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STRUCTURAL MODELS WITH TESTABLE IDENTIFICATION

NIKOLAY AREFIEV

Abstract. For linear Gaussian simultaneous equations models with orthogonal structural shocks, I show

that, if appropriate instruments are available, there exists a set of inclusion and exclusion restrictions

sufficient for the full identification, such that each identification restriction from this set is testable. This

result does not depend on the assumption whether the model is recursive or cyclical, although the causal

representation of cyclical models is not unique. To prove this, I provide a reduced form rank condition

for the identification of simultaneous equations models, propose a graphical interpretation of the rank

condition, provide graphical interpretations of various sufficient conditions for identification of structural

vector autoregressions, and formulate new conditional independence tests.

Keywords: Identification, instrumental variables, data-oriented identification, sparse structural models,

structural vector autoregression, SVAR, simultaneous equations model, SEM, probabilistic graphical model,

PGM.
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1. Introduction

A common problem in econometrics is to measure the causal effects and structural shocks that have

produced observed covariances or more general comovements in a given dataset. In applications where

controlled experiments are too expensive or not possible, this problem is usually solved using identification

assumptions, which presume the existence of some causal relationships in the true data-generating model

and an absence of others. To make such assumptions, however, a strong theoretical argument is required,

which would explain why the presumably excluded causal effects cannot be present in the true model, but

this theory may be currently unavailable. The question of this paper is, therefore, whether it is possible to

measure some causal effects using only testable identification restrictions.
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For Gaussian simultaneous equations models (SEMs) with orthogonal structural shocks, I show that if

appropriate instruments are available, then testable identification is possible. Namely, given appropriate

instruments, there exists a set of inclusion and exclusion restrictions, satisfying the following properties. On

the one hand, each restriction from this set can be tested either as the null or as the alternative hypothesis.

On the other hand, taken together, these restrictions suffice for the full identification of the structural

model. This result does not depend on the assumption whether the model is recursive or cyclical, although

cyclical models have multiple SEM and causal representations, and require stronger instruments for testable

identification.

To demonstrate the existence of testable identification, I derive the following results. First, I propose

graphical interpretations of rank condition, of the sufficient condition for identification of structural vector

autoregression (SVAR) models (Rubio-Ramı́rez et al. (2010)), and of the theory of partial identification

(Christiano et al. (1999)). An example demonstrating the graphical interpretations of these conditions can

be found in Section 2.1, formal propositions are presented in Section 3 and proven in Appendices A and

B. Second, I formulate and provide a reduced form rank condition for the identification of simultaneous

equations models. An example demonstrating why the reduced form rank condition is helpful for testable

identification is presented in Section 2.1, a formal proposition is formulated in Section 4.2 and proven in

Appendix C. Finally, I show that if each structural equation includes a variable, which is present in this

equation and absent in the others, then in almost all parameter points, there exists an empirical procedure,

which asymptotically exactly identifies the set of variables entering into each structural equation. The

procedure uses results from Section 4.1, and is presented in Section 5. The power of the proposed tests I

discuss in Section 6.

This paper stems from the literature on probabilistic graphical models (PGM) (reviewed in Koller (2009);

Pearl (2009)). Chen and Pearl (2014) provide a review of many identification criteria for intricate causal

models. Most of these criteria, however, deal only with recursive models. The graphical interpretations of the

various conditions for identifying the simultaneous equations models and structural vector autoregressions

(SVARs) provided in this paper, are a powerful new tool for identifying cyclical models.

The idea of using PGM for testable identification of SVARs is not new (Kwon and Bessler (2011); Bryant

and Bessler (2011); Hoover (2005); Oxley et al. (2009); Reale and Wilson (2001); Wilson and Reale (2008)).

This literature usually only considers the PGM, where the influence of the predetermined variables has

been concentrated out of the covariance matrix for the contemporaneous variables. This approach may help

to identify the model, but it can never achieve testable identification without non-testable identification
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restrictions. Instead, I only concentrate out the process that has generated the values of the predetermined

variables, but not the predetermined variables themselves. The advantage of my approach is that it may

suffice for the full identification of the structural model, even without any non-testable assumptions.

There are various alternative approaches proposed in the literature for testable identification (Klein and

Vella (2010); Li and Müller (2009); Lowbel (2012); Magnusson and Mavroeidis (2014); Rossi (2005); Rigobon

(2013)), although these approaches never suffice for testable identification without non-testable assumptions.

My paper complements this literature, and offers a fresh way of approaching identification tools.

2. Method of Testable Identification in Two Examples

Before unpacking the formal theorems and proofs, I start with two examples that demonstrate how the

method of testable identification can be applied in practice. The first example deals with a recursive model,

and the second shows how testable identification can be achieved in a cyclical model. Some definitions and

propositions required for these examples are intuitively introduced in this section, and elaborated in later

sections.

2.1. Testable identification of a recursive model. Consider the following simultaneous equations

model:

y1 = c1 + b11z1 + ε1(1a)

y2 = c2 + a21y1 + b22z2 + ε2(1b)

y3 = c3 + a31y1 + a32y2 + ε3(1c)

where y1, y2, and y3 are endogenous variables, z1 and z2 are exogenous or predetermined variables, referred

to further as instruments, ε1, ε2, and ε3 are independent structural shocks, and aij , bi, and ci are parameters

of the model.

It is well-known that recursive models with orthogonal structural shocks like model (1) are fully identified;

a heuristic argument is that I can estimate equations in (1) one at a time, using, for example, the ordinary

least squares regression, to achieve a consistent estimator of the parameters. The identification in this model

is achieved using appropriate inclusion and exclusion restrictions. In (1a), for example, z1 is included in the

equation for y1, and this is an inclusion restriction, but y2 is excluded from the equation for y1, and this is

an exclusion restriction. The questions that I pose are the following. First, which of these restrictions are

testable? For example, can I test the assumption that y2 does not enter into the equation for y1? Second,
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a) Conditional causal diagram b) Partial moral graph
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Figure 1. Conditional causal diagram and partial moral graph for model (1).

does the set of testable inclusion and exclusion restrictions suffice for the full or partial identification of the

structural model? To answer these questions, I propose the following five-step procedure.

Step 1. Draw the conditional causal diagram. The conditional causal diagram is a directed graph,

where the nodes are the random variables of the structural model, and where the edges are defined by

the inclusion restrictions. The conditioning is made on Z, so the random process generating Z is not

represented in the conditional causal diagram. A formal definition of the conditional causal diagram is

provided in Section 3.

In model (1), I have five random variables, z1, z2, y1, y2, and y3, so I have drawn five respective vertices,

see Figure 1a. In (1a), z1 is included into the equation for y1, so in the causal diagram in Figure 1a, z1

directly influences y1. Using the language of graph theory, I can say equivalently that z1 is a parent of y1,

and y1 is a child of z1. In (1b), y1 and z2 are included into the equation for y2, so in the causal diagram

y1 and z2 directly influence y2. Finally, in (1c), y1 and y2 are included into the equation for y3, so in the

causal diagram y1 and y2 directly influence y3.

Step 2. Draw the partial moral graph. To draw the partial moral graph, moralize and disorient

the conditional causal diagram. “To moralize” means to marry all parents of each child. Node y1 in the

conditional causal diagram has just one parent, z1, so moralization is not required. Node y2 has two parents,

y1 and z2, so I need to “marry” them, that is, connect them with an undirected edge. Node y3 has parents y1

and y2, but they are already connected in the conditional causal diagram with edge y1 → y2, so additional

moralization is not required. Finally, disorient the graph, which means disregarding all directions. The

resulting moral graph is depicted in Figure 1b. A formal definition of the partial moral graph is provided

in Section 4.1.

Step 3. Draw the map of testable exclusion restrictions produced by the partial moral

graph. The partial moral graph drawn in the previous step is useful for testable identification because of

the following result, which is acknowledged in the literature on probabilistic graphical models to be true for
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a) Start with the graph b) Delete the edges, associated
that has all possible edges with testable exclusions
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Figure 2. Drawing the map of testable exclusion restrictions produced by the partial moral graph.

full moral graphs (Koller (2009); Pearl (2009)). However, I show that this result also holds for some pairs

of nodes in the partial moral graph, see Section 4.1. Consider a pair of endogenous variables (yi, yj), or

one endogenous variable and one instrument, (yi, zj). In almost all parameter points, these variables are

associated with adjacent vertices in the partial moral graph if and only if the partial correlation between

them with conditioning on all the other variables of the structural model is not zero.

Using this result, I can draw the map of testable exclusion restrictions produced by the partial moral

graph in the following way. Begin with the directed graph that has all possible edges, see Figure 2a.

Within the framework of this paper, I assume that the instruments are known to be exogenous, and so

this assumption is not tested. For this reason, there are no edges in Figure 2a directed from endogenous

variables to instruments. Observe that in the partial moral graph in Figure 1b there is no edge z1y2, so the

partial correlation between z1 and y2 with conditioning on z2, y1, and y3 is zero. If edge z1y2 were to be

present in the conditional causal diagram, this edge would also be present in the partial moral graph, and

the partial correlation would not be zero. Therefore, I have a testable exclusion restriction, the restriction

that z1 does not enter into the structural equation for y2, which is associated with the testable property

of the joint probability distribution function that corr(z1, y2|z2, y1, y3) = 0; I can delete edge z1y2 from the

map of testable exclusions.

Similarly, since edge z1y3 is absent in the partial moral graph, I have another testable restriction that z1

does not enter into the equation for y3, which is associated with the testable property of the joint distribution

function that corr(z1, y3|z2, y1, y2) = 0, so I can delete edge z1y3 from the map of testable exclusions. Finally,

there is no edge z2y3 in the partial moral graph, so I have the third testable exclusion, and I can delete

the respective edge from the map of exclusions. I therefore produced the map of exclusions depicted in

Figure 2b.
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a) Identification of y3 b) Identification of y2 c) Identification of y1
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Figure 3. Graphical sufficient condition for identification

A map of exclusions is formally defined in Section 4.1. The exclusion restrictions, formulated in the way

demonstrated in this example, are referred to hereafter as the directly testable exclusions.

Step 4. Verify whether the map of exclusions suffices for identification. A natural question is

whether the map of exclusions depicted in Figure 2b suffices for identification. To answer this question, in

Propositions 1 and 2 of Section 3 below, I propose graphical interpretations of various sufficient conditions

for the identification, including the rank condition, the Rubio-Ramı́rez et al. (2010) sufficient condition,

and the theory of partial identification. Given this, I prove that in almost all parameter points, a sufficient

condition for the identification of all parameters in the structural equation for yi is that each parent of yi

has an independent identifying path in the conditional causal diagram. An identifying path for a parent of

yi is a paths starting either with an instrument, or with any variable whose equation has been identified,

or with any non-descendant of yi, and that reaches the parent. The identifying paths for different parents

must be independent, which means that they must not intersect on any node.

Using the above results, I verify whether the exclusion restrictions from Figure 2b suffice for the full

identification. I begin with node y3, see Figure 3a. This node has two parents, y1 and y2, so I need two

independent identifying paths for the identification of the third structural equation. These paths do in fact

exist, both in the map of testable exclusions and in the conditional causal diagram. Indeed, the identifying

path for y1 is z1y1, which by the definition of identifying path starts with instrument z1 and reaches the

parent. The identifying path for y2 is z2y2, which starts with instrument z2 and reaches the parent. These

paths do not intersect on any node, so they are independent. Therefore, node y3 is identified, which means

that all parameters in equation (1c) are identified by the map of testable exclusions.

Now consider node y2, see Figure 3b. The parents of y2 are z2, y1, and y3, so I need three independent

identifying paths for the identification of the second equation. Node z2 creates an identifying path of length

1 for itself, the path starts with z2 in the role of instrument and it reaches z2 in the role of parent. In the

same manner, y3 creates an identifying path for itself, the path starts with y3 in the role of a node, which
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has in the previous step been proven to be identified, and reaches y3 in the role of parent of y2. Finally, the

identifying path for y1 is z1y1, so node y2 is also identified. In the same way, it is possible to show that y1

is also identified, see Figure 3c. Therefore, the exclusion restrictions represented by the map of exclusions

depicted in Figure 2b suffice for the full identification of the structural model.

Step 5. Test the required inclusion restrictions. Now I have a set of testable exclusion restric-

tions, which suffices for identification, but I have not tested whether the inclusion restrictions required for

identification are satisfied. Indeed, the conclusion about identification depends on the assumption of the

existence of edges z1y1 and z2y2 in the conditional causal diagram. If at least one of these edges is absent,

there are no two independent identifying paths for the parents of y3, and in this case no parameters in the

structural model are identified. The map of testable exclusions that I use for identification, however, does

not guarantee the presence of any edges. To achieve testable identification, therefore, I need to test the

assumption that two independent paths connecting sets of nodes {z1, z2} and {y1, y2} exist.

To test the required inclusions, I propose the following procedure. Consider regressions of each variable

from {y1, y2} onto each instrument {z1, z2}:

y1 = π10 + π11 · z1 + π12 · z2 + u1(2a)

y2 = π20 + π21 · z1 + π22 · z2 + u2(2b)

Put the coefficients of these regressions into matrix Π (y1, y2|z1, z2):

(3) Π (y1, y2|z1, z2) =

π11 π12

π21 π22


In Section 4.2, I prove that if the rank of Π (y1, y2|z1, z2) is two, then two independent paths connecting

sets {z1, z2} and {y1, y2} exist. Using this result, I can test the inclusion restrictions, which are required for

identification.

To test the rank of Π, I can use the following variation of the Johansen (1991) rank test. First, I esti-

mate regressions of {y1, y2} against {z1, z2}, and put the estimated coefficients into matrix Π (y1, y2|z1, z2).

Second, I estimate regressions of {z1, z2} against {y1, y2}, and put the estimated coefficients into matrix

Π (z1, z2|y1, y2). Third, I calculate the degree of freedom (df), which is equal to the number of columns

minus the number of rows of Π (y1, y2|z1, z2) plus 1, which in the considered example is 1. Finally, I calcu-

late the df smallest eigenvalues λ1, . . . , λdf of product Π (y1, y2|z1, z2) ×Π (z1, z2|y1, y2) and calculate the
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Table 1. Testable identification restrictions for model (1)

Identification restriction Testable property of PDF
z1 6→ y2, so b21 = 0 corr(z1, y2|z2, y1, y3) = 0
z1 6→ y3, so b31 = 0 corr(z1, y3|z2, y1, y2) = 0
z2 6→ y3, so b32 = 0 corr(z2, y3|z1, y1, y2) = 0

There are 2 independent paths
rank (Π (y1, y2|z1, z2)) = 2

connecting {z1, z2} with {y1, y2}

z1
y1

y2

y3

z2

Figure 4. Summary of testable inclusion and exclusion restrictions.

statistic:

(4) s = T

df∑
j=1

ln (1− λj)

where T is the number of observations. Under the null hypothesis that rank (Π (y1, y2|z1, z2)) < 2, the

statistic is asymptotically distributed as χ2(df).

Table 1 and Figure 4 summarize the testable inclusion and exclusion restrictions sufficient for the full

identification of the structural model. Each absent edge in Figure 4 is associated with a testable exclusion

restriction, each solid edge is associated with a testable inclusion restriction, and the existence of the dashed

edges is not important for identification, since the model is fully identified whether or not these edges are

present in the causal diagram.

Now compare the true structural model:

(5)


1 0 0

−a21 1 0

−a31 −a32 1



y1

y2

y3

 =


c1

c2

c3

+


b11 0

0 b22

0 0


z1
z2

+


ε1

ε2

ε3


with the estimated model:

(6)


1 −a12 −a13

−a21 1 −a23

−a31 −a32 1



y1

y2

y3

 =


c1

c2

c3

+


b11 b12

0 b22

0 0


z1
z2

+


ε1

ε2

ε3


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a) First representation b) Second representation c) Partial moral graph
for both representations

zd q

pzs

zd q

pzs

zd q

pzs

Figure 5. Equivalent causal representations of cyclical model (7) and the partial moral graph.

The estimated model is more complicated than the true model. In particular, the true model is triangular,

whilst the estimated model is cyclical. However, the advantage of the estimated model is that it can be

identified using only testable identification restrictions.

2.2. Testable identification of a cyclical model. Consider now an example, which demonstrates how

a testable identification can be achieved for cyclical models. One difficulty with cyclical models is that the

same model has several SEM and causal representations. In some cases, one representation is intuitively

clearer than others, but generally, even intuition may not help to choose the only “correct” model.

Consider a market, where the demand and supply curves are given by the following equations:

q + αp = c1 + γzd + εd(7a)

q − βp = c2 + δzs + εs(7b)

where q is the log quantity of sales, p is the log price, (−α) and β are respectively the demand and supply

elasticities, zd is a determinant for the demand, zs is a determinant for the supply, εd and εs are independent

structural shocks, α, β, γ, δ, c1 and c2 are the estimated parameters.

There are two SEM representations of model (7), in which the demand and supply equations are identified:

the first is where q is derived from (7a) and p from (7b), and the second is where p is obtained from (7a) and

q from (7a). The conditional causal diagrams associated with these representations are depicted in parts a

and b of Figure 5. This is not possible to justify that one representation is better than the other, neither

from the economic theory, nor from any empirical tests. The moral graph associated with model (7) is the

same for both representations (see Figure 5c).

In Section 4.1, I show how to test the null hypothesis that two given instruments do not have any common

children within the endogenous variables in the conditional causal diagram. Using this test, I can distinguish

the models in Figures 5a and 5b from the other observationally equivalent models, but I cannot distinguish
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between them. This, however, suffices for the full identification of the model as written in (7). The required

exclusion restrictions can be tested in the same way as in the previous example.

In contrast to the directly testable exclusions considered in the example in Section 2.1, the exclusion

considered in this section is an indirectly testable exclusion. By definition, indirectly testable exclusions are

associated with the test of the null hypothesis that there is no moralization effect between instruments. As

I discuss in Section 6, indirect tests require stronger instruments than direct tests.

3. A Graphical Method of Identification

In this section, I formulate and prove various sufficient conditions for identification, which I have already

applied in the previous section. Consider the following simultaneous equations model (SEM):

(8) AY = BZ + E

where A and B are matrices of parameters, Y is an n× 1 vector of the centralized endogenous variables, Z

is an m× 1 vector of the centralized exogenous or predetermined variables, and E is an n× 1 vector of the

unobservable Gaussian disturbances uncorrelated with Z, E ∼ N (0,Σ). Most of the paper assumes that

the structural shocks are independent, so the covariance matrix Σ is diagonal. This assumption, however,

is not used in Propositions 1 and 4 below, where Σ is assumed to be a symmetric positive definite matrix

without any identifying assumptions imposed. The constant term is omitted in (8) because all variables

have been centralized, so the term is zero. Matrix A is nonsingular, and the matrices of parameters A,

B and Σ are normalized so that for each i = 1, 2, . . . , n : ai,i > 0 and σii = 1, where ai,i and σii are

the respective elements of A and Σ. The variables of vector Z are referred to hereafter as the primary

instruments. Primary instruments may be correlated with each other, but they are all independent of E .

I assume that there are enough observations and that there is a sufficient variance of Z to estimate the

conditional probability distribution function f(Y |Z) generated by (8).

Assume that Z is generated using a process SZ = EZ such that S is not singular and E(EZETZ ) = I. Then

the whole model can be written as:

(9) PX = EX ,

where

P =

A −B

0 S

 X =

Y
Z

 EX =

 E
EZ


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If no identification constraints are imposed on (8), then this model is not identified, which means that

many different parameter points (A B) exist, producing the same conditional probability distribution

function f(Y |Z) (see Appendices A.2 and B.1 for a brief review). To identify the model, I consider only

those identification constraints, which restrict particular parameters to zero. All identification constraints

are summarized by the conditional causal diagram, which was intuitively introduced in Section 2.1, and

whose formal definition is:

Definition 1 (Conditional and unconditional causal diagrams). A causal diagram is a directed graph, where

the nodes are the random variables of the structural model, and where the edges are defined by the inclusion

restrictions: edge xi → xj is present in the causal diagram if and only if pji 6= 0, where pji is the respective

element of P.

• The conditional causal diagram represents only the edges associated with matrices A and B;

• The unconditional causal diagram represents edges associated with all entries of P.

If edge yj → yi exists in the conditional causal diagram, then yj is said to be a parent of yi, and yi is a

child of yj . If there is path yj1 → yj2 → · · · → yjN , then yji is ancestor of yjk if i < k, and yji is descendant

of yjk if i > k. Two paths are independent if they do not intersect on any node. Each node is interpreted

as a path of length 1.

Definition 2 (Primary identifying path). A path in the conditional causal diagram is a primary identifying

path for a parent yj of node yi if it starts with a primary instrument and reaches yj .

Definition 3 (Identified node). Node yi said to be identified by the conditional causal diagram if all

parameters in the ith lines of A and B are identified.

In empirical studies, where the structural shocks may be not independent and no constraints are imposed

on Σ, the identification of a given parameter is usually verified in the literature using the rank condition,

which is briefly reviewed in Appendix A.2. In this section, I propose the following graphical interpretation

of this condition:

Proposition 1 (Graphical interpretation of rank condition). Assume that Σ is a symmetric positive definite

matrix, and no identification constraints are imposed Σ.

• If node yi is identified in a given parameter point by the constraints, which are summarized by the

conditional causal diagram, then for each parent of yi there exists an independent primary identifying

path in the conditional causal diagram.
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• If for each parent of yi there exists an independent primary identifying path in the conditional causal

diagram, then node yi is identified in almost all parameter points by the constraints, summarized by

the conditional causal diagram.

Proof. See Appendix A. �

Most of this paper concerns models with orthogonal structural shocks, in which case the rank condition

is only a sufficient, but not a necessary condition for identification. Consider again the example depicted in

Figure 3. The rank condition suffices for the identification of y3, but it is not sufficient for the identification of

y1 or y2. Indeed, for each parent of y3 there is an independent primary identifying path, which starts with a

primary instrument and reaches the parent (see Figure 3a), so y3 is identified. The rank condition, however,

does not suffice for the identification of y2, because y2 has 3 parents, but only two primary instruments

are available; since it is not possible to draw three independent paths starting with two nodes, the rank

condition is not satisfied for y2. Nor is the rank condition satisfied for y1.

Assume now that the structural shocks are orthogonal, so Σ is diagonal. When the independence as-

sumption is made, some endogenous variables may possess the same properties as the primary instruments,

so they can produce additional identifying paths and identify additional parameters. I introduce two kinds

of instruments, recursive instruments and respective instruments. A Recursive instrument is defined as any

endogenous node, which has been identified using other instruments. Node yj is said to be a respective

instrument for yi if yj is not a descendant of yi.

Definition 4 (Recursive identifying path). In a model with orthogonal structural shocks, a path in the

conditional causal diagram is a recursive identifying path for a parent yj of node yi if it starts with an

identified node and reaches yj .

Definition 5 (Respective identifying path). In a model with orthogonal structural shocks, a path in the

conditional causal diagram is a respective identifying path for a parent yj of node yi if it starts with a

non-descendant of yi and reaches yj .

Proposition 2 below uses Rubio-Ramı́rez et al.’s (2010) sufficient condition for identification, to prove

that recursive instruments can be used for the identification of structural models in the same manner as

primary instruments. To prove the sufficiency of respective instruments in the same proposition, I use the

theory of partial identification, as reviewed in Christiano et al. (1999).
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Proposition 2 (Recursive condition for identification). Assume that the structural shocks are independent,

so Σ is a positive diagonal matrix. If for each parent of yi in the conditional causal diagram there is an

independent primary, recursive or respective identifying path, then yi is globally identified by the causal

diagram in almost all parameter points.

Proof. See Appendix B. �

Comparing the recursive condition for identification, as formulated in Proposition 2, with the rank con-

dition formulated in Proposition 1, I note that the recursive condition, on the one hand, requires a shock

independence assumption, but on the other hand, permits the use of recursive and respective instruments in

addition to the primary instruments permitted by Proposition 1. An example of application of Proposition 2

can be found in Section 2.1.

4. Testable Identification Restrictions

In this section, I provide definitions and propositions, which I have already applied in Section 2 to

formulate testable exclusion and inclusion restrictions.

4.1. Testable exclusions. Consider concentration matrix C, also know as the precision matrix, which is

defined as the inverse covariance matrix of X: C =
(
E
(
XXT

))−1
. Since each variable in Z is exogenous

or predetermined, and the covariance matrices for E and EZ are normalized to the identity matrices, I have:

E(EXETX) = I. Observe that:

I = E(EXETX) = E(PXXTPT )

= PC−1PT ,

from which I get:

C = PTP

=

 ATA −ATB

−BTA BTB + STS

(10)

The concentration matrix, on the one hand, can be estimated from the data without any prior iden-

tification assumptions. On the other hand, it gives estimators for ATA and ATB, which are helpful for

finding testable exclusions. To make the right-bottom block of the concentration matrix more informative,

the value of STS =
(
E
(
ZZT

))−1
, which can be estimated separately, is subtracted from this block. I then
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obtain matrix Ĉ referred to hereafter as the partial concentration matrix :

Ĉ = C−

0n×n 0n×m

0m×n
(
E
(
ZZT

))−1


=

 ATA −ATB

−BTA BTB

(11)

As I see from the obtained equation, in comparison to the full concentration matrix, the partial concentration

matrix also gives an estimator for BTB.

Definition 6 (Partial concentration network). The partial concentration network is an undirected graph,

which spans the random variables of the model, where xi and xj are adjacent if and only if ĉji is not zero,

where ĉij is the respective element of Ĉ.

The partial concentration network is useful for testable identification, because it is closely related to the

partial moral graph. Before formally defining the partial moral graph and showing this relationship, I define

relatives and strangers:

Definition 7 (Relatives and strangers). Vertices xi and xj are relatives in the conditional causal diagram

if and only if at least one of the following conditions holds:

(1) xi is a child of xj , xi ← yj ;

(2) xi is a parent of xj , xi → yj ;

(3) there is a vertex xk such that xk is a common child of xi and xj : xi → xk ← yj .

vertices xi and xj are strangers if and only if they are not relatives.

Using this definition, the partial moral graph can be redefined as follows:

Definition 8 (Partial moral graph). A partial moral graph is an undirected graph, where the nodes are

the random variables of the model, and where any two nodes are adjacent if and only if they are relatives

in the conditional causal diagram.

Proposition 3 (Partial moral graph and partial concentration network). Assume that the structural shocks

are independent, so matrix Σ is diagonal.

• If an edge is absent in the partial moral graph, this edge is also absent in the partial concentration

network.
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• In almost all parameter points, if an edge is absent in the partial concentration network, this edge

is also absent in the partial moral graph.

Before proving Proposition 3, I will introduce an assumption. Let P̂ be the matrix obtained from P by

substituting the bottom m lines with zeros:

P̂ =

 A −B

0
m×n

0
m×m


.

Assumption 1 (Generic assumption for parameter point P̂). Parameter point P̂ satisfies generic assump-

tion if for each i and j, i 6= j, the existence of k such that [P̂]ki · [P̂]kj 6= 0 implies
∑

k[P̂]ki · [P̂]kj 6= 0.

The generic assumption excludes edge-of-the-knife cases, where different causal effects precisely offset each

other in equilibrium. For example, in a model with two variables y1 and y2, where y1 positively influences

y2 and y2 negatively influences y1, the generic assumption excludes the case where the parameters are such

that y1 and y2 are entirely uncorrelated in equilibrium. Since the generic assumption is not satisfied only

in the subspace of parameters with a lower number of degrees of freedom than the full space of parameters,

it is satisfied in almost all parameter points.

Proof of Proposition 3. First, I prove that xi and xj are relatives if and only if there exists index k such

that [P̂]ki · [P̂]kj 6= 0. This result directly follows from the fact that xi and xj can be relatives only in one

of the following cases:

• xi is a child of xj . In this case [P̂]ki · [P̂]kj 6= 0 for k = i (recall the normalization rule aii > 0).

• xi is a parent of xj , then [P̂]ki · [P̂]kj 6= 0 for k = j.

• xi and xj have a child in common. Let this child be xk. Then [P̂]ki · [P̂]kj 6= 0.

Now observe that ĉij =
[
P̂T P̂

]
ij

=
∑

k[P̂]ik[P̂]jk. If xi and xj are strangers, then ∀k = 1, 2, . . . , n+m :

[P̂]ik · [P̂]jk = 0, therefore ĉij = 0. If xi and xj are relatives, then there exists k such that [P̂]ik · [P̂]jk 6= 0,

and through the generic assumption, which is satisfied in almost all parameter points, I obtain ĉij 6= 0. �

The following two corollaries stem from Proposition 3. Consider two nodes in the partial moral graph;

node xi is associated with a variable in vector Y or Z, and node yi is associated with a variable in Y .

Corollary 1 (Directly testable exclusion xi 6→ yj). If edge xi − yj is absent in the partial moral graph,

there is directly testable exclusion restriction that xi does not enter into the structural equation for yj,which



16

is associated with the testable property of the probability distribution function that the respective element of

the partial concentration matrix is zero.

Consider two primary instruments, zi and zj .

Corollary 2 (Indirectly testable exclusion restrictions). If edge zi− zj is absent in the partial moral graph,

there is indirectly testable exclusion that zi and zj do not have any common children among the endogenous

variables, which is associated with the testable property of the probability distribution function that the

respective element of the partial concentration matrix is zero.

In Section 2.1 I use partial correlations instead of the partial concentration network to test the exclusions.

This is possible because the full concentration matrix is closely related to the matrix of partial correlations.

The partial correlation between xi and xj with conditioning on the other variables of the model X(−i,−j) is

defined as the correlation between the residuals of the regressions of xi and xj on X(−i,−j). Knowing the

matrix of concentration, the partial correlations can be calculated using the following formula:

(12) corr(xi, xj |X(−i,−j)) =
cij√
ciicjj

,

where cij , cii, and cjj are the respective elements of matrix C. Therefore, element cij of matrix C is zero

if and only if xi and xj are partially uncorrelated, which in the Gaussian case is true if and only if xi and

xj are conditionally independent with conditioning on X(−i,−j).

Partial correlations, however, cannot be directly used to test indirectly testable exclusions. In this case, I

can test the hypothesis that the respective element of the partial concentration matrix is zero. In Section 2.2,

for example, the hypothesis that z1 and z2 do not have common children among the endogenous variables

is associated with a testable property of the probability distribution function that ĉ34 = 0.

Examples demonstrating how to formulate testable exclusion restrictions using the results presented in

this section can be found in Section 2.

4.2. Testing Inclusion Restrictions. Let matrix Πi(Pi|Z) be defined by the following operator in the

true model:

(13) E (Pi|Z) = Πi(Pi|Z)Z

where Pi are the parents of yi on the map of exclusion restrictions. The constant term is omitted in (13),

because all variables have been centralized, so the term is zero.
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Proposition 4 (Reduced Rank Condition). Assume that Σ is a symmetric positive definite matrix, and no

identification constraints are imposed on Σ. Node yi is identified in the given parameter point if and only if

Πi(Pi|Z) has full row rank.

Proof. See Appendix C. �

Consider an example, which demonstrates the intuition behind Proposition 4, and shows that if a node is

not identified, then the condition formulated in Proposition 4 is not satisfied, so the row rank of Πi(Pi|Z)

is not full. Consider the map of exclusion restrictions depicted in Figure 2b. Assume edge z2y2 is absent in

the causal diagram, but the other edges depicted in Figure 2b are present in the causal diagram. By any

Proposition, 1 or 2, y3 is not identified. I shall intuitively demonstrate that the row rank of Π3(P3|Z) is

not full in this case. Matrix Π3(P3|Z) includes the coefficients of the regressions of the parents of y3 in the

identification map, which are y1 and y2, on the instruments z1 and z2 (see equations (2) and (3)). Each

row of Π3(P3|Z) corresponds to a parent, and each column corresponds to an instrument. In the causal

diagram, I observe that if edge z2y2 is absent, the expected values of y1 and y2 can be expressed as functions

of y1 alone, so the rows of matrix Π3(P3|Z) are linearly dependent, in which case the row rank of Π3(P3|Z)

is not full, and the condition formulated in Proposition 4 is, in fact, not satisfied. Section 2.1 demonstrates

how to apply this result to achieve testable identification and how to test the rank of Πi(Pi|Z).

5. Existence of testable identification

In this section, I prove the thesis that if appropriate instruments are available, then testable identification

is possible. To prove this, I analyze cliques in the partial moral graph. A clique in an undirected graph is

a set of nodes such that every two nodes are adjacent. In Figure 1b, sets of nodes {z2, y1, y2} and {z2, y1}

are examples of cliques, but set {z2, y1, y2, y3}, is not a clique, because z2 and y3 are not adjacent. Clique

{z2, y1, y2} is a maximal clique, because it cannot be extended by including any other nodes. The clique

cover problem is to find as few cliques as possible that includes all nodes of the graph. In Figure 1b, cliques

{z1, y1}, {z2, y1, y2}, and {y1, y2, y3} solve the clique cover problem.

An analysis of the cliques covering the partial moral graph is useful for testable identification because of

the following property:

Proposition 5 (Structural equations and cliques). For each structural equation in the simultaneous equa-

tions model, there is a clique in the partial moral graph, such that all variables entering into the structural

equation are in the clique.
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z1
y1

y2

y3

z2

Figure 6. partial moral graph for model (14), where the solution to the clique cover
problem is not unique, but testable identification is possible.

Proof. This result is evident from Definitions 7 and 8. �

Proposition 5 produces the following result:

Corollary 3. If the clique cover problem has a unique solution with n cliques, there is a one-to-one associ-

ation between the cliques and the structural equations, such that each clique consists of the variables present

in the associated structural equation.

Consider the example in Figure 1b. The clique cover problem has the following unique solution: {z1, y1},

{z2, y1, y2}, and {y1, y2, y3}. Therefore, this partial moral graph can be associated with the only structural

model, where the first equation uses variables z1 and y1, the second uses z2, y1, and y2, and the third uses

y1, y2, and y3. The partial moral graph does not indicate, however, which variables should be put on the

left-hand side, and which on the right-hand side of each structural equation, but knowing that z1 and z2 are

exogenous, the only model consistent with the partial moral graph in Figure 1b is (1). Similarly, the unique

solution to the clique cover problem for the partial moral graph in Figure 5c is {zd, p, q}, and {zs, p, q},

which is consistent with the only structural model (7), but it does not indicate whether the representation

in panel a or b of Figure 5 is correct.

The condition formulated in Corollary 3 is a sufficient, but not a necessary condition for the unique

association between the variables and the structural equations using testable restrictions. Consider, for

example, a modification of (1), where z2 is also included in the structural equation for y1:

y1 = c1 + b11z1 + b12z2 + ε1(14a)

y2 = c2 + a21y1 + b22z2 + ε2(14b)

y3 = c3 + a31y1 + a32y2 + ε3(14c)

The partial moral graph for model (14) is drawn in Figure 6. The clique cover problem has two solutions.

Both solutions include cliques {z1, z2, y1} and {y1, y2, y3}, the first solution also includes {z2, y1, y2}, and the
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second includes instead {z2, y2}. Therefore, the partial moral graph does not suffice to conclude whether y1

is present or not into the second structural equation. The structural model, nevertheless, can be identified

using only testable restrictions. A heuristic argument is that the constraints implied by the moral graph

suffice for the full identification, and once the structural model has been identified, the hypothesis of whether

y1 is included or not into y2 can be tested.

Definition 9 (Marker). An exogenous or endogenous variable is a marker for a given structural equation,

if the variable is present in this and only this structural equation.

In model (1), for example, z1, z2, and y3 are markers respectively for the first, second, and third structural

equations. In (7), the markers are zd for the demand equation, and zs for the supply equation.

Proposition 6 (Deciphering the partial moral graph). Consider a simultaneous equations model, where

each structural equation has a marker. The partial moral graph suffices to identify all markers, and to

decide which variables are included into the structural equation associated with each marker.

Proof. To demonstrate this result, I prove that the solution to the clique cover problem is unique and

consists exactly of n cliques. Since two markers never appear in the same equation, they are not adjacent in

the moral graph, and so any two markers never pertain to the same clique. This guarantees that the clique

cover problem cannot be solved in less than n cliques. The solution has no more than n cliques, because

the whole moral graph has been produced by n cliques, each associated with one structural equation, so it

is possible to cover the partial moral graph with n cliques.

It remains to be proven that the solution is unique. Each marker is adjacent to each variable from the

associated structural equation, and all these variables are adjacent to each other. This defines the clique

associated with each marker in a unique way, so the solution to the problem is unique.

Then, from Corollary 3 to Proposition 5, it is possible to identify the markers, and to say which variables

are included into the structural equation associated with any given marker. �

In the abstract and introduction I claim that, for Gaussian simultaneous equations models with orthogonal

structural shocks, if appropriate instruments are available then there is a set of inclusion and exclusion

restrictions sufficient for full identification, such each restriction from this set is testable. Given Proposition

6, this result is evident. Indeed, if for each endogenous variable there is an instrument, which influences

the considered endogenous variable, but does not influence any other endogenous variable, then the true

structure can be specified using only testable restrictions. From Proposition 2, these restrictions suffice for
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a) Causal diagram b) Concentration network

y1

y3

y2 y1

y3

y2

ρ13 ρ23

ρ12 = −ρ12 · ρ13

Figure 7. Partial correlations associated with moralization edges are typically smaller than
partial correlations associated with true edges in the causal diagram. Notation: ρij ≡
corr(yi, yj |Y{−i,−j}).

full identification. The SEM representation may be not unique, as in the example in Section 2.2, nevertheless,

it is possible identify all parameters in these equations.

6. Strategy of testable identification and test power

Although the existence of testable identification depends only on the shock orthogonality assumption and

on the availability of appropriate instruments, indirect tests associated with exclusion restrictions require

stronger instruments than direct tests, which should be taken into consideration when a strategy of testable

identification is designed. There are two reasons why indirect tests are less powerful and require stronger

instruments than direct tests. The first reason is that the partial correlation induced by the moralization of

two causal effects is of order of the product of partial correlations, induced by edges in the causal diagram,

which are associated with these causal effects. Consider, for example, Figure 7. In this example, the partial

correlation associated with the moralization edge is equal to the minus product of the partial correlations

induced by the true causal effects. Since each partial correlation in its absolute value is strictly less than

one, the partial correlation associated with the moralization edge in absolute value in this example is smaller

than each partial correlation associated with a true edge.

To see how strong the power of the test may be, I use Fisher’s (1924) approximation of the distribution

function for partial correlations. Fisher’s z-transform of partial correlation coefficient ρ is defined as:

(15) ζ(ρ) = 0.5 · (ln(1 + ρ)− ln(1− ρ)) ,

and under the null hypothesis that ρ = 0, the value of ζ(ρ) ·
√
T − (n+m) + 3 is approximately normally

distributed with zero mean and standardized variance, where T is the number of observations.

In the example depicted in Figure 7, if ρ13 = ρ23 = 0.2 and I have 100 observations, for ρ13 and ρ23 I have

ζ(0.2) ≈ 0.202, and ζ(0.2) ·
√
T − (m+ n) + 3 ≈ 2.02, so I expect to correctly reject the null hypothesis that
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ρ13 = 0 or that ρ23 = 0 at the significance level of 10% approximately in 50% of experiments. The partial

correlation associated with the moralization edge, however, is relatively small: ρ12 = −0.2 ·0.2 = −0.04, and

ζ(0.04) ·
√
T − (m+ n) + 3 ≈ 0.4, so in most experiments the null hypothesis is not rejected. Calculations

suggest that to achieve a 50% rejection rate for the moralization edge, I must either increase the number of

observations from 100 to approximately 2500, or if I keep the number of observations constant, then I need

partial correlations, associated with the true causal edges, be greater or equal to approximately 0.45 in its

absolute value.

The second reason why the indirect tests discussed in Section 2.2 are less powerful than the direct tests

discussed in 2.1 is that in the indirect tests I subtract the estimated value of E(ZZT )−1 from the right-

bottom block of the concentration matrix before testing that some elements of this matrix are zero (see

equation (11)). Obviously, this procedure adds some random components to the estimated parameters, so

it decreases the power of the test. Therefore, direct tests for exclusion restrictions in applications should be

preferred over indirect tests.
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Appendix A. Proof of Proposition 1

A.1. A Lemma. Let Y = {y1, y2, . . . , yn} be the set of the nodes of the causal diagram associated with

the endogenous variables, Z = {z1, z2, . . . , zm} be the set of the nodes associated with the exogenous or

predetermined variables, and X = Y ∪Z be the set of all nodes. Let Y1, Y2, and X1 be independent subsets

of X satisfying: Y1 ⊂ Y, Y2 ⊂ Y, X1 ⊂ X, Y1∩Y2 = ∅, Y1∩X1 = ∅, and Y2∩X1 = ∅. Let G be the subgraph

of the causal diagram induced by Y1 ∪ Y2 ∪ X1, and N be the number of independent paths in G starting

with nodes in X1 and reaching nodes in Y1. Without loss of generality, I consider only paths without cycles.

For example, if I given with a path x1x2x1x4, I consider instead the path, where cycle x1x2x1 has been cut

out, so I consider x1x4.
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Let P̄ be the first n lines of matrix P, so P̄ = (A −B).Consider matrix M obtained from P̄ in the

following way. Take the rows of matrix P̄ having the indices of elements of Y1 ∪ Y2, and take the columns

of P̄ having the indices of Y2 ∪ X1.

If there is a path xj1xj2 . . . xjs in the causal diagram, the set of parameters associated with this path

consists of the following elements of matrix P̄:
{
pj2j1 , pj3j2 , . . . , pjsjs−1

}
. Therefore, the diagonal elements

of A are not considered as parameters associated with any path. By definition of the conditional causal

diagram, the parameters associated with different paths are not constrained to zero by the identification

restrictions.

In the proof of Proposition 1 below, I use Leibniz formula for determinant, which expresses the determi-

nant as a sum over all permutations. Since matrix M may be not square, I consider partial permutations,

which do not necessarily take all rows and all columns of M. Let l be the length of the lengthiest partial

permutation in M such that each element of the permutation is not restricted to zero by the identification

constraints.

To make the lemma below clearer, consider the following example. Assume that the structural model is:

(16)

 1 a12 0 0 a15 a16
0 1 a23 0 0 0
0 0 1 a34 0 0
0 0 0 1 0 0
0 0 0 a54 1 0
0 0 0 0 0 1

 y1
y2
y3
y4
y5
y6

 =

 b11 b21 0 0
0 0 0 0
0 0 0 0
0 0 b43 0
0 0 0 b54
0 0 0 0

( z1
z2
z3
z4

)
+

 ε1
ε2
ε3
ε4
ε5
ε6

 ,

which causal diagram is depicted in Figure 8a. Consider the following sets of nodes: Y1 = {y2, y5, y6},

Y2 = {y3, y4}, X1 = {z2, z3, z4}. Subgraph G, which by the definition is induced by Y1 ∪ Y2 ∪ X1, is drawn

in Figure 8b. Matrix P̄ is:

P̄ =


1 a12 0 0 a15 a16 −b11 −b21 0 0
0 1 a23 0 0 0 0 0 0 0
0 0 1 a34 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −b43 0
0 0 0 a54 1 0 0 0 0 −b54
0 0 0 0 0 1 0 0 0 0


Matrix M takes rows 2, 3, 4, 5, 6, and columns 3, 4, 8, 9, and 10 of matrix P̄, so I get:

(17) M =


a23 0 0 0 0
1 a34 0 0 0

0 1 0 −b43 0

0 a54 0 0 −b54
0 0 0 0 0


There are two independent paths in G starting with nodes in X1 and reaching Y1, see Figure 8b, they

are z3 → y4 → y3 → y2 and z4 → y5, so N = 2. The sets of parameters associated with these paths

are {−b43, a34, a23} and {−b54}. The lengthiest unconstrained partial permutation in M is underlined in

equation (17), and is [a23 · a34 · (−b43) · (−b54)]. This permutation has four elements, so l = 4. Finally,

there are 2 nodes in set Y2, so |Y2| = 2.
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a) Causal diagram b) Subgraph G induced by
{y2, y3, y4, y5, y6, z2, z3, z4}

z1

y1

z2

y2 y3 y4
z3

y5
z4

y6

y2

z2

y3 y4
z3

y5 z4 y6

Figure 8. Example of causal diagram and subgraph G

Lemma 1. The length of the lengthiest unconstrained partial permutation in M is equal to the number of

independent paths in G starting with nodes in X1 and reaching Y1 plus the number of nodes in Y2:

l = N + |Y2|

Proof. Step 1. Prove that two paths intersect in G if and only if the parameters associated with these paths

do not pertain to the same partial permutation in M.

Indeed, two paths intersect in G if and only if there exists a node xj ∈ Y1 ∪ Y2 ∪ X1 such that at least

one of the following conditions hold:

(1) There are two incoming edges to node xj associated with two different paths, in which case the

parameters associated with these edges are located in the same row of M.

(2) There are two outgoing edges from xj associated with two different paths, in which case the param-

eters associated with the outgoing edges are located in the same column of M.

Two parameters pertain to the same row or to the same column of M if and only if they do not pertain to

the same permutations.

Step 2. Prove that if graph G is empty then l = |Y2|.

If G is empty, the only non-zero parameters of P̄ included into M are the on-diagonal elements of A,

which are normalized to be strictly positive. There are |Y2| such parameters in M, and all of them are

located in different columns and different rows, which gives a permutation of length |Y2|.

In example (16), matrix M associated with the empty graph is:

Mempty =

(
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

)

and the length of the lengthiest unconstrained partial permutation is 2, which equals |Y2|.

Step 3. Prove that l ≥ N + |Y2|.
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Start with the empty graph spanning Y1 ∪ Y2 ∪ X1, which gives the permutation of length |Y2|, as it

was described in Step 2. Add independent paths from G into this graph one-by-one. When a new path

xj0xj1 . . . xjs is added to the graph, modify the permutation in the following manner:

(1) Add element pj1j0 from matrix P̄ to the permutation. Since xj0 ∈ X1 and xj1 ∈ Y1 ∪Y2, parameter

pj1j0 is in M.

(2) For k = 1, 2, . . . , s−1, remove pjkjk , and add pjkjk+1
. Since xjk ∈ Y2 and xjk+1

∈ Y1∪Y2, parameters

pjkjk and pjkjk+1
are in M. Since the new path is independent of the previously added paths, pjkjk+1

is located in a different row and in a different column than the permutations associated with the pre-

viously added paths, so it was included into the permutation. Each parameter pj0j1 , pj1j2 , . . . , pjs−1js

and the parameters kept from the previous paths pertain to the same permutation by the result

demonstrated in Step 1.

Therefore, adding a new independent path increases the number of parameters included into the permutation

by 1. When other parameters, which are not associated with the considered independent paths, are added

to matrix M, the length of the permutation does not decrease, so l ≥ N + |Y2|.

In example (16), adding path z3 → y4 → y3 → y2 gives:(
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

)
⇒

(
0 0 0 0 0
1 0 0 0 0
0 1 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)
⇒

(
0 0 0 0 0
1 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)
⇒

( a23 0 0 0 0
0 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)

and adding z4 → y5 produces: ( a23 0 0 0 0
0 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 0
0 0 0 0 0

)
⇒

( a23 0 0 0 0
0 a34 0 0 0
0 0 0 −b43 0
0 0 0 0 −b54
0 0 0 0 0

)

which gives a permutation of length 4.

Step 4. Prove that N ≥ l − |Y2|

Consider a permutation of length l. Since all parameters associated with one permutation are located in

different columns of matrix P̄, at least l − |Y2| parameters must be located in the columns associated with

the indices of X1. Let me prove that each such parameters guarantees the existence of one path from X1 to

Y1, and from Step 1 I know that all these paths must be independent.

Consider one such parameter, say pj1j0 , where xj0 ∈ X1. If xj1 ∈ Y1, then the path is found. Assume

that xj1 6∈ Y1, so xj1 ∈ Y2. Since pj1j0 have been included into the permutation, parameter pj1j1 , which

is normalized to be positive, cannot be included into this permutation, because it is in the sam row as

pj1j0 . Therefore, column j1 either is not included into permutation, or there exists parameter pj2j1 , which is
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included. In the first case there must be at least one more parameter included into the permutation from the

columns associated with the indices of X1, because otherwise the total length of the permutation would be

less that l, so consider that parameter instead of pj1j0 . In the second case, see where the edge associated with

pj2j1 leads to. If xj2 ∈ Y1, then a path have been found. If xj2 ∈ Y2, keep going through the permutation

until Y1 is reached or this is determined that there exists another parameter in this permutation in a column

associated with X1.

Therefore, there is at least l − |Y2| independent paths starting with a node in X1 and reaching nodes in

Y1. Because adding new edges does not decrease the number of the existing independent paths, N ≥ l−|Y2|

From Steps 3 and Step 4 I conclude that l = N + |Y2| �

A.2. Review of Rank Condition. Because of the normality assumption, f(Y |Z) can be uniquely specified

by matrices Λ and Ω, which are defined by:

E(Y |Z) = A−1B · Z ≡ Λ · Z(18a)

Var(Y − E(Y |Z)) =
(
ATΣ−1A

)−1 ≡ Ω(18b)

Knowing matrices Λ and Ω, however, does not suffice for estimation of parameters A, B, and Σ of the

structural model (8) unless n = 1. The reason is that there exist many different structural models ob-

servationally equivalent to model (8), and all observationally equivalent models by definition produce the

same values of Λ and Ω. Indeed, two models with different parameter values (A,B,Σ) and (Ã, B̃, Σ̃)

are observationally equivalent if and only if there exists nonsingular n × n matrix D such that Ã = DA,

B̃ = DB, and Σ̃ = DΣDT , which result can be verified directly using (18). To estimate the structural

model, therefore, additional restrictions need to be imposed on the matrices of parameters, which are known

as the identification constraints.

The identification constraints on row i of parameters P̄
n×(n+m)

=

(
A

n×n
−B
n×m

)
are written as:

(19) eTi P̄Ψi = 0

where ei is the ith row of the identity matrix, and Ψi is the matrix summarizing the constraints imposed

on row i of P̄.

Consider example (5). Matrix P̄ for this model is given by:

P̄ =

(
1 0 0 −b11 0
−a21 1 0 0 −b22
−a31 −a32 1 0 0

)
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The constraints on parameters are summarized by:

Ψ1 =

(
0 0 0
1 0 0
0 1 0
0 0 0
0 0 1

)
Ψ2 =

(
0 0
0 0
1 0
0 1
0 0

)
Ψ3 =

(
0 0
0 0
0 0
1 0
0 1

)

The identification of a given parameter is usually verified in the literature using the rank condition. The

rank condition says that the parameters in row i of matrix P̄ are identified if and only if rank
(
P̄Ψi

)
= n−1,

see, for example, Greene (2012). In the considered example (5), all parameters are identified in almost all

parameter points, because in almost all parameter points I have:

rank
(
P̄Ψ1

)
= rank

(
0 0 0
1 0 −b22
−a32 1 0

)
= 2; rank

(
P̄Ψ2

)
= rank

(
0 −b11
0 0
1 0

)
= 2; rank

(
P̄Ψ3

)
= rank

(−b11 0
0 −b22
0 0

)
= 2.

A.3. Proof of Proposition 1. Let Pi be the set of parents of yi, and P̄i = Pc
i \ yi, where Pc

i is the

complement of Pi in X , and “\” is the set difference operator. Let Y−i = Y \ yi.

Proof of Proposition 1. Consider matrix Mi obtained from P̄Ψi by deleting the ith row. Since each element

in the ith row of P̄Ψi is constrained to zero by definition of Ψi, I have: rank (Mi) = rank
(
P̄Ψi

)
.

By definition of Ψi, each column of P̄Ψi, as well as each column of Mi, has the index of a variable from

P̄i, and each node from P̄i has the index of a column of Mi. Therefore, using notation from Lemma 1, I

can write: Y2 ∪ X1 = P̄i. Each row of Mi has the index of an endogenous variable, and each endogenous

variable except yi has the index of a column of Mi, so I can use: Y1 ∪Y2 = Y−i. This gives: Y1 = Y−i ∩Pi,

Y2 = Y−i ∩ P̄i, and X1 = Z ∩ P̄i.

Let me prove the necessity of the graphical rank condition. If yi is identified then the rank condition is

satisfied, so rank (Mi) = n− 1, and there exists n− 1 independent columns in Mi; consider any set of n− 1

independent columns. The determinant of the matrix obtained from the independent columns of Mi must

be not zero, therefore, in Leibniz formula for determinant of Mi, there exists at least one unconstrained

permutation of length n − 1. Then, from Lemma 1, there exists n − 1 − |Y2| = |Y1| independent paths

starting in X1 and reaching Pi. Therefore, for each yj ∈ Y−i ∩Pi there exists an independent path starting

in Z∩P̄i and reaching yj . Proposition 1 also says that for each node zj ∈ Pi∩Z there exists an independent

path starting in Z and reaching zj ; however, the latter condition is always satisfied.

Now let me prove the sufficiency. If for each parent of yi there exists and independent identifying path,

then for each yj ∈ Y1 there exists an independent path starting with a node in X1 and reaching yj . By Lemma

1, there exists a partial permutation of length (n− 1) in Mi such that each parameter of this permutation

is not constrained to zero. I take the columns of Mi associated with this permutation, and calculate the

determinant of the obtained square matrix. Since the determinant can be calculated using Leibniz formula
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as a sum over all permutations, and since one permutation is not constrained to zero, the determinant is zero

only if this non-zero permutation is exactly offset by other non-zero permutations, which does not happen

in almost all parameter points. Therefore, in almost all parameter points rank (Mi) = (n− 1), so the rank

condition is satisfied. �

Appendix B. Proof of Proposition 2

B.1. Review of Rubio-Ramı́rez et al. (2010) condition for identification. Unlike the literature on

simultaneous equations models, the literature on structural vector autoregression models usually assumes

that the structural shocks are independent, so matrix Σ is diagonal. In the Gaussian case, two SVAR models

are said to be observationally equivalent if they produce the same values of Λ and Ω defined by 18. This

is well-known that two SVAR models defined by parameter points (A,B) and (Ã, B̃) are observationally

equivalent if and only if there exists rotation matrix R such that Ã = RA and B̃ = RB, where rotation

matrix R by definition must satisfy RTR = I. Since the rotation matrix has n(n−1)/2 degrees of freedom, a

necessary condition for identification formulated by Rothenberg (1971) requires at least n(n−1)/2 constraints

imposed on matrix P̄ = (A −B) for full identification.

Rubio-Ramı́rez et al. (2010) propose a sufficient condition for identification, which is applicable to a much

larger class of identification constraints than I consider in this paper. However, I concise the analysis to the

case, where the identification constraints are formulated as (19). To verify the identification of parameters

located in the ith row of P̄, calculate the rank of matrices M1,M2, . . . ,Mi composed in the following way:

(20) Mj =


P̄Ψj


[

Ij×j

]
[
0(n−j)×j

]


The rank of matrices Mj for j = 1, 2, . . . , i may depend on the order of variables in vector Y . Rubio-Ramı́rez

et al. (2010) prove that if there exists such order that for j = 1, 2, . . . , i the rank of Mj is n, then the ith

row of P̄ is globally identified in almost all parameter points.

In example (6), to verify the identification of parameters under the assumption of shocks independence,

reorder variables in the reverse order, and calculate the rank of the following matrices:
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(21) M1 =


0 0 1

0 −b22 0

−b11 −b12 0

 M2 =


0 1 0

0 0 1

−b11 0 0

 M3 =


1 0 0

0 1 0

0 0 1


Matrices M1, M2, and M3 have rank 3 in almost all parameter points, therefore, this model is fully identified

in almost all parameter points.

Theory of partial identification, reviewed in Christiano et al. (1999), proposes another sufficient condition

for identification. If all variables in Y can be divided into three groups, such that the first group has the

only variable yi, the second group includes the variables, which influence yi but not influenced by yi, and

the third group includes the variables influenced by yi, but which do not influence yi, then yi is identified. I

combine the sufficient condition of Rubio-Ramı́rez et al. (2010) with the theory of partial identification, and

in this way I can prove partial identification of a new class of models. Consider, for example, the following

identification restrictions:

(22) A =



a11 a12 0 0

a21 a22 0 0

0 a32 a33 a34

0 0 a43 a44


B =




4×0

The theory of partial identification does not prove identification of any parameter in this model, because

each variable of Y pertain to one of causal cycles. Rubio-Ramı́rez et al. (2010) condition for identification

is not satisfied for any parameters, because whichever the order of variables in Y , rank (M1) < 4. However,

I can use Proposition 2 to show that a combination of these approaches suffices to prove that the third and

forth lines of A in (22) are identified.

B.2. Proof of Proposition 2. Use the notation that was introduced in Appendix A, and add the following

one. Let Φ ⊂ Y be the set of nodes, which have been identified, and Φc be the complement of Φ in Y, so

Φc = Y \ Φ, where “\” is the set difference operator. Let Di be the set of descendants of yi, Dc
i = Y \ Di,

and D̄i = Dc
i \ yi. By definition in Proposition 2, a path in the causal diagram is identifying path for parent

yj ∈ Pi of node yi if it starts with a node in Z ∪ Φ ∪ D̄i and reaches yj . Proposition 2 says that if for

each node from Pi there exists an independent identifying path, node yi is globally identified in almost all

parameter points.



30

Proof of proposition 2. Since the order of variables is arbitrary, reorder the variables in such way that the

variables from D̄i have indices 1, 2, . . . , n1, where n1 =
∣∣D̄i

∣∣. Divide A into four matrices in a similar manner:

A =

 A11
n1×n1

A12

A21 A22


Observe that matrix A12 must be zero, because in the opposite case there would exist a path from a

descendant of yi to a non-descendant, but then the latter vertex would also be descendant of yi, which

produces a contradiction.

Apply the argumentation from the literature on partial identification, reviewed, for example, in Christiano

et al. (1999), which proves that if block A12 is constrained to 0, then two models defined by parameter

points (A,B) and
(
Ã, B̃

)
satisfying this restriction are observationally equivalent if and only if there exists

rotation matrix R, such that Ã = RA, B̃ = RB, and R has the following block structure:

(23) R =

 R11
n1×n1

0

0 R22


Now use the approach developed in Rubio-Ramı́rez et al. (2010). Reorder the variables in Y in such way

that the variables with indices 1, 2, . . . , n1 be the non-descendants of yi, variables with indices n1 + 1, n1 +

2, . . . , i− 1 be the variables associated with Φ ∩ Di, yi be the node which identification is being examined,

and variables with indices i+ 1, i+ 2, . . . , n be the variables associated with Φ̄ ∩ Di.

Consider matrix M̂i obtained from PΨi by deleting rows 1, 2, . . . , i, and prove that if yi is not identified

then the row rank of M̂i is not full, in which case the rank of Mi defined by (20) is also not full. Indeed, if

yi is not identified then there must exist rotation matrix R, having the following properties. First, because

of its special structure given by (23), and because nodes yn1+1, yn1+2, . . . , yi−1 are identified, R has the

following structure:

(24) R =

 I
(i−1)×(i−1)

0

0 R33
(n−i)×(n−i)


Second, since yi is not identified, at least one non-diagonal element in the first row of R33 must be different

from zero. Let vTi be the vector obtained from the first row of R33 by removing the first element, so I have

vi 6= 0. Finally, since the two models must satisfy the identification constraints, I have eiPΨi = 0 and
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eiRPΨi = 0, so ei (R− I) PΨi = 0. Taking into account the properties of R, I get vTi M̂i = 0, so the row

rank of M̂i is not full. This proves that if the row rank of M̂i is full then node yi is identified.

The final step is to apply Lemma 1. By construction of M̂i, Y2 ∪ X1 = P̄i, and Y1 ∪ Y2 = Φc ∩ Di.

Therefore, Y1 = Φc ∩ Di ∩ Pi, Y2 = Φc ∩ Di ∩ P̄i, and X1 = P̄i ∩
(
Φ ∪ D̄i ∪ Z

)
. Lemma 1 proves that if

for each yj ∈ Y1 there exists an independent path starting in X1 and reaching yj , then the row rank of M̂i

is full in almost all parameter points, so yi is identified in almost all parameter points. Proposition 2 also

requires an independent identifying path for each variable in Pi∩
(
Φ ∪ D̄i ∪ Z

)
, but this condition is always

satisfied.

�

Appendix C. Proof of Proposition 4

Proof of Proposition 4. Since the order of variables is arbitrary, assume that i = 1, so the first row in

P̄Ψ1 is constrained to zero. In this appendix I prove the sufficiency of the reduced form rank condition

for identification. That is, I assume that the rank condition is not satisfied, and prove that in this case

rank (Π (P1|Z1)) < |P1|. To prove the necessity of the reduced form rank condition, I need to assume that

rank (Π (P1|Z1)) < |P1|, and make all steps in the reverse order to show that the full form rank condition

is not satisfied.

If the rank condition is not satisfied, there exists vector V =

(
0 v2 v3 . . . vn

)T

6= 0 such that

V TPΨi = 0T . Rewrite (8) in terms of expectations Y E = E(Y |Z), and multiply it from the left by V T :

(25) V TAY E = V TBZ

Make the following observations about (25). First, the parameters from the first rows of matrices A and

B are not present in this equation, because v1 = 0. Second, V T P̄ cannot be proportional to the first line

of P̄, because otherwise the first line of P could be expressed as a linear combination of the other lines, in

which case matrix A would be singular, but I have assumed that this is not true. Third, for the same reason,

V TA is not zero. Finally, by construction of V , all columns in V TA and V TB associated with variables in

P̄i are zero, so variable from P̄i are ignored in (25). Therefore, I can rewrite (25) in the following form:

(26) V T ÃỸ E = V T B̃Z̃,
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where matrix Ã is obtained by deleting the columns associated with the indices of nodes P̄1∩Y from matrix

A, matrix B̃ is obtained from B by deleting the columns associated with P̄1 ∩ Z, finally, Ỹ E and Z̃ are

obtained from Y E and Z by removing the variables associated with nodes in P̄1.

Now I have two linear combinations of Ỹ E and Z̃, which are zero in the equilibrium: the first linear

combination is given by the first line in (8), and the second is given by (26). Both this combination are not

zero and they are linearly independent, because, as I discuss above, matrix A would be singular. Define

these combinations as:

ΛT
1

Ỹ E

Z̃

 = 0(27a)

ΛT
2

Ỹ E

Z̃

 = 0(27b)

where Λ1 is obtained from the first line of (8), and Λ2 is just another way to write(26); as I discuss above,

Λ1 and Λ2 a linearly independent.

Consider matrix Π̂ defined by:

(28) E


Ỹ E

Z̃


∣∣∣∣∣∣∣Z
 = Π̂Z

By this definition, matrix Π(Pi|Zi) from Proposition 4 can be obtained by deleting the first row from Π̂.

For j = 1, 2 I have ΛT
j Π̂ = 0. Since Λ1 and Λ2 are linearly independent,

rank (Π(Pi|Zi)) ≤ rank
(
Π̂
)
≤ nrow

(
Π̂
)
− 2 = nrow (Π(Pi|Zi))− 1

So the row rank of Π(Pi|Zi) is not full. �
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