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Knowledge Discovery guided by Domain Knowledge (1)

I The process of Knowledge Discovery
guided by Domain Knowledge (KDDK)
is applied on large volumes of data for
extracting information units which are
useful, significant, and reusable.

I KDDK is based on four main
operations: data preparation, data
mining, interpretation and
representation of the extracted units.

I KDDK is iterative and interactive,
guided by an analyst, and by domain
knowledge.
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KDDK is an interactive and iterative process that can be replayed. 



Knowledge Discovery guided by Domain Knowledge (2)

I One the core idea of KDDK is
classification, which is involved in all
tasks of data and knowledge
processing:

I mining: Formal Concept Analysis
(FCA), pattern mining. . .

I modeling: hierarchy of concepts and
relations,

I representing: concepts and relations as
knowledge units,

I reasoning and problem solving:
classification-based and case-based
reasoning.
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Knowledge Discovery guided by Domain Knowledge (3)

I KDDK is used for knowledge
engineering and problem-solving
activities in some application domains:
I agronomy
I astronomy
I biology
I chemistry
I cooking
I medicine
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FCA, Formal Concepts and Concept Lattices

I Marc Barbut and Bernard Monjardet, Ordre et classification, Hachette, 1970.
I Claudio Carpineto and Giovanni Romano, Concept Data Analysis: Theory and Applications, John

Wiley & Sons, 2004.
I Bernhard Ganter and Rudolph Wille, Formal Concept Analysis, Springer, 1999.
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The FCA process

I The basic procedure of Formal Concept Analysis (FCA) is
based on a simple representation of data, i.e. a binary table
called a formal context.

I Each formal context is transformed into a mathematical
structure called concept lattice.

I The information contained in the formal context is preserved.
I The concept lattice is the basis for data analysis.

It is represented graphically to support analysis, mining,
visualization, interpretation. . .
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The notion of a formal context

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I (G, M, I) is called a formal context where G (Gegenstände) and
M (Merkmale) are sets, and I ⊆ G× M is a binary relation
between G and M.

I The elements of G are the objects, while the elements of M are
the attributes, I is the incidence relation of the context
(G, M, I).
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Two derivation operators

I For A ⊆ G: A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I Dually, for B ⊆ M: B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}

{g3}′ and {m3}′:

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x
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Two derivation operators

{g3, g5}′

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x
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Introduction
A Smooth Introduction to Formal Concept Analysis

Relational Concept Analysis
Pattern Structures

Conclusion and References

Derivation operators, formal concepts and concept lattice
The structure of the concept lattice
Scaling
Two algorithms for extracting the concepts and building the concept lattice

Two derivation operators

{m3, m4}′

Objects / Attributes m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x
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The derivation operators and the Galois connection

I The derivation operators establish a Galois connection between
the power sets ℘(G) and ℘(M) (and thereby a dual isomorphism
between two closure systems).

A Galois connection is defined as follows:

I Let P and Q be ordered sets.
A pair of maps φ : P −→ Q and ψ : Q −→ P is called a Galois
connection between P and Q if:

I (i) p1 ≤ p2 =⇒ φ(p1) ≥ φ(p2)
(ii) q1 ≤ q2 =⇒ ψ(q1) ≥ ψ(q2)
(iii) p ≤ ψ ◦ φ(p) and q ≤ φ ◦ ψ(q)
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The Galois connection and the closure operators

I ′ : ℘(G) −→ ℘(M) with A −→ A′

I ′ : ℘(M) −→ ℘(G) with B −→ B′

I These two applications induce a Galois connection between
℘(G) and ℘(M) when sets are ordered by set inclusion relation.
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The Galois connection and the closure operators

A closure operator on a set H is a map κ such that:

I κ : ℘(H) −→ ℘(H)
I For all A1, A2 ⊆ H:

I (i) A1 ⊆ κ(A1)
I (ii) A1 ⊆ A2 then κ(A1) ⊆ κ(A2)
I (iii) κ(κ(A1)) = κ(A1)

I A is a closed set whenever κ(A) = A.
I The composition operators ′′ (composition of ’ and ’ are

closure operators.
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Formal concept

Given a formal context (G, M, I):

I A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}
I (A, B) is a formal concept of (G, M, I) iff:

A ⊆ G, B ⊆ M, A′ = B, and A = B′.
I A is the extent and B is the intent of (A, B).
I The mappings A −→ A′′ and B −→ B′′ are closure operators.



The concept lattice

I Formal concepts can be ordered by:
(A1, B1) ≤ (A2, B2)⇐⇒ A1 ⊆ A2 (dually B2 ⊆ B1).

I The set B(G, M, I) of all formal concepts of (G, M, I) with this
order is a complete lattice called the concept lattice of (G, M, I).

I Recall that: a set (P,≤) is a complete lattice if the supremum∨
S and the infimum

∧
S exist for any subset S of P.

I Every complete lattice has a top or unit element denoted by
>, and a bottom or zero element denoted by ⊥.



The concept lattice

G / M m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x
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The basic theorem of FCA

I The concept lattice B(G, M, I) is a complete lattice in which
the infimum and the supremum are given by:

I
∧

k∈K(Ak, Bk) = (
⋂

k∈K Ak, (
⋃

k∈K Bk)
′′)

I
∨

k∈K(Ak, Bk) = ((
⋃

k∈K Ak)
′′,
⋂

k∈K Bk)

I Note: an intersection of closed sets is a closed set but a union
of closed sets is not necessarily a closed set.
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The properties of the derivation operators
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Iterating derivation

I A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}
I The derivation operators can be combined: Starting with a set

A ⊆ G, we obtain that A′ is a subset of M.
I Applying the second operator on this set, we get (A′)′, or A′′

for short, which is a set of objects.
I Continuing, we obtain A′′′, A′′′′, and so on.

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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Properties of the derivation operators

I A′ = {m ∈ M/(g, m) ∈ I for all g ∈ A}
I B′ = {g ∈ G/(g, m) ∈ I for all m ∈ B}

The derivation operator ′ satisfy the following rules:

I A1 ⊆ A2 =⇒ A′2 ⊆ A′1
I B1 ⊆ B2 =⇒ B′2 ⊆ B′1

I A ⊆ A′′ and A′ = A′′′

I B ⊆ B′′ and B′ = B′′′

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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Examples

G / M m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I A1 ⊆ A2 =⇒ A′2 ⊆ A′1
B1 ⊆ B2 =⇒ B′2 ⊆ B′1

I A ⊆ A′′ and A′ = A′′′

B ⊆ B′′ and B′ = B′′′
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Extent closure, intent closure

The derivation operator ′ satisfy the following rules:

I Combining the derivation operators, we get two operators of
the form: X −→ X′′, one on G, the other on M.

I For A ⊆ G we have that A′′ ⊆ G.
The set A′′ is called the extent closure of A.

I Dually, when B ⊆ M we have also that B′′ ⊆ M.
The set B′′ is called the intent closure of A.

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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Extent closure, intent closure

From A ⊆ A′′ and B ⊆ B′′ it comes:

I (i) whenever all objects from a set A ⊆ G have a common
attribute m, then also all objects from A′′ have that attribute.

I (ii) whenever an object g ∈ G has all attributes from B ⊆ M,
then this object also has all attributes from B′′.

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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Other properties of the derivation operators

For A1, A2 ⊆ G, and dually for B1, B2 ⊆ M, we have:

I A1 ⊆ A2 =⇒ A′′1 ⊆ A′′2
I B1 ⊆ B2 =⇒ B′′1 ⊆ B′′2
I (A′′)′′ = A′′

I (B′′)′′ = B′′

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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Closure operators

I As already mentioned, the operators ′ and ′′ satisfying the
above properties are closure operators.

I The sets which are images of a closure operator are the closed
sets.

I Thus, in the case of a closure operator X −→ X′′ the closed
sets are the sets of the form X′′.

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013



Closed sets are intents and extents

I If (G, M, I) is a formal context and A ⊆ G, then A′′ is an extent.
I Conversely, if A is an extent of (G, M, I), then A = A′′.
I Dually if B is an intent of (G, M, I), then B = B′′, and every

every intent B satisfies B = B′′.
I This follows from the fact that for each subset A ⊆ G, the pair

(A′′, A′) is a formal concept, and that similarly, for each subset
B ⊆ M, (B′, B′′) is a formal concept.

I Therefore, the closed sets of the closure operator
A −→ A′′, A ⊆ G are precisely the extents of (G, M, I),
and the closed sets of the operator B −→ B′′, B ⊆ M, are
precisely the intents.
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The structure of the concept lattice
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The reduced labeling

I A reduced labeling may be used allowing that each object and
each attribute is entered only once in a diagram.

I The name of the object g is attached to the “lower half” of the
corresponding object concept γ(g) = ({g}′′, {g}′).

I The object concept of an object g ∈ G is the concept
({g}′′, {g}′) where {g}′ is the object intent {m ∈ M/gIm} of g.

I The object concept of g, denoted by γ(g), is the smallest
concept (for the lattice order) with g in its extent.

I Example:
γ(g4) = ({g4}′′, {g4}′) = ({g2, g3, g4, g5, g6}, {m1, m4})
γ(g1) = ({g1}′′, {g1}′) = ({g1}, {m2, m3, m5})



The reduced labeling

I The name of the attribute m is located to the “upper half” of
the corresponding attribute concept µ(m) = ({m}′, {m}′′).

I Correspondingly, the attribute concept of an attribute m ∈ M is
the concept ({m}′, {m}′′) where {m}′ is the attribute extent
{g ∈ G/gIm} of m.

I The attribute concept of m, denoted by µ(m) is the largest
concept (for the lattice order) with m in its intent.

I Example:
µ(m1) = ({m1}′, {m1}′′) = ({g2, g3, g4, g5, g6}, {m1, m4})
µ(m1) = µ(m4)
µ(m2) = ({m2}′, {m2}′′) = ({g1, g3, g5}, {m2, m3})



The reduced labeling

G / M m1 m2 m3 m4 m5
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

Reduced labeling: The
attributes “at the highest” and
the objects “at the lowest”.
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The reduced labeling

I For any concept (A, B) we have:
I g ∈ A⇐⇒ γ(g) ≤ (A, B)
I m ∈ B⇐⇒ (A, B) ≤ µ(m)

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013



Introduction
A Smooth Introduction to Formal Concept Analysis

Relational Concept Analysis
Pattern Structures

Conclusion and References

Derivation operators, formal concepts and concept lattice
The structure of the concept lattice
Scaling
Two algorithms for extracting the concepts and building the concept lattice

An extent is an ideal (down-set)

I The extent of an arbitrary concept can be found as the set of
objects in the principal ideal generated by the concept.

I Let (P,≤) be an ordered set.
A subset Q ⊆ P is an order ideal or a down-set if x ∈ Q and
y ≤ x imply that y ∈ Q.

I ↓ Q = {y ∈ P/∃x ∈ Q : y ≤ x}
↓ x = {y ∈ P/y ≤ x}

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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An intent is a filter (up-set)

I The intent of an arbitrary concept can be found as the set of
objects in the principal filter generated by the concept.

I Let (P,≤) be an ordered set.
A subset Q ⊆ P is an order filter or an up-set if x ∈ Q and
x ≤ y imply that y ∈ Q.

I ↑ Q = {y ∈ P/∃x ∈ Q : x ≤ y}
↑ x = {y ∈ P/x ≤ y}
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Largest and smallest concepts

I Given a concept lattice, the context associated to the lattice
can be read using the following general rule:
(g, m) ∈ I⇐⇒ γ(g) ≤ µ(m)

I Just as a set of concepts can be uniquely determined from a
given context, so the context can be reconstructed from its
concepts.

I The set G is the extent of the largest concept (G, G′).
I The set M is the intent of the smallest concept (M′, M).
I The incidence relation is given by:

I =
⋃
{A× B/(A, B) ∈ C(G, M, I)}

where C(G, M, I) denotes the set of all formal concepts for
(G, M, I).



Types of attributes

I Introducing and attribute: an attribute α is introduced in a
concept C when it is not present in any ascendant
(super-concept) of C, i.e. the concept C corresponds to the
attribute concept of α (sometimes called the introducer of α).

I Inheriting an attribute: an attribute α is inherited by a concept
C when it is already present in an ascendant of C, i.e. C is
lower for the lattice order than the attribute-concept or
introducer of α.
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Types of attributes (example)

I m3 is an attribute
introduced in the concept
(g12356, m3), a and d are
attributes introduced in the
concept (g23456, m14), b is
an attribute introduced in
the concept (g135, m23).

I m3 is an attribute inherited
by (g135, m23), m1, m3, and
m4, are attributes inherited
by (g2356, m134), and so
on.

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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Extracting rules from a concept lattice

Mutual implications between attributes having the same
attribute-concept

I Attributes having the same
attribute-concept or
introducer are equivalent:
for example m1←→ m4 for
(g23456, m14).

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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Extracting rules from a concept lattice (continued)

Introduced attributes imply inherited attributes

I When an attribute α is
introduced, it implies every
inherited attribute in the
attribute-concept of α: for
example m2 −→ m3 for
(g135, m23) and
m5 −→ m23 for (g1, m235).

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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Scaling
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When the data set is large or complex

When the size of the data set is growing, it becomes unreasonable
to display the full data in a single lattice diagram.
Formal Concept Analysis allows to:

I split large diagrams into smaller ones, so that the information
content is preserved,

I browse through lattices and thereby build conceptual views of
data.
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The need for scaling

I There are many series of formal contexts that have an
suggestive interpretation. Such formal contexts will be called
scales.

I So formally, a scale is the same as a formal context. But it is
meant to have a special interpretation.

I Examples of scales are nominal, ordinal, and dichotomic scales.
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Conceptual scaling

I The formal context is the basic data type of Formal Concept
Analysis.

I However data are often given in form of a many-valued
context.

I Many-valued contexts are translated to one-valued context via
conceptual scaling.

I But this is not automatic and some arbitrary choices have to
be made.

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013



The example of the context of planets

Planet Size Distance to Sun Moon(s)
Jupiter large far yes
Mars small near yes

Mercury small near no
Neptune medium far yes
Pluto small far yes
Saturn large far yes
Earth small near yes
Uranus medium far yes
Venus small near no



The context of planets after nominal scaling

Planet Size Distance to Sun Moon(s)
small medium large near far yes no

Jupiter x x x
Mars x x x

Mercury x x x
Neptune x x x
Pluto x x x
Saturn x x x
Earth x x x
Uranus x x x
Venus x x x



The concept lattice of planets (after scaling)
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Examples of scaling

I Nominal: K = (N, N,=)

I Ordinal: K = (N, N,≤)
I Interordinal: K = (N, N,≤ ∪ ≥)

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013
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Two algorithms for building formal concepts and the concept lattice
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An algorithm for computing the formal concepts

I A rectangle in a binary table corresponds to a pair (X, Y)
–where X denotes an extension and Y denotes an intension–
only contains crosses x.
Such an extension and intension are not necessarily extents
and intents respectively.

I A rectangle (X, Y) is contained in another rectangle (X1, Y1)
whenever X ⊆ X1 and Y ⊆ Y1.

I A rectangle (X, Y) is maximal when it is not included in any
other rectangle: any rectangle (X1, Y1) containing a maximal
rectangle (X, Y) is such that X1 and/or Y1 contain at least a
“void place”, i.e. a place without a cross x.



An algorithm for constructing the concept lattice

I Step 1: build the rectangles (X, Y) whose extension X is of size
1 (the cardinality of X is equal to 1).

I Step 2 with union of rectangles: build the rectangles (X, Y) of
size 2 making the union of extensions of size 1 and the
intersection of intensions.
An intersection should not be empty otherwise the
corresponding rectangle is no more considered.

I Step 3: Check and reomve the rectangles that are not
maximal, then assemble rectangles with the same intension.

I Step 4: continue in the same way the process considering
rectangles of size 3, 4, and so on. . .

I Final step: the building process stops as soon as there is no
more rectangle to be built.
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An example of construction of a concept lattice (1)

G / M m1 (a) m2 (b) m3 (c) m4 (d) m5 (e)
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

For better readibility: M = {a, b, c, d, e}
The rectangles of size 1:
{g1}x{b,c,e}, {g2}x{a,c,d}, {g3}x{a,b,c,d}, {g4}x{a,d},
{g5}x{a,b,c,d}, {g6}x{a,c,d}
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An example of construction of a concept lattice (2)

The rectangles of size 1:
{g1}x{b,c,e}, {g2}x{a,c,d}, {g3}x{a,b,c,d}, {g4}x{a,d},
{g5}x{a,b,c,d}, {g6}x{a,c,d}

Build the rectangles of size 2 by union of rectangles of size 1:
{g1,g2}x{c}, {g1,g3}x{b,c}, {g1,g5}x{b,c}, {g1,g6}x{c},
{g2,g3}x{a,c,d}, {g2,g4}x{a,d}, {g2,g5}x{a,c,d}, {g2,g6}x{a,c,d},
{g3,g4}x{a,d}, {g3,g5}x{a,b,c,d}, {g3,g6}x{a,c,d},
{g4,g5}x{a,d}, {g4,g6}x{a,d},
{g5,g6}x{a,c,d}, ...
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An example of construction of a concept lattice (3)

Remove the non maximal rectangles
(the rectangles with the same intension and a smaller extension):
For example:
{g2}x{a,c,d} because of {g2,g3}x{a,c,d},
{g3}x{a,b,c,d} and {g5}x{a,b,c,d} because of {g3,g5}x{a,b,c,d},
{g4}x{a,d} because of {g4,g5}x{a,d},
{g6}x{a,c,d} because of {g5,g6}x{a,c,d}
...
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An example of construction of a concept lattice (4)

Fusion of rectangles with the same intension:
For example:
{g1,g2}x{c} and {g1,g6}x{c} give {g1,g2,g6}x{c}
{g1,g3}x{b,c} and {g1,g5}x{b,c} give {g1,g3,g5}x{b,c}

{g2,g3}x{a,c,d}, {g2,g5}x{a,c,d} and {g2,g6}x{a,c,d} give
{g2,g3,g5,g6}x{a,c,d}
this removes the fusion: {g3,g6}x{a,c,d} and {g5,g6}x{a,c,d} give
{g3,g5,g6}x{a,c,d}

{g2,g4}x{a,d}, {g3,g4}x{a,d}, {g4,g5}x{a,d} and {g4,g6}x{a,d}
give {g2,g3,g4,g5,g6}x{a,d}
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An example of construction of a concept lattice (5)

Listing the rectangles by size:
Size 1: {g1}x{b,c,e},
Size 2: {g3,g5}x{a,b,c,d},
Size 3: {g1,g3,g5}x{b,c}, {g1,g2,g6}x{c},
Size 4: {g2,g3,g5,g6}x{a,c,d},
Size 5: {g2,g3,g4,g5,g6}x{a,d}

A last construction by union of rectangles is possible:
{g1,g3,g5}x{b,c} and {g1,g2,g6}x{c} give {g1,g2,g3,g5,g6}x{c},
this removes {g1,g2,g6}x{c}
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An example of construction of a concept lattice (6)
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The Bordat algorithm

Let us consider a set of objects G and a set of attributes M.

I The Bordat algorithm is able to build the formal concepts and
the order between the concepts, thus the whole concept lattice.

I Let us consider a set of objects G and a set of attributes M.
I Set the bottom concept as the pair ⊥ = (M′, M) unless there is

one object owning all attributes (then M′ 6= ∅).

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013



Introduction
A Smooth Introduction to Formal Concept Analysis

Relational Concept Analysis
Pattern Structures

Conclusion and References

Derivation operators, formal concepts and concept lattice
The structure of the concept lattice
Scaling
Two algorithms for extracting the concepts and building the concept lattice

The Bordat algorithm

I Let Ck = (Xk, Yk) be a formal concept.
I The concept Ck+1 = (Xk+1, Yk+1) is a subsumer of Ck in the

lattice whever it verifies:
I (i) Xk+1 = Xk ∪ {x ∈ G \ Xk|fCk(x) = Yk+1} where fCk

computes the intension of x restricted to (G \ Xk)× Yk
(extensions are growing).

I (ii) Yk+1 ∈ Max{fCk(x)|x 6∈ Xk}
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The Bordat algorithm

G / M a b c d e
g1 x x x
g2 x x x
g3 x x x x
g4 x x
g5 x x x x
g6 x x x

I G = {g1, g2, g3, g4, g5, g6}
and M = {a, b, c, d, e}

I ⊥ = (∅, M) = (X0, Y0)

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013



Introduction
A Smooth Introduction to Formal Concept Analysis

Relational Concept Analysis
Pattern Structures

Conclusion and References

Derivation operators, formal concepts and concept lattice
The structure of the concept lattice
Scaling
Two algorithms for extracting the concepts and building the concept lattice

The Bordat algorithm

I G = {g1, g2, g3, g4, g5, g6} and M = {a, b, c, d, e}
I ⊥ = (∅, M) = (X0, Y0)
I X1 = X0 ∪ {x ∈ G \ X0|fC0(x) = Y1}
I Y1 ∈ Max{fC0(x)|x 6∈ X0}
I fC0 : (G \ ∅)× {a, b, c, d, e}
I {fC0(x)|x 6∈ X0} = {fC0(x)|x ∈ G} =
{fC0(g1), fC0(g2), fC0(g3), fC0(g4), fC0(g5), fC0(g6)} =
{{b, c, e}, {a, c, d}, {a, b, c, d}, {a, d}, {a, b, c, d}, {a, c, d}}
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The Bordat algorithm

I

Max{{b, c, e}, {a, c, d}, {a, b, c, d}, {a, d}, {a, b, c, d}, {a, c, d}}
= {{b, c, e}, {a, b, c, d}}

I Y1 = {b, c, e}
X1 = X0 ∪ {x ∈ G \ X0|fC0(x) = Y1}
= {x ∈ G|fC0(x) = {b, c, e}} = {1}

I Y2 = {a, b, c, d}
X2 = X0 ∪ {x ∈ G \ X0|fC0(x) = Y2}
= {x ∈ G|fC0(x) = {a, b, c, d}} = {3, 5}

I C1 = (X1, Y1) = ({g1}, {b, c, e}) and
C2 = (X2, Y2) = ({g3, g5}, {a, b, c, d}) are the direct
subsumers of (X0, Y0) in the lattice.
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The Bordat algorithm

I X3 = X1 ∪ {x ∈ G \ X1|fC1(x) = Y3}
I fC1 : (G \ {g1})× {b, c, e}
I Y3 ∈ Max{fC1(x)|x ∈ {g2, g3, g4, g5, g6}}
I Y3 ∈ Max{fC1(g2), fC1(g2), fC1(g3)fC1(g4), fC1(g5), fC1(g6)}

= Max{{c}, {b, c}, ∅, {b, c}, {c}}
I Thus C3 = (X3, Y3) = ({g1, g3, g5}, {b, c})
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The Bordat algorithm

I X4 = X2 ∪ {x ∈ G \ X2|fC2(x) = Y4}
I fC2 : (G \ {g3, g5})× {a, b, c, d}
I Y4 ∈ Max{fC2(x)|x ∈ {g1, g2, g4, g6}}
I Y4 ∈ Max{fC2(g1), fC2(g2), fC2(g4), fC2(g6)}

= Max{{b, c}, {a, c, d}, {a, d}, {a, c, d}}
= {{b, c}, {a, c, d}}

I Thus the first subsumer is identical to
C3 = (X3, Y3) = ({g1, g3, g5}, {b, c})

I The second subsumer
C4 = (X4, Y4) = ({g2, g3, g5, g6}, {a, c, d})
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The Bordat algorithm

I X5 = X3 ∪ {x ∈ G \ X3|fC3(x) = Y5}
I fC3 : (G \ {g1, g3, g5})× {b, c}
I Y5 ∈ Max{fC3(x)|x ∈ {g2, g4, g6}}
I Y5 ∈ Max{fC3(g2), fC3(g4), fC3(g6)}

= Max{{c}, ∅, {c}} = {c}
I Thus C5 = (X5, Y5) = ({g1, g2, g3, g5, g6}, {c})
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The Bordat algorithm

I X6 = X4 ∪ {x ∈ G \ X4|fC4(x) = Y6}
I fC4 : (G \ {g2, g3, g5, g6})× {a, c, d}
I Y6 ∈ Max{fC4(x)|x ∈ {g1, g4}
I Y6 ∈ Max{fC4(g1), fC4(g4)}}

= Max{{c}, {d}}
I The first subsumer is identical to

C5 = (X5, Y5) = ({g1, g2, g3, g5, g6}, {c})
I The second subsumer

C6 = (X6, Y6) = ({g2, g3, g4, g5, g6}, {d})
I ...
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Relational Concept Analysis

I Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli and Petko Valtchev. A proposal
for combining Formal Concept Analysis and description Logics for mining relational data, in
Proceedings of ICFCA-2007, LNAI 4390, Springer, pages 51–65, 2007.

I Mohamed Rouane-Hacene, Amedeo Napoli, Petko Valtchev, Yannick Toussaint and Rokia
Bendaoud. Ontology Learning from Text using Relational Concept Analysis, in International
Conference on eTechnologies (MCETECH 08), Montréal, IEEE Computer Society, pages
154–163, 2008.

I Lian Shi, Yannick Toussaint, Amedeo Napoli and Alexandre Blansché. Mining for Reengineering:
an Application to Semantic Wikis using Formal and Relational Concept Analysis, Proceedings of
ESWC 2011, LNCS 6644, Springer, pages 421–435, 2011.
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Introducing Relational Concept Analysis (RCA)

I The objective of RCA is to extend the purpose of FCA for
taking into account relations between objects.

I The RCA process relies on the following main points:
I a relational model based on the entity-relationship model,
I a conceptual scaling process allowing to represent relations

between objects as relational attributes,
I an iterative process for designing a concept lattice where

concept intents include binary and relational attributes.

I The RCA process provides “relational structures” that can be
represented as ontology concepts within a knowledge
representation formalism such as description logics (DLs).
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The RCA data model

I The RCA data model relies on a so-called relational context
family denoted by RCF = (K,R), where:

I K is a set of formal contexts Ki = (Gi, Mi, Ii),
I R is a set of relations rk ⊆ Gi × Gj, where Gi and Gj are sets

of objects from the formal contexts Ki and Kj .
I A relation r ⊆ Gi × Gj has a domain and a range where:
I dom(r) = Gi and ran(r) = Gj.
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An example

I Suppose that we have a context Papers× Topics where
Papers denotes a set of papers –from “a” to “`”– and Topics
denotes a set of three attributes, namely “lt” for “lattice
theory”, “mmi” for “man-machine interface”, and “se” for
“software engineering”.

I There are two relations:
I cites ⊆ Papers× Papers indicates that a paper is citing

another paper,
I develops ⊆ Papers× Papers indicates that a paper is

developing another paper.
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The initial relational context

I Relational context:
(K,R) = (K0, {cites, develops}) with K0 = (Papers, Topics, I)

lt mmi se a b g h c d i j
a x
b x
c x x
d x x
e x
f x
g x
h x
i x
j x
k x
` x
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The L0 concept lattice built from formal context K0

lt mmi se
a x
b x
c
d
e
f
g x
h x
i
j
k
`
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Introducing relational scaling

I The first step consists in building an initial concept lattice L0
from the the initial context K0 using standard FCA.

I The second step takes into account relations r(oi, oj) for
building a new context K1:
I r(oi, oj) means that object oi ∈ Gi is related through relation

r with object oj ∈ Gj,
I then a relational attribute of the form ∃r.Ck is associated to

object oi in K1, where Ck is any concept instantiating oj in
L0.

I When all relations between objects have been examined, the
new context K1 is completed and a new concept lattice L1 is
built accordingly.
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Relational scaling in L0

I Object i is in relation with
object a through relation
cites.

I Object a is in the extent of
concepts C0 and C2 of the
initial lattice L0.

I Thus, object i is given two
new relational attributes,
namely ∃cites:C0 and
∃cites:C2.

I Object j is in relation with
object b through cites: by
the same way, object j is
given two relational
attributes ∃cites:C0 and
∃cites:C2.



The relational context K0

lt mmi se a b g h c d i j
a x
b x
c x x
d x x
e x
f x
g x
h x
i x
j x
k x
` x
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Relational scaling in L0

I Object c is in relation with

objects a and g through
relation cites.

I Object a is in the extent of
concepts C0 and C2 in L0
while object g is in the
extent of concepts C3 and
C2 in L0.

I Thus, object c is given
three new relational
attributes, namely
∃cites:C0, ∃cites:C2, and
∃cites:C3.
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Relational scaling in L0

I The same process is applied
to develops:

I e is in relation with c, f
with d, k with i, and ` with
j.

I The four objects e, f, k,
and `, are given the
relational attribute
∃develops:C2.
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The new relational context K1

lt mmi se cites:c2 cites:c0 cites:c3 cites:c4 develops:c2
a x
b x
c x x x
d x x x
e x
f x
g x
h x
i x x
j x x
k x
` x
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The concept lattice L1



Introduction
A Smooth Introduction to Formal Concept Analysis

Relational Concept Analysis
Pattern Structures

Conclusion and References

Three forms of relational attributes

I Existential scaling ∃r.C: r(o) ∩ Extent(C) 6= ∅
I Universal scaling ∀r.C: r(o) ⊆ Extent(C)
I Universal-Existential scaling ∀∃r.C: r(o) ⊆ extent(C) and

r(o) 6= ∅
I With relational scaling, the homogeneity of concept

descriptions is kept: all attributes –included relational
attributes– are considered as binary attributes.

I Standard algorithms for building concept lattices can be
straightforwardly reused.
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Relational scaling in L1

I The process is applied a

second time for relation
develops.

I The object e develops c
whose description has
changed, i.e. c is in the
extent of concepts C2, C5,
and C6.

I Thus object e is given the
relational attributes
∃develops:C5 and
∃develops:C6.
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The new relational context K2

lt mmi se ct:2 ct:0 ct:3 ct:4 dvl:2 dvl:5 dvl:6 dvl:7
a x
b x
c x x x
d x x x
e x x x
f x x x
g x
h x
i x x
j x x
k x x
` x x
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The completion of the RCA process

I Relational scaling is still applied for cites and develops but
the final context and the associated concept lattice are
obtained after the second step.

I More generally, relational scaling is applied and either there are
new modifications (continuation) or there is no more
modification (fix-point).

I The relational scaling process reaches a fix-point and the final
context is stationary: no more changes need to be made and
the associated final lattice is reached (the relational scaling
process terminates).
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From a relational concept lattice to an ontology schema

I The concepts of the final concept lattice can be represented
within a DL formalism such as ALE for designing an ontology
schema supported by the lattice.

I Some problems about knowledge representation are arising for
representing binary and relational attributes.
Binary attributes can be represented as atomic concepts.

I Thanks to the semantics associated with relational scaling and
operators, roles can be attached to defined concepts in a
“natural” way using a construction such as ∃r.C.
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Text Mining
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The text mining process

I Text mining implies the manipulation
of textual documents in depth, i.e.
w.r.t. their structure and their
content.

I Text mining can be guided by domain
ontologies and supports ontology
engineering.

I In turn, ontologies can be used for
text annotation, information retrieval,
and for guiding the mining of
documents w.r.t. their content.

Textual documents

Natural Language
Processing

Extraction of pairs
(entity,attribute)  

Extraction of triples
(entity,relation,entity)

Relational concept
Lattices (FCA/RCA)

Core Ontology
Schema



From a relational concept lattice to an ontology schema

Relational Context 
Family 

Relational 
Concept 
Lattices 



From a relational concept lattice to an ontology schema

Relational concept lattice:
C8 : Intent = {sticks, resist : A0, resist : A1}
C8 : Extent = {klebsiella_P, klebsiella_O, mycobacterium_S}
DL expressions:
C8 ≡ ∃sticks.> u ∃resist.A0 u ∃resist.A1
C8(klebsiella_P), C8(klebsiella_O), C8(mycobacterium_S)
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Pattern Structures

I Mehdi Kaytoue, Sergei O. Kuznetsov, Amedeo Napoli and Sébastien Duplessis. Mining Gene
Expression Data with Pattern Structures in Formal Concept Analysis, Information Science,
181(10):1989–2001, 2011.

I Mehdi Kaytoue, Sergei O. Kuznetsov and Amedeo Napoli. Revisiting Numerical Pattern Mining
with Formal Concept Analysis, in Proceedings of 22nd International Joint Conference on
Artificial Intelligence (IJCAI-11), Barcelona, Spain, 2011.

I Zainab Assaghir, Mehdi Kaytoue, and Amedeo Napoli and Henri Prade. Managing Information
Fusion with Formal Concept Analysis, in Proceedings of 7th International Conference on
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Handling numerical data with FCA?

Conceptual scaling (discretization or binarization)
An object has an attribute if its value lies in a predefined interval

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

m1, [4, 5] m2, [4, 7] m3, [5, 6]

g1 × × ×
g2
g3 × ×
g4 ×
g5 × ×

Different scalings: different interpretations of the data

General problem
How to directly build a concept lattice from numerical data?
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How to handle complex descriptions

An intersection as a similarity operator

I ∩ behaves as similarity operator

{m1,m2} ∩ {m1,m3} = {m1}

I ∩ induces an ordering relation ⊆
N ∩ O = N ⇐⇒ N ⊆ O

{m1} ∩ {m1,m2} = {m1} ⇐⇒ {m1} ⊆ {m1,m2}

I ∩ has the properties of a meet u in a semi lattice,
a commutative, associative and idempotent operation

c u d = c ⇐⇒ c v d
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Pattern structure

Given by (G , (D,u), δ)

I G a set of objects
I (D,u) a semi-lattice of descriptions or patterns
I δ a mapping such as δ(g) ∈ D describes object g

A Galois connection

A� = ug∈Aδ(g) for A ⊆ G

d� = {g ∈ G |d v δ(g)} for d ∈ (D,u)
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Interval Pattern Structure

I A meet-semi-lattice for intervals (D,u) where D is a set of intervals,

I a possible choice for the meet operator is the convexification of
intervals:

[a1, b1] u [a2, b2] = [min(a1, a2),max(b1, b2)]
[4, 5] u [5, 5] = [4, 5]

[a1, b1] v [a2, b2] ⇐⇒ [a2, b2] ⊆ [a1, b1]
[4, 5] v [5, 5] ⇐⇒ [5, 5] ⊆ [4, 5]
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Interval Pattern Structure

I An interval pattern p is an n-dimensional vector of intervals:
p = 〈[ai, bi]〉i∈[1,n]

I Operation u and order of interval patterns:
Given interval patterns p = 〈[ai, bi]〉i∈[1,n] and
q = 〈[ci, di]〉i∈[1,n]:

I

p u q = 〈[ai , bi ]〉i∈[1,n] u 〈[ci , di ]〉i∈[1,n]
p u q = 〈[ai , bi ] u [ci , di ]〉i∈[1,n]

I

p u q = p ⇔ p v q
p v q ⇔ [ai , bi ] v [ci , di ], ∀i ∈ [1, n]
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Interval pattern structures based on convexification

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

{g1, g2}� = ug∈{g1,g2}δ(g)
= 〈5, 7, 6〉 u 〈6, 8, 4〉
= 〈[5, 6], [7, 8], [4, 6]〉

〈[5, 6], [7, 8], [4, 6]〉� = {g ∈ G |〈[5, 6], [7, 8], [4, 6]〉 v δ(g)}
= {g1, g2, g5}

({g1, g2, g5}, 〈[5, 6], [7, 8], [4, 6]〉) is a pattern concept

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013



Interval pattern concept lattice

I Highest concepts: largest extents and largest intervals
(smallest intents)

I Lowest concepts: smallest extents and smallest intervals
(largest intents)

I Problem: efficient pattern mining.
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Links with conceptual scaling

Interordinal scaling [Ganter & Wille]

I A scale to encode intervals of attribute values
m1 ≤ 4 m1 ≤ 5 m1 ≤ 6 m1 ≥ 4 m1 ≥ 5 m1 ≥ 6

4 × × × ×
5 × × × ×
6 × × × ×

I Equivalent concept lattice
I Example

({g1, g2, g5}, {m1 ≤ 6,m1 ≥ 4,m1 ≥ 5, ... , ... })
({g1, g2, g5}, 〈[5, 6] , ... , ... 〉)

Why should we use pattern structures as we have scaling?
Processing a pattern structure is more efficient

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013



Introduction
A Smooth Introduction to Formal Concept Analysis

Relational Concept Analysis
Pattern Structures

Conclusion and References

Interval pattern search space

Counting all possible interval patterns with interordinal scaling

〈[am1 , bm1 ], [am2 , bm2 ], ...〉
where ami , bmi ∈Wmi

m1 m2 m3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5

∏
i∈{1,...,|M|}

|Wmi | × (|Wmi |+ 1)
2

360 possible interval patterns in our small example

S.O. Kuznetsov and A. Napoli Tutorial on FCA at IJCAI 2013



Introduction
A Smooth Introduction to Formal Concept Analysis

Relational Concept Analysis
Pattern Structures

Conclusion and References

Questions on interval pattern mining

I What are the links between numerical pattern structures and
pattern mining?

I How can we reuse (good) ideas from pattern mining, i.e.
closed patterns, generators and equivalence classes, in the
framework of pattern structures?
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Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3

g1 5 6
g2 6 4
g3 4 5
g4 4 8
g5 5 5

〈[4, 5], [5, 6]〉� = {g1, g3, g5}
〈[4, 5], [4, 7]〉� = {g1, g3, g5}
〈[4, 5], [4, 6]〉� = {g1, g3, g5}
〈[4, 6], [5, 6]〉� = {g1, g3, g5}
〈[4, 5], [5, 7]〉� = {g1, g3, g5}
〈[4, 6], [5, 7]〉� = {g1, g3, g5}

3

4

5

6

7

8

3 4 5 6
m1

m3

b

b

b

b

b

δ(g1)

δ(g2)

δ(g3)

δ(g4)

δ(g5)
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Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3
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7

8
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b

b
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b
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δ(g5)
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Semantics for interval patterns

Interval patterns as (hyper) rectangles
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Semantics for interval patterns

Interval patterns as (hyper) rectangles
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Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3
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Semantics for interval patterns

Interval patterns as (hyper) rectangles
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Semantics for interval patterns

Interval patterns as (hyper) rectangles

m1 m3
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A condensed representation

Equivalence classes of interval patterns
Two interval patterns with same image are said to be equivalent

c ∼= d ⇐⇒ c� = d�

Equivalence class of a pattern d

[d ] = {c |c ∼= d}

I with a unique closed pattern: the smallest rectangle
I and one or several generators: the largest rectangles

In the example: 360 patterns ; 18 closed patterns ; 44
generators
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Algorithms & experiments

Algorithms: MintIntChange, MinIntChangeG[t|h]

4 5 6

[4,5] [5,6]

[4,6]

Principle with an example
1. Start from the most general interval pattern: 〈[4, 6], [7, 9], [4, 8]〉
2. Apply next minimal change following a canonical order c = 〈[4, 5], [7, 9], [4, 8]〉

3. Apply closure operator c�� = 〈[4, 5], [7, 9], [5, 8]〉
4. If canonicity test fails: backtrack (in the depth first traversal)

5. Otherwise go to 2. with c�� = 〈[4, 5], [7, 9], [5, 8]〉
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Algorithms & experiments

Algorithms: MintIntChange, MinIntChangeG[t|h]

4 5 6

[4,5] [5,6]

[4,6]

Experiments

I Mining several datasets from Bilkent University Repository
I Compression rate varies between 107 and 109

I Interordinal scaling
I not efficient even with best algorithms (e.g. LCMv2)
I redundancy problem discarding its use for generator extraction
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Discussion

I Potential applications:
I data privacy and k-anonymisation
I k-box problem in computational geometry
I quantitative association rule mining
I data summarization

I Extension: focus on generator extraction
I Problems:

I compression is not enough when considering very large data set
I numerical data are noisy: this calls for fault-tolerant condensed

representations
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Conclusion

I FCA is a well-founded mathematical theory equipped with
efficient algorithmic tools.

I FCA is a polymorphic process and addresses problems ranging
from knowledge discovery to knowledge representation and
reasoning, and pattern recognition as well.

I FCA is rather mature and times are there for important
variations, e.g. RCA and pattern structures (intervals and
graphs).

I There is still room for many improvements, especially in
dealing with trees and graphs, in taking into account domain
knowledge, similarity, and in combining FCA with numerical
processes.
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Tools for building and visualizing concept lattices

I The Conexp program:
http://sourceforge.net/projects/conexp

I The Galicia Platform:
http://www.iro.umontreal.ca/~galicia/

I The Toscana platform:
http://tockit.sourceforge.net/toscanaj/index.html

I The Formal Concept Analysis Homepage:
http://www.upriss.org.uk/fca/fca.html
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http://phoenix.inf.upol.cz/esf/ucebni/formal.pdf
I Claudio Carpineto and Giovanni Romano, Concept Data Analysis: Theory and Applications, John

Wiley & Sons, 2004.
I Finite Ordered Sets: Concepts, Results and Uses. Nathalie Caspard, Bruno Leclerc and Bernard

Monjardet, Cambridge University Press, 2012.
I Bernhard Ganter and Rudolph Wille, Formal Concept Analysis, Springer, 1999.
I Applied Lattice Theory: Formal Concept Analysis. Bernhard Ganter and Rudolf Wille,
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I Formal Concept Analysis, Foundations and Applications. Bernhard Ganter, Gerd Stumme and

Rudolf Wille editors, Lecture Notes in Computer Science 3626, Springer, 2005.
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