1 = ρm[1]◦ρ1[∆]−ρ1 ({1, ∆}m)=(m+1)[1m+1]◦(r+1)[∆, 1]−m(r+1)[∆, 1]=(r+1)[∆, 1],

[1] ∗ ∆ = |∆|∆ + (r + 1)[∆, 1] (3.14)

In other words, if ∆ = [∆̃, 1r], where ∆̃ contains no more units, then

[1] ∗ [∆̃, 1r] = (|∆̃| + r)[∆̃, 1r] + (r + 1)[∆̃, 1r+1] (3.15)

– 9 –
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4 Generating functions

Introduce now a linear form (average) on the Young diagrams:

〈∆〉 =
δ(∆, [1|∆|])

|∆|!
=
∑

R

d2
RϕR(∆)δ|R|,|∆| (4.1)

It can be used to construct a variety of generating functions for averages of Young

diagrams products (correlators).

In fact, the projection to |R| = |∆| in the sum over R in (4.1) can be eliminated, and

the infinite sum

∑

R

d2
RϕR(∆) =

∑

R: |R|≥|∆|

d2
RϕR(∆) = e〈∆〉 (4.2)

where e = 2.718 . . . This formula is important for evaluation of the partition functions in

the case of *-products.

4.1 The standard Hurwitz partition function

The standard generating function of Hurwitz numbers is

Z◦{β∆̃} =
∑

n

qnZ
(n)
◦ {β∆} =

∑

n

qn

〈

exp◦




∑

∆̃: |∆̃|≤n

β∆̃ρn−|∆̃|(∆̃)





〉

=
∑

n

qn

〈

exp◦




∑

∆̃: |∆̃|≤n

β∆̃[∆̃, 1n−|∆|]





〉

(4.3)

where, as before, ∆̃ denotes the Young diagram without units and the ◦-multiplication of

the Young diagram of different sizes is defined to be zero. Actually, q = eβ1 . Of course, one

can also introduce a whole infinite tower of β-variables for each ∆̃: β∆̃,p = β[∆̃,1p], but we

prefer not to do it. Again, for each given n the component Z
(n)
◦ {β∆} satisfies the WDVV

equations, but after summation over n, (4.3) is not an average of any CAA exponential

and does not need to satisfy WDVV equations. And, indeed, it does not.

With the help of (1.3) one can rewrite (4.3) in terms of symmetric group characters

ϕR(∆), (1.8). Indeed, because of (1.5) they form a representation of the CAA algebra

with *-product:

ϕR(∆1)ϕR(∆2) = ϕR(∆1 ∗ ∆2) =
∑

∆

max(|∆1|,|∆2|)≤|∆|≤|∆1|+|∆2|

C∆
∆1∆2

ϕR(∆) ∀ R,∆1,∆2 (4.4)

For |∆1| = |∆2| = n and for |R| = n the property (1.8) implies that also

ϕR(∆1 ◦ ∆2) = ϕR(∆1)ϕR(∆2), for |R| = |∆1| = |∆2| (4.5)

– 10 –
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and this allows one to express (4.3) through ϕR(∆): if all the sizes |∆1| = . . . |∆k| = n are

the same, then
〈

◦k
i=1∆i

〉

=
∑

∆

c∆
∆1,...,∆k

〈∆〉δ|∆|,n =
∑

∆

c∆
∆1,...,∆k

∑

R

d2
RϕR(∆)δ|∆|,nδ|R|,n

=
∑

R

d2
R

k∏

i=1

ϕR(∆i)δ|R|,n (4.6)

Here

c∆
∆1,...,∆k

=
∑

∆′

1
,...,∆′

k−2

C∆
∆1∆′

1

C
∆′

1

∆2∆′

2

. . . C
∆′

k−2

∆k−1∆k
δ|∆′

1
|,n . . . δ|∆′

k−2
|,n (4.7)

we denote it by small letter c to emphasize that all sums are restricted (projected) to

diagrams of the same size n. Restriction to |R| = n is important for the last transition

in (4.6), where small c stand at the l.h.s.: still equality takes place because of (4.5).

From (4.6) it follows directly that partition function (4.3) can be rewritten as

Z◦{β∆̃} =
∑

n

qn
∑

R: |R|=n

d2
R exp




∑

∆̃: |∆̃|≤n

β∆̃ϕR(∆̃, 1n−|∆̃|)



 (4.8)

or simply

Z◦{β∆} =
∑

n

qnZ
(n)
◦ {β∆} =

∑

n

qn
∑

R: |R|=n

d2
R exp




∑

∆: |∆|=n

β∆ϕR(∆)



 (4.9)

where, in principle, one can either impose the restriction

β[∆̃,1r] = β∆̃ (4.10)

or not.

If (4.10) is not imposed, then, making use of (1.3), one can further perform a Fourier

transform of its m-th derivative into t-variables:

∑

n

qn
∑

∆1,...,∆m

|∆1|=...=|∆m|=n

∂mZ
(n)
◦ {β∆}

∂β∆1
. . . ∂β∆m

p(1)(∆1) . . . p(m)(∆m) =

=
∑

n

qn
∑

R: |R|=n

d2−m
R χR(t(1)) . . . χR(t(m)) exp




∑

∆̃: |∆̃|=n

β∆̃ϕR(∆̃)



 (4.11)

4.2 Extension to *-product

With the *-product one can associate another, generalized Hurwitz partition func-

tion [32, 33]:

Z∗{β∆} =

〈

exp∗

(
∑

∆

β∆∆

)〉

(4.12)
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In variance with Z◦{β∆} in (4.3), it satisfies the WDVV equations, but in variance with

individual components Z
(n)
◦ {β∆} (which also satisfy WDVV) it involves infinitely many

time-variables β∆.

One can also rewrite Z∗ in terms of ϕR(∆) characters, but this time, in the case of

*-products, there would be no restriction on the sizes |∆| in (4.6). Then, in this case the

sum over R will be restricted not to |R| = n, but to |R| = |∆|:
〈

∗k
i=1∆i

〉

=
∑

∆

C∆
∆1,...,∆k

〈∆〉 =
∑

∆

C∆
∆1,...,∆k

∑

R

d2
RϕR(∆)δ|R|,|∆| (4.13)

and, because of the ∆-dependent projector, in this formula one can not make any direct

use of the relation

∑

∆

C∆
∆1,...,∆k

ϕR(∆) =
k∏

i=1

ϕR(∆i) (4.14)

However, one can actually get rid of the projector! The reason is that (1.3) has important

generalizations:
∑

∆

dRϕR(∆)p (∆)δ|∆|,|R| = χR(t), (4.15)

∑

∆

dRϕR(∆)p (∆) = χR(tk + δk1), (4.16)

∑

∆̃

dRϕR(∆̃)p (∆̃) = χR(1, t2, t3, . . .), (4.17)

dR = χR(1, 0, 0, . . .) = χR(δk1) (4.18)

Note that because of the property (1.8) all the sums over ∆ are finite, and these formulas

are elementary, not transcendental.

Combining (4.16) and (4.18) with the celebrated Cauchy completeness formula

∑

R

χR(t)χR(t′) = exp

(
∑

k

ktkt
′
k

)

(4.19)

one obtains
∑

R,∆

d2
RϕR(∆)p(∆) =

∑

R

χR(tk + δk1)χR(δk1) = e1+t1 (4.20)

= e
∑

∆

〈∆〉p(∆) = e
∑

R,∆

d2
RϕR(∆)p(∆)δ|R|,|∆|

In other words, we obtain the already-mentioned statement (4.2):

〈∆〉 =
∑

R

d2
RϕR(∆)δ|R|,|∆| =

1

e

∑

R

d2
RϕR(∆) (4.21)

i.e. one can simply substitute everywhere the average (4.1) by the alternative one,

〈〈∆〉〉 =
∑

R

d2
RϕR(∆) = e〈∆〉 (4.22)
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where sum goes over Young diagrams R of all sizes, not restricted to |R| = |∆|. The

difference is actually exhausted by a factor of e = 2.718 . . .

Coming back to (4.13), one now knows how to eliminate the unwanted projector from

the r.h.s. and apply (4.14):

〈

∗k
i=1∆i

〉

=
1

e

〈〈

∗k
i=1∆i

〉〉

=
1

e

∑

∆

C∆
∆1...∆k

〈〈∆〉〉

=
1

e

∑

∆

C∆
∆1...∆k

∑

R

d2
RϕR(∆) =

1

e

∑

R

d2
R

k∏

i=1

ϕR(∆i) (4.23)

In particular, the pair correlator is equal to

∑

∆1,∆2

〈∆1 ∗ ∆2〉p
∆1 p̄∆2 =

∑

∆1,∆2

1

e

∑

R

d2
RϕR(∆1)ϕR(∆2)p

∆1 p̄∆2
(4.16)

= (4.24)

=
1

e

∑

R

χR(tk + δk1)χR(t̄k + δk1)
(4.19)

= exp



(t1 + 1)(t̄1 + 1) − 1 +
∑

k≥2

tk t̄k





From formula (4.23) one obtains a character expansion of Z∗ and a much better counterpart

of (4.11):

Z∗{β∆} =

〈

exp∗

(
∑

∆

β∆∆

)〉

=
1

e

∑

R

d2
R exp

(
∑

∆

β∆ϕR(∆)

)

(4.25)

and

∑

∆1,...,∆m

∂mZ∗{β∆}

∂β∆1
. . . ∂β∆m

p(1)(∆1) . . . p(m)(∆m) =

=
1

e

∑

n

qn
∑

R: |R|=n

d2−m
R χR(t

(1)
k + δk1) . . . χR(t

(m)
k + δk1) exp

(
∑

∆

β∆ϕR(∆)

)

(4.26)

We emphasize once again that there are no restrictions on the sizes of any ∆i and of R

in the sum. In (4.26) we do not impose (4.10), otherwise one should just write correlators

instead of β-derivatives at the l.h.s.

5 WDVV equations

Whenever the generating function is an average of the CAA exponential, it satisfies the

WDVV equations. This happens, at least, in two cases. The first one is for the ◦-product

at the given level |∆|: then one gets a trivial WDVV solution in form of a finite linear

combination of ordinary exponentials. The second case is that of the *-product: then

the number of time-variables is infinite, even in the simplest case of the [1p]-subring,

an interesting open question being to find an adequate quasiclassical (dispersionless)

hierarchy, which is associated with this particular solution to the WDVV equations: it is

probably related to the KP-Whitham hierarchy over the Lambert curve [24, 26, 27, 47].
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We start with the trivial case of the ◦-partition function, then comment on the case of

the ∗-partition function when the WDVV equation are awaited on common grounds but

one tediously check them directly. We postpone until the next two section a discussion

of the case of [1p]-subring when some less involved direct checks of the WDVV equations

can be done.

5.1 ◦-products at given level

For a given n one introduces a function of |Sn| variables β∆:

Zn(β) =

〈

exp◦




∑

∆: |∆|=n

β∆∆





〉

=
∑

R: |R|=n

d2
R

∏

∆: |∆|=n

eβ∆ϕR(∆) (5.1)

Each Zn satisfies the set of WDVV equations. In this case this follows not only from the

general arguments, true for any topological field theory, but also from a much simpler

consideration: one can obtain by a linear transform from {β∆} the separated variables

ξR =
∑

∆: |∆|=n

β∆ϕR(∆) (5.2)

so that

Z̃n(ξ) =
∑

R

d2
ReξR = Zn(β) (5.3)

Then the WDVV equations are trivially satisfied and, since this is no more than a linear

(and non-degenerate) change of beta-variables, the original WDVV equations for Zn(β)

are also true.

It is also evident that if one inserts into the sum (5.1) an arbitrary product of

characters χR(t
(1)
k ) . . . χR(t

(m)
k ), it does not spoil the argument and, hence, the WDVV

equations are still satisfied.

5.2 The *-product case

In this case one has to consider the WDVV equations with infinite matrices: there is

no any simple finite truncation for them. For instance, the simplest WDVV equation

Č2Č3 = Č3Č2 (2.14) is

〈112〉〈123〉

〈11〉
+

〈122〉〈223〉

〈22〉
+

〈123〉〈233〉

〈33〉
=

〈113〉〈122〉

〈11〉
+

〈123〉〈222〉

〈22〉
+

〈133〉〈223〉

〈33〉
(5.4)

and it does not hold with

〈123〉 = 〈[1] ∗ [2] ∗ [3]〉 = 0, 〈113〉 = 0,

〈122〉 = 3/2, 〈223〉 = 1, 〈133〉 = 4/3,

〈11〉 = 1, 〈22〉 = 1/2, 〈33〉 = 1/3 (5.5)
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Indeed, vanishing entries in the first line reduce the equation just to

〈122〉〈223〉

〈22〉
=

〈133〉〈223〉

〈33〉
(5.6)

which is not true.

What is the reason? In fact, Č2Č3 = Č3Č2 holds in the following way:

〈(2 ∗ 2) ∗ 3〉 = C3
22〈3 ∗ 3〉 = C3

22C
111
33 〈111〉 = 3 · 2 ·

1

6
,

〈2 ∗ (2 ∗ 3)〉 = C
[21]
23 〈2 ∗ [21]〉 = C

[21]
32 C111

[21],2〈111〉 = 3 · 2 ·
1

6
(5.7)

i.e. as 2(Č2Č3 = Č3Č2)
[111]:

C3
22C

111
33 = C

[21]
32 C111

[21],2 (5.8)

However, while

C3
22C

111
33 =

〈2 ∗ 2 ∗ 3〉

〈3 ∗ 3〉

〈3 ∗ 3 ∗ 111〉

〈111 ∗ 111〉
=

〈3 ∗ 2 ∗ 21〉

〈21 ∗ 21〉

〈2 ∗ 21 ∗ 111〉

〈111 ∗ 111〉
= C

[21]
32 C111

[21],2 (5.9)

the symbolical expression neglecting the number of units does not hold:

C3
22C

1
33

?
=

〈223〉

〈33〉

〈133〉

〈11〉
6=

〈223〉

〈22〉

〈122〉

〈11〉
?
= C2

32C
1
22 (5.10)

Thus, reduction does not take place in the 1-sector.

Thus, one has to deal with infinite matrices. Though the WDVV equations still have

to be satisfied, checking them directly is a non-trivial problem. This is easier to do in the

simpler case of the [1p]-subring case, which we discuss in the next two sections.

6 Sub-ring of [1p] operators and its action on entire algebra

In this section we discuss multiplication by the [1p] operators, which form a closed

sub-algebra of the entire algebra. Moreover, in this case, it is possible to write down

general formulas.

6.1 *-subring of [1p] operators (single-line diagrams)

The multiplication of [1p] operators is given by the formula

[1p] ∗ [1q] =

p
∑

i=max(0,p−q)

(q + i)!

i!(p − i)!(q − p + i)!
[1q+i]

=

p+q
∑

s=max(p,q)

s!

(s − p)!(s − q)!(p + q − s)!
[1s] (6.1)

Introduce I(x) =
∑

p xp[1p]. Then it follows that

I(x) ∗ I(y) = I(x + y + xy),
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I(x) ∗ I(y) ∗ I(z) = I(x + y + xy) ∗ I(z) = I(x + y + z + xy + yz + zx + xyz),

. . . ,

∗m
i=1I(xi) = I




∑

i

xi +
∑

i<j

xixj +
∑

i<j<k

xixjxk + . . . +
m∏

i=1

xi





= I

(

−1 +
∏

i

(xi + 1)

)

(6.2)

6.2 Action of [1p] operators on the entire algebra

The multiplication of any operator by [1p] operators is described with the following formu-

las. Let ∆ = [∆̃, 1r], with 1 /∈ ∆̃. Let first p ≤ m = |∆| = |∆̃| + r:

[1p] ∗ [∆] =

p
∑

i=0

{1p,∆}m+i,

{1p,∆}m = ρm−p[1
p] ◦ ∆ =

m!

p!(m − p)!
[1m] ◦ ∆ = Cp

m∆,

{1p,∆}m+1 = ρm−p+1[1
p] ◦ ρ1[∆] − ρ1 ({1p,∆}m) =

= Cp
m+1[1

m+1] ◦ (r + 1)[∆, 1] − Cp
m · (r + 1)[∆, 1] = (r + 1)Cp−1

m [∆, 1],

{1p,∆}m+2 = ρm−p+2[1
p] ◦ ρ2[∆] − ρ2 ({1p,∆}m) − ρ1 ({1p,∆}m+1) =

= Cp
m+2[1

m+2] ◦
(r + 1)(r + 2)

2
[∆, 1, 1] −

(r + 1)(r + 2)

2
Cp

m[∆, 1, 1]

−(r + 2) · (r + 1)Cp−1
m [∆, 1, 1] =

=
(r + 1)(r + 2)

2

(
Cp

m+2 − Cp
m − 2Cp−1

m

)
[∆, 1, 1] = C2

r+2C
p−2
m [∆, 1, 1],

. . .

[1p] ∗ ∆ = Cp
m ∆ + (r + 1)Cp−1

m [∆, 1] + C2
r+2C

p−2
m [∆, 1, 1] + . . .

=

p
∑

i=0

Ci
r+iC

p−i
m [∆, 1i] (6.3)

In this form the formula holds also for p > m, just the sum actually goes from

i = max(0, p − m).

Eq. (6.3) can be rewritten also as

[1p] ∗ [∆̃, 1r] =

p
∑

i=0

Ci
r+iC

p−i

|∆̃|+r
[∆̃, 1r+i] (6.4)

and, further,

I(x) ∗ [∆̃, 1r] =
∑

p,i

xpCp−i
|∆| C

i
r+i[∆̃, 1i+r] = (1 + x)|∆|

∑

i

xiCi
r+i[∆̃, 1i+r] (6.5)

If we introduce now a new generating function I∆̃(x) =
∑

p xp[∆̃, 1p], then

I(x) ∗ I∆̃(y) = (1 + x)|∆̃|
∑

i,r

Ci
r+ix

i(1 + x)ryr[1r+i] = (1 + x)|∆̃|I∆̃(x + y + xy) (6.6)
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This formula describes the action of the [1p]-subring on the entire algebra of cut-and-join

operators.

6.3 ◦-correlators in the [1p] subring

The ◦-multiplication is much simpler and in the [1p] sector can be written by the two

generating functions. The first one is
∞∑

n=0

qn 〈[1n] ◦ [1n]〉 tn1 t̄n1 =

∞∑

n=0

qn 〈[1n]〉 tn1 t̄n1 =

∞∑

n=0

qntn1 t̄n1
n!

= exp(qt1t̄1) (6.7)

Similarly,
∞∑

n=0

qn 〈[1n]◦m〉 (t
(1)
1 . . . t

(m)
1 )n = exp

(

qt
(1)
1 . . . t

(m)
1

)

(6.8)

The second generating function is

∞∑

n=0

qn
〈

exp◦ (β1n [1n])
〉

=
∞∑

n=0

qn

〈

δn,0 + β1n [1n] +
β2

1n

2!
[1n] ◦ [1n] + . . .

〉

=

∞∑

n=0

qneβ1n

n!
(6.9)

While each item in the sum is an average of a ◦-exponential, the sum over n is not, and

one can not expect that such partition functions satisfy the WDVV equations.

One can also consider a simplified version of (6.9), with all β1n

equal: β1n = β1.

Then (6.9) turns into

∞∑

n=0

qn
〈

exp◦ (β1[1
n])
〉

=

∞∑

n=0

qn
〈

exp◦ (β1ρn−1[1])
〉

= eβ1+q (6.10)

The standard Hurwitz partition function is direct generalization of this formula.

6.4 Connecting two multiplications

Formula (3.13) connecting the two multiplications can be further specified for the [1p]

subring. Define in this case one more generating function

∑

p

xpJ[1p](u) =
∑

p,m≥0

up+mxpρm([1p]) =
∑

m,p≥0

(m + p)!

m!p!
up+mxp[1p+m] (6.11)

Then, in terms of I(u) =
∑

m um[1m], one has: J[1p](u) = up∂p
uI(u)/p! and one can easily

relate (3.13) to I(x) ∗ I(y) = I(x + y + xy), so that
∮

JI(x)(u) ◦ JI(y)

(v

u

) du

u
= JI(x+y+xy)(v) (6.12)

Note that in the generic case it would be interesting to consider a generating function with

the full set of time variable {pk}, J(u|p) =
∑

∆ J∆(u)p∆, so that
∮

J(u|p) ◦ J
(v

u

∣
∣
∣p̄
) du

u
=
∑

∆1,∆2

J∆1∗∆2
(v) (6.13)

and realize if there is an interesting expression for the r.h.s.
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7 Generalized Hurwitz partition function for the [1p] subring

7.1 *-correlators

Averaging converts I(x) into the exponential:

〈

I(x)
〉

=
∑

p

xp

p!
= ex,

〈

∗i I(xi)
〉

= exp

(

−1 +
∏

i

(xi + 1)

)

(7.1)

or

1 + log
〈

∗i I(xi)
〉

=
∏

i

(1 + xi) (7.2)

In particular,

∞∑

k,l=0

〈

[1k] ∗ [1l]
〉

tk1 t̄
l
1 = 〈I(t1 + t̄1 + t1t̄1)〉 = exp(t1 + t̄1 + t1t̄1) (7.3)

Similarly

∞∑

k1,...,km=0

〈

[1k1 ] ∗ . . . ∗ [1km ]
〉

(t
(1)
1 )k1 . . . (t

(m)
1 )km = exp

(

−1 +

m∏

i=1

(

(1 + t(i)m

)
)

(7.4)

7.2 Correlators of *-exponentials

It is convenient to introduce a grading of the diagram by its rescaling with a formal parame-

ter q: [1p] → qp[1p]. The rescaled diagrams (operators qpŴ [1p]) also form a *-ring, but with

rescaled structure constants. In terms of the generating function Iq(x) =
∑

p xpqp[1p] =

I(qx) one has Iq(x) ∗ Iq(y) = I(qx) ∗ I(qy) = Iq(x + y + qxy). Note that for the ◦-

multiplication [1]p◦[1p] = [1p] and logarithm of the average log
〈
∑

p,q xpyq[1]p ◦ [1q]δp,q

〉

=

xy is obtained from
1

q
log〈Iq(x) ∗ Iq(y)〉 =

x + y

q
+ xy in the limit of q → ∞.

In order to check the associativity, one has to define the partition function

Z∗{β|q} =

〈

exp∗

(
∑

p

β[1p]q
p[1p]

)〉

= 1 +
∑

p

1

p!
qpβp +

1

2!

∑

p1,p2

βp1
βp2

∮
dx

xp1+1

∮
dy

yp2+1
ex+y+qxy + . . . (7.5)

and check if its third derivatives w.r.t. β’s satisfy the WDVV equations.

This quantity can be studied using the technique developed above. For checks of the

equation, one can use the perturbative expansion of Z∗{β|q} into the power series in q. Let

us see how this works in the leading order.
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7.3 WDVV equations for the [1p] subring

Despite even for this subring the partition function depends on infinitely many variables

and, hence, the matrices of the third derivatives

(

Ĉi

)

jk
≡ Ĉijk = Cijk =

∂3Z∗{β|q}

∂βi∂βj∂βk
(7.6)

is infinite-dimensional, the associativity equations can be explicitly checked.

In the leading order approximation one has to check the associativity of the non-

deformed structure constants, i.e. (7.6) calculated at all βk = 0. The generating functions

for the structure constants As
pq of the subring,

[1p] ∗ [1q] =

p+q
∑

s=max(p,q)

As
pq[1

s] (7.7)

are given by

As(x, y) =
∑

p,q

As
pqx

pyq = (x + y + xy)s (7.8)

or

A(x, y;u) =
∑

p,q,s

As
pq

xpyq

us+1
=

1

u − (x + y + xy)
(7.9)

The associativity is guaranteed by the symmetricity of

∑

p,q,t

xpyqzt
∑

s

As
pqA

r
st =

∮

A(x, y;u)Ar(u, z)du=(x+y+z+xy+yz+xz+xyz)r (7.10)

w.r.t. x ↔ z and y ↔ z.

Associativity condition (7.10) should be complemented by

〈[1p] ∗ [1q] ∗ [1r]〉 =
∑

s

As
pq〈[1

s] ∗ [1r]〉,

ex+y+z+xy+yz+xz+xyz =

∮

A(x, y;u)eu+z+uzdu (7.11)

which proves the WDVV equations in the leading order.

Further, one can switch on perturbations and check the WDVV equations explicitly

in higher orders. We certainly know that they are correct basing on the general grounds,

however, the procedure described here allows one to check this iteratively.
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A Multiplications of compositions

We illustrate the use of formulae of s.3 with the following example: [2, 1r] ◦ [2, 1r]. Here

[2, 1r ] = (12) + . . . is a sum of ||2, 1r || = C2
r+2 = (r+1)(r+2)

2 permutations. In the ◦-product

each of them act on the permutations in another [2, 1r], and the action of, say, (12) by the

rules (3.2) is different on (12), (13) and (34). Then, on (14) it is the same as on (13) and

on (56) — the same as on (34) — the same in the sense that it produces an element in the

same conjugation class. According to (3.2),

(12) ◦ (12) = () ∈ [1r+2],

(12) ◦ (13) = (123) ∈ [3, 1r−1],

(12) ◦ (34) = (12)(34) ∈ [22, 1r−2] (A.1)

It remains to calculate the multiplicities:

||2, 1r−1|| · 1/||1r+2|| = ||2, 1r || = C2
r+2 =

(r + 1)(r + 2)

2
,

||2, 1r−1|| · 2r/||3, 1r−1|| = C2
r+2 · 2r/2C

3
r+2 = 3,

||2, 1r−1|| · C2
r /||22, 1r−2|| = C2

r+2 · C
2
r /(C2

r+2C
2
r /2) = 2 (A.2)

Here 1, 2r and C2
r are the numbers of permutations of the types (12), (1k) or (2k)

with k 6= 1, 2 and (kl) with k, l 6= 1, 2 in the conjugation class [2, 1r ]. Of course,

1 + 2r + C2
r = ||2, 1r || = C2

r+2. Thus we obtain:

[2, 1r ] ◦ [2, 1r ] =
(r + 1)(r + 2)

2
[1r+2] + 3[3, 1r−1] + 2[22, 1r−2] (A.3)

Similarly,

[2, 1r ] ◦ [3, 1r−1] = 2r[2, 1r ] + [32, 1r−3] + 4[4, 1r−2] (A.4)

and so on.

• Similarly, for [3, 1m]:

(123) ◦ (123)K = (132)K,

(123) ◦ (132)K = K,

(123) ◦ (12C)K = (1C)(23)K,

(123) ◦ (13C)K = (12C)K,

(123) ◦ (1C)K = (123C)K,

(123) ◦ (C)K = (123)CK,

(123) ◦ (12C1)(3C2)K = (12C13C2)K

(123) ◦ (13C1)(2C2)K = (13C12C2)K

(123) ◦ (1C1)(2C2)(3C3)K = (1C12C23C3)K (A.5)

Therefore

[3111] ◦ [3111] = 40[16] + 8[2211] + 10[3111] + 2[33] + 5[51] (A.6)
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[11] [2]

[2] [11]

Table 1. Table of multiplication at level 2. It cab be present in this form, since [1k] ◦ ∆ = ∆.

and in general

[3, 1r] ◦ [3, 1r ]=
2C3

r+3

2C3
r+3

[3, 1r] +
2C3

r+3

1
[1r+3] +

2C3
r+3 · 3r

C2
r+3C

2
r+1/2

[22, 1r−1] + (A.7)

+
2C3

r+3 · 3r

2C3
r+3

[3, 1r] +
2C3

r+3 · 6C
2
r

24C5
r+3

[5, 1r−2] +
2C3

r+3 · 2C
3
r

2C3
r+3 · 2C

3
r /2

[33, 1r−3] =

=
(r+3)(r+2)(r+1)

3
[1r+3]+8[22, 1r−1]+(3r+1)[3, 1r ]+8[33, 1r−3]+5[5, 1r−2]

A check of multiplicities in this formula:

1 + 1 + 2 · 3r + 6C2
r + 2C3

r = 2C3
r+3 (A.8)

• The same formulas (A.5) can be used to handle more general ◦-products involving

the triple cycles. In particular,

[3111] ◦ [33] = 2[311] + 2[33] + 12[6],

[3, 14] ◦ [331] = 8[3, 14] + 2[331] + 8[43] + 18[61] (A.9)

and in general

[3, 1r+3] ◦ [33, 1r ] =
(r + 1)(r + 2)(r + 3)

3
[3, 1r+3] + 2[33, 1r ] + 3[333, 1r−3] +

+8[43, 1r−1] + 5[531r−2] + 6(r + 2)[61r ] (A.10)

B Multiplication tables

B.1 Group S(2)

||11|| = 1, ||2|| = 1 (B.1)

See table 1.

B.2 Group S(3)

[111] = (), ||111|| = 1

[21] = (12) + (13) + (23), ||21|| = 3

[3] = (123) + (132), ||3|| = 2

(B.2)

See table 2.
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[111] [21] [3]

[21] 3[111] + 3[3] 2[21]

[3] 2[21] 2[111] + [3]

Table 2. Table of multiplication at level 3.

[1111] [211] [22] [31] [4]

[211] 6[1111]+2[22]+3[31] [211] + 2[4] 4[211] + 4[4] 4[22] + 3[31]

[22] [211] + 2[4] 3[1111]+2[22] 3[31] 2[211] + [4]

[31] 4[211] + 4[4] 3[31] 8[1111]+8[22]+4[31] 4[211] + 4[4]

[4] 4[22] + 3[31] 2[211] + [4] 4[211] + 4[4] 6[1111]+2[22]+3[31]

Table 3. Table of multiplication at level 4.

B.3 Group S(4)

[1111] = (), ||1111|| = 1

[211] = (12) + (13) + (14) + (23) + (24) + (34), ||211|| = 6

[22] = (12)(34) + (13)(24) + (14)(23), ||22|| = 3

[31] = (123) + (132) + (124) + (142) + (134) + (143) + (234) + (243), ||31|| = 8

[4] = (1234) + (1243) + (1324) + (1342) + (1423) + (1432), ||4|| = 6

See table 3.

B.4 Group S(5)

[11111] = (), ||11111|| = 1

[2111] = (12) + . . . , ||2111|| = C2
5 = 10

[221] = (12)(34) + . . . , ||221|| =
1

2
C2

5C2
3 = 15

[311] = (123) + (132) + . . . , ||311|| = 2C3
5 = 20

[32] = (123)(45) + . . . , ||32|| = ||311|| = 20

[41] = (1234) + . . . , ||41|| = 3!C1
5 = 30

[5] = (12345) + . . . ||5|| = 4! = 24

(B.3)

∑

∆: |∆|=5

||∆|| = 5! = 120 (B.4)

See table 4.
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[11111] [2111] [221] [311] [32] [41] [5]

[2111] 10[11111] 3[2111] 6[2111] 4[221] 9[311] 8[41]

+2[221] + 3[311] +3[32] + 2[41] +[32] + 4[41] +[311] + 5[5] +5[5]

[221] 3[2111]

+3[32] + 2[41]

[311] 6[2111] 20[11111] + 8[221]+

+[32] + 4[41] +7[311] + 5[5]

[32] 4[221]

+[311] + 5[5]

[41] 9[311] + 5[5]

[5] 8[41]

Table 4. Table of multiplication at level 5.

C Structure constants of ∗-multiplication

C.1 Level (1, 1)

When it does not cause confusion we omit square brackets in the notation of particular

Young diagrams, to simplify the formulas.

[1] ∗ [1] = {1, 1}1 + {1, 1}2, (C.1)

{1, 1}1 = [1] ◦ [1] = [1],

{1, 1}2 = ρ1[1] ◦ ρ1[1]−ρ1([1] ◦ [1])=ρ1[1] ◦ ρ1[1]−ρ1([1])=2[11] ◦ 2[11]−2 ◦ [11]=2[11]

Thus

[1] ∗ [1] = [1] + 2[11] (C.2)

Here and below we underline the terms in the product, which belong to the ◦-product: they

exist only when |∆1| = |∆2| and are contained in the first term {∆1,∆2}|∆1|=|∆2| = ∆1◦∆2

with n = |∆1| = |∆2| in the sum in (3.7).

C.2 Level (1, 2)

[1] ∗ [11] = {1, 11}2 + {1, 11}3,

{1, 11}2 = ρ1[1] ◦ [11] = 2[11] ◦ [11] = 2[11],

{1, 11}3 = ρ2[1] ◦ ρ1[11] − ρ1 ({1, 11}2) = 3[111] ◦ 3[111] − 2 · 3[111] = 3[111],

[1] ∗ [11] = 2[11] + 3[111] (C.3)

and

[1] ∗ [2] = {1, 2}2 + {1, 2}3,

{1, 2}2 = ρ1[1] ◦ [2] = 2[11] ◦ [2] = 2[2],

{1, 2}3 = ρ2[1] ◦ ρ1[2] − ρ1 ({1, 2}2) = 3[111] ◦ [21] − 2[21] = [21],

[1] ∗ [2] = 2[2] + [21] (C.4)
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C.3 Level (1, 3)

[1] ∗ [111] = {1, 111}3 + {1, 111}4,

{1, 111}3 = ρ2[1] ◦ [111] = 3[111] ◦ [111] = 3[111],

{1, 111}4 = ρ3[1] ◦ ρ1[111] − ρ1 ({1, 111}3) = 4[1111] ◦ 4[1111] − 4 · 3[1111] = 4[1111],

[1] ∗ [111] = 3[111] + 4[1111] (C.5)

[1] ∗ [21] = {1, 21}3 + {1, 21}4,

{1, 21}3 = ρ2[1] ◦ [21] = 3[111] ◦ [21] = 3[21],

{1, 21}4 = ρ3[1] ◦ ρ1[21] − ρ1 ({1, 21}3) = 4[1111] ◦ 2[211] − 2 · 3[211] = 2[211],

[1] ∗ [21] = 3[21] + 2[211] (C.6)

[1] ∗ [3] = {1, 3}3 + {1, 3}4,

{1, 3}3 = ρ2[1] ◦ [3] = 3[111] ◦ [3] = 3[3],

{1, 3}4 = ρ3[1] ◦ ρ1[3] − ρ1 ({1, 3}3) = 4[1111] ◦ [31] − 3[31] = [31],

[1] ∗ [3] = 3[3] + [31] (C.7)

C.4 Level (2, 2)

[11] ∗ [11] = {11, 11}2 + {11, 11}3 + {11, 11}4,

{11, 11}2 = [11] ◦ [11] = [11],

{11, 11}3 = ρ1[11] ◦ ρ1[11] − ρ1 ({11, 11}2) = 3[111] ◦ 3[111] − 3[111] = 6[111],

{11, 11}4 = ρ2[11] ◦ ρ2[11] − ρ2 ({11, 11}2) − ρ1 ({11, 11}3)

= 6[1111] ◦ 6[1111] − 6[1111] − 4 · 6[1111] = 6[1111],

[11] ∗ [11] = [11] + 6[111] + 6[1111] (C.8)

[11] ∗ [2] = {11, 2}2 + {11, 2}3 + {11, 2}4,

{11, 2}2 = [11] ◦ [2] = [2],

{11, 2}3 = ρ1[11] ◦ ρ1[2] − ρ1 ({11, 2}2) = 3[111] ◦ [21] − [21] = 2[21],

{11, 2}4 = ρ2[11] ◦ ρ2[2] − ρ2 ({11, 2}2) − ρ1 ({11, 2}3)

= 6[1111] ◦ [211] − [211] − 2 · 2[211] = [211],

[11] ∗ [2] = [2] + 2[21] + [211] (C.9)

[2] ∗ [2] = {2, 2}2 + {2, 2}3 + {2, 2}4,

{2, 2}2 = [2] ◦ [2] = [11],

{2, 2}3 = ρ1[2] ◦ ρ1[2] − ρ1 ({2, 2}2) = [21] ◦ [21] − 3[111] = 3[3],

{2, 2}4 = ρ2[2] ◦ ρ2[2] − ρ2 ({2, 2}2) − ρ1 ({2, 2}3)

= [211] ◦ [211] − 6[1111] − 3[31] = 2[22],

[2] ∗ [2] = [11] + 3[3] + 2[22] (C.10)

C.5 Level (1, 4)

[1] ∗ [1111] = {1, 1111}4 + {1, 1111}5 ,
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{1, 1111}4 = ρ3[1] ◦ [1111] = 4[1111] ◦ [1111] = 4[1111],

{1, 1111}5 = ρ4[1] ◦ ρ1[1111] − ρ1 ({1, 1111}4)

= 5[1111] ◦ 5[1111] − 5 · 4[11111] = 5[11111],

[1] ∗ [1111] = 4[1111] + 5[11111] (C.11)

[1] ∗ [211] = {1, 211}4 + {1, 211}5 ,

{1, 211}4 = ρ3[1] ◦ [211] = 4[1111] ◦ [211] = 4[211],

{1, 211}5 = ρ4[1] ◦ ρ1[211] − ρ1 ({1, 211}4)

= 5[1111] ◦ 3[2111] − 3 · 4[2111] = 3[2111],

[1] ∗ [211] = 4[211] + 3[2111] (C.12)

[1] ∗ [22] = {1, 22}4 + {1, 22}5,

{1, 22}4 = ρ3[1] ◦ [22] = 4[1111] ◦ [22] = 4[22],

{1, 22}5 = ρ4[1] ◦ ρ1[22] − ρ1 ({1, 2}4) = 5[1111] ◦ [221] − 4[221] = [221],

[1] ∗ [22] = 4[22] + [221] (C.13)

[1] ∗ [31] = {1, 31}4 + {1, 31}5,

{1, 31}4 = ρ3[1] ◦ [31] = 4[1111] ◦ [31] = 4[31],

{1, 31}5 = ρ4[1] ◦ ρ1[31] − ρ1 ({1, 31}4) = 5[1111] ◦ 2[311] − 2 · 4[311] = 2[311],

[1] ∗ [31] = 4[31] + 2[311] (C.14)

[1] ∗ [4] = {1, 4}4 + {1, 4}5,

{1, 4}4 = ρ3[1] ◦ [4] = 4[1111] ◦ [4] = 4[4],

{1, 4}5 = ρ4[1] ◦ ρ1[4] − ρ1 ({1, 4}4) = 5[1111] ◦ [41] − 4[41] = [41],

[1] ∗ [4] = 4[4] + [41] (C.15)

C.6 Level (2, 3)

[11] ∗ [111] = {11, 111}3 + {11, 111}4 + {11, 111}5 ,

{11, 111}3 = ρ1[11] ◦ [111] = 3[111],

{11, 111}4 = ρ2[11] ◦ ρ1[111]−ρ1 ({11, 111}3)=6[1111] ◦ 4[1111]−4 · 3[1111]=12[1111],

{11, 111}5 = ρ3[11] ◦ ρ2[111] − ρ2 ({11, 111}3) − ρ1 ({11, 111}4) =

= 10[11111] ◦ 10[11111] − 10 · 3[11111] − 5 · 12[11111] = 10[11111],

[11] ∗ [111] = 3[111] + 12[1111] + 10[11111] (C.16)

[11] ∗ [21] = {11, 21}3 + {11, 21}4 + {11, 21}5 ,

{11, 21}3 = ρ1[11] ◦ [21] = 3[21],

{11, 21}4 = ρ2[11] ◦ ρ1[21] − ρ1 ({11, 21}3) = 6[1111] ◦ 2[211] − 2 · 3[211] = 6[211],

{11, 21}5 = ρ3[11] ◦ ρ2[21] − ρ2 ({11, 21}3) − ρ1 ({11, 21}4) =

= 10[11111] ◦ 3[2111] − 3 · 3[2111] − 3 · 6[2111] = 3[2111],

[11] ∗ [21] = 3[21] + 6[211] + 3[2111] (C.17)

[11] ∗ [3] = {11, 3}3 + {11, 3}4 + {11, 3}5,
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{11, 3}3 = ρ1[11] ◦ [3] = 3[3],

{11, 3}4 = ρ2[11] ◦ ρ1[3] − ρ1 ({11, 3}3) = 6[1111] ◦ [31] − 3[31] = 3[31],

{11, 3}5 = ρ3[11] ◦ ρ2[3] − ρ2 ({11, 3}3) − ρ1 ({11, 3}4) =

= 10[11111] ◦ [311] − 3[311] − 2 · 3[311] = [311],

[11] ∗ [3] = 3[3] + 3[31] + [311] (C.18)

[2] ∗ [111] = {2, 111}3 + {2, 111}4 + {2, 111}5 ,

{2, 111}3 = ρ1[2] ◦ [111] = [21],

{2, 111}4 = ρ2[2] ◦ ρ1[111] − ρ1 ({2, 111}3) = [211] ◦ 4[1111] − 2[211] = 2[211],

{2, 111}5 = ρ3[2] ◦ ρ2[111] − ρ2 ({2, 111}3) − ρ1 ({2, 111}4) =

= [2111] ◦ 10[11111] − 3[2111] − 3 · 2[2111] = [2111],

[2] ∗ [111] = [21] + 2[211] + [2111] (C.19)

[2] ∗ [21] = {2, 21}3 + {2, 21}4 + {2, 21}5,

{2, 21}3 = ρ1[2] ◦ [21] = [21] ◦ [21] = 3[111] + 3[3],

{2, 21}4 = ρ2[2] ◦ ρ1[21]−ρ1 ({2, 21}3)=[211] ◦ 2[211]−4 · 3[1111]−3[31]=4[22]+3[31],

{2, 21}5 = ρ3[2] ◦ ρ2[21] − ρ2 ({2, 21}3) − ρ1 ({2, 21}4) =

= [2111] ◦ 3[2111] − 10 · 3[11111] − 3[311] − 4[221] − 2 · 3[311] = 2[221],

[2] ∗ [21] = 3[111] + 3[3] + 4[22] + 3[31] + 2[221] (C.20)

[2] ∗ [3] = {2, 3}3 + {2, 3}4 + {2, 3}5,

{2, 3}3 = ρ1[2] ◦ [3] = [21] ◦ [3] = 2[21],

{2, 3}4 = ρ2[2] ◦ ρ1[3] − ρ1 ({2, 3}3) = [211] ◦ [31] − 2 · 2[211] = 4[4],

{2, 3}5 = ρ3[2] ◦ ρ2[3] − ρ2 ({2, 3}3) − ρ1 ({2, 3}4) =

= [2111] ◦ [311] − 3 · 2[2111] − 4[41] = [32],

[2] ∗ [3] = 2[21] + 4[4] + [32] (C.21)

Above tables reproduce the ones from s.2.4.4 of [32, 33]. What follows are some new

pieces of the *-multiplication tables.

C.7 Level (1, 5)

See table 5.

C.8 Level (3, 3)

[111] ∗ [111] = [111] + 12[1111] + 30[11111] + 20[111111] (C.22)

[111] ∗ [21] = [21] + 6[211] + 9[2111] + 4[21111] (C.23)

[111] ∗ [3] = [3] + 3[31] + 3[311] + [3111] (C.24)

[21] ∗ [21] = 3[111] + 3[3] + 12[1111] + 8[22] + 9[31] + 10[221] + 6[311] + 4[2211] (C.25)

[21] ∗ [3] = 2[21] + 4[211] + 8[4] + 3[32] + 4[41] + [321] (C.26)

[3] ∗ [3] = {3, 3}3 + {3, 3}4 + {3, 3}5 + {3, 3}6,
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[1] ∗ [5] = 5[5] + [51]

[1] ∗ [41] = 5[41] + 2[411]

[1] ∗ [32] = 5[32] + [321]

[1] ∗ [311] = 5[311] + 3[3111]

[1] ∗ [221] = 5[221] + 2[2211]

[1] ∗ [2111] = 5[2111] + 4[21111]

[1] ∗ [11111] = 5[11111] + 6[111111]

Table 5. Table of *-multiplication at level (1,5).

{3, 3}3 = [3] ◦ [3] = 2[111] + [3],

{3, 3}4 = ρ1[3] ◦ ρ1[3] − ρ1({3, 3}3) = [31] ◦ [31] − 4 · 2[1111] − [31] = 8[22] + 3[31],

{3, 3}5 = ρ2[3] ◦ ρ2[3] − ρ2({3, 3}3) − ρ1({3, 3}4) =

= [311] ◦ [311] − 10 · 2[11111] − [311] − 8[221] − 2 · 3[311] = 5[5],

{3, 3}6 = ρ3[3] ◦ ρ3[3] − ρ3({3, 3}3 − ρ2({3, 3}4) − ρ1({3, 3}5) =

= [3111] ◦ [3111] − 20 · 2[16] − [3111] − 8[2211] − 3 · 3[3111] − 5[51] = 2[33],

[3] ∗ [3] = 2[111] + [3] + 8[22] + 3[31] + 5[5] + 2[33] (C.27)

C.9 Selected products

[3] ∗ [33] = {3, 33}6 + {3, 33}7 + {3, 33}8 + {3, 33}9,

{3, 33}6 = ρ3[3] ◦ [33] = [3111] ◦ [33] = 2[3111] + 2[33] + 12[6],

{3, 33}7 = ρ4[3] ◦ ρ1[33] − ρ1 ({3, 33}6) =

= [314] ◦ [331] − 8[314] − 2[331] − 12[61] = 8[43] + 6[61],

{3, 33}8 = ρ5[3] ◦ ρ2[33] − ρ2 ({3, 33}6) − ρ1 ({3, 33}7) = 5[53],

{3, 33}9 = ρ6[3] ◦ ρ3[33] − ρ3 ({3, 33}6) − ρ2 ({3, 33}7) − ρ1 ({3, 33}8) = 3[333],

[3] ∗ [33] = 2[33] + 2[3111] + 12[6] + 8[43] + 6[61] + 5[53] + 3[333] (C.28)

D The table of symmetric characters ϕR(∆) at level 6

See table 6.
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R ∆ dR [6] [51] [42] [411] [33] [321] [3111] [222] [2211] [21111] [111111]

[6] 1
720 120 144 90 90 40 120 40 15 45 15 1

[51] 1
144 −24 0 −18 18 −8 0 16 −3 9 9 1

[42] 1
80 0 −16 10 −10 0 0 0 5 5 5 1

[411] 1
72 12 0 0 0 4 −12 4 −3 −9 3 1

[33] 1
144 0 0 −18 −18 16 24 −8 −9 9 3 1

[321] 1
45 0 9 0 0 −5 0 −5 0 0 0 1

[3111] 1
72 −12 0 0 0 4 12 4 3 −9 −3 1

[222] 1
144 0 0 −18 18 16 −24 −8 9 9 −3 1

[2211] 1
80 0 −16 10 10 0 0 0 −5 5 −5 1

[21111] 1
144 24 0 −18 −18 −8 0 16 3 9 −9 1

[111111] 1
720 −120 144 90 −90 40 −120 40 −15 45 −15 1

Table 6. Table of characters at level 6.
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