Labor market and search through personal contacts.

Roman Chuhay,

ICEF, CAS, Higher School of Economics

2012

Roman Chuhay (ICEF, CAS, HSE)

Search through personal contacts

2012 1 / 16

• • = • • = •

Literature review

• Social Networks and Labor markets:

- Calvo-Armengol and Jackson (2004) study the correlation of employment statuses and wages of connected workers.
- Calvo-Armengol (2004), Galeotti and Merlino (2011) consider endogenous network formation.
- Calvo-Armengol & Zenou (2005) consider regular network in the framework of Mortensen-Pissarides model.
- Ioannides and Soetevent (2006) perform a numerical analysis for the case of Poisson random network.

A B F A B F

Motivation

- Previous literature imposes various simplifying assumptions:
 - Only one worker initially becomes aware about a job offer.
 - Job offers can be transmitted only to immediate contacts.
 - Offer is relayed at random.
 - Firm behavior and wages are exogenous.
- The structure of job contact network is also an open question and varies from one study to another

The model

Workers:

- A large number *N* of ex-ante identical workers that are embedded into an undirected network of personal contacts.
- The network is characterized by a socialization level *s* of workers that has cost *cs*.
- With some probability a worker learns about a vacancy directly from an employer. The worker may accept the offer or pass it to her contacts.
- An employed worker produces output y and receives wage w_t .
- With probability δ an employed worker looses a job.

The model cont'd

Firms and wage:

- A firm can open a vacancy. We refer to $v_t = V_t/N$ as vacancy rate.
- The cost of having an unfilled vacancy is γ .
- A wage is bargained according to the Nash bargaining process.

Assumptions on Matching Function

- Matching function m(s, v, u) depends on socialization level s, vacancy rate v and unemployment rate u.
- We require the resulting matching function to satisfy the following four properties:

(A1) m(s, v, u) is positive and increasing in both u and v.

(A2)
$$m(s, v, u) \le \min(u, v), m(s, 1, u) = u$$
 and $m(s, v, 1) = v$.

(A3)
$$\frac{m(s,v,u)}{v}$$
 is decreasing in v and $\frac{m(s,v,u)}{u}$ is decreasing in u.

(A4) m(s, v, u) is increasing in the socialization level s.

The stream of discounted utility of employed worker $I_{E,t}$ and of unemployed $I_{U,t}$ are given by:

$$I_{E,t} = w_t - cs + \frac{1}{1+r} [(1-\delta)I_{E,t+1} + \delta I_{U,t+1}]$$
$$I_{U,t} = -cs + \frac{1}{1+r} \left[\left(1 - \frac{1}{u_t} m(s, v_t, u_t) \right) I_{U,t+1} + \frac{1}{u_t} m(s, v_t, u_t) I_{E,t} \right]$$

where r is the discount factor.

A B M A B M

Firm's Problem

We denote by $I_{F,t}$ and $I_{V,t}$ the expected inter-temporal profits generated by a filled job, and a vacancy respectively:

$$I_{F,t} = y - w_t + \frac{1}{1+r} \left[(1-\delta) I_{F,t+1} + \delta I_{V,t+1} \right]$$
$$I_{V,t} = -\gamma + \frac{1}{1+r} \left[\left(1 - \frac{1}{v_t} m(s, v_t, u_t) \right) I_{V,t+1} + \frac{1}{v_t} m(s, v_t, u_t) I_{F,t} \right]$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Labor Market Turnover

- At the beginning of each period t, the proportion m(s, v_{t-1}, u_{t-1}) of workers start to work.
- At the end of each period with probability δ an employed worker loses a job and becomes unemployed.

$$u_t = u_{t-1} - m(s, v_{t-1}, u_{t-1}) + \delta(1 - u_{t-1} + m(s, v_{t-1}, u_{t-1}))$$

In the steady state:

$$m(s,v,u)=\frac{\delta}{1-\delta}(1-u)$$

• Workers' wage is determined according to the generalized Nash bargaining process, with worker's bargaining power being denoted by $\beta \in [0, 1]$:

$$w = rg\max_w \{(I_E - I_U)^eta (I_F - I_V)^{1-eta}\}$$

• One can show that in the steady state:

$$\mathbf{w} = \beta \left(\mathbf{y} + \gamma \frac{\mathbf{v}}{\mathbf{u}} \right)$$

Roman Chuhay (ICEF, CAS, HSE)

4 1 1 4 1 1 4

Existence and Uniqueness of the Equilibrium.

Proposition

For any *s* there is a unique labor market equilibrium $\{u^*(s), v^*(s), w^*(s)\}$ if $\frac{\gamma(r+\beta+\delta)}{(1-\beta)} < Y < \frac{\gamma(r+\beta+\delta)}{\delta(1-\beta)}$. Moreover, functions $u^*(s), v^*(s)$, and $w^*(s)$ are continuous.

- The first part of the condition, $\frac{\gamma(r+\beta+\delta)}{(1-\beta)} < Y$ implies that Y is sufficiently high and firms want to hire workers when u = 1.
- Part Y < γ(r+β+δ)/δ(1-β) puts upper bound on productivity not allowing v to explode.

超す イヨト イヨト ニヨ

Unemployment and Vacancy Rates

We relate $u^*(s)$ and $v^*(s)$ to workers' socialization level and productivity:

Proposition

In the equilibrium the following holds:

(i) u*(s) decreases in socialization level of workers s and productivity y.
 (ii) v*(s) increases in the productivity y, while v*(s) decreases in s if u*(s) < ū_v and increases otherwise, where ū_v = √(βδ(1-δ)(δ+r)-βδ)/((1-δ)(δ+r)-βδ).

Market Tightness and Wage

- Market tightness is the ratio of the number of vacancies to number of unemployed workers.
- The market tightness indicates which side of the market is better-off.

Proposition

The equilibrium market tightness $\frac{v^*(s)}{u^*(s)}$ and the wage $w^*(s)$ are increasing in the socialization level s.

An Example of Matching Function

- To illustrate an application of our model we consider the network formation mechanism a la Galeotti and Merlino (2010)
- Each worker i selects a socialization level, s_i ≥ 0. Let s = (s₁,..., s_n) be a profile of socialization levels.
- A probability that a link between *i* and *j* is present at time period *t* is given by:

$$g_{ij}(s) = \rho(s)s_is_j,$$

where

$$\rho(s) = \begin{cases} \left(\sum_{j=1}^{n} s_{j}\right)^{-1}, \text{ if } s \neq 0\\ 0, \text{ otherwise} \end{cases}$$

Probability to get at least one job-offer through contacts.

The matching function in this case is:

$$m(s, v, u) = u[v + (1 - v)P^{s}(s, v, u)] = u\left[1 - (1 - v)e^{-\frac{(1 - u)v}{u}(1 - e^{-us})}\right]$$

Lemma

The matching function m(s, v, u) satisfies conditions (A1)-(A4) and is concave in u, v and s.

Conclusion

- We formulated four properties that a matching function should satisfy.
- Using these properties we showed that result obtained in previous studies about unemployment rate holds in more general setup.
- Our framework allowed us to get new results concerning the impact of network of personal contacts on vacancy rate, market tightness and wage.