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1 Dissertation topic

1.1 Relevance – the LHCb experiment and its role in study-
ing the Universe

The theory of strong and electroweak interactions, the so-called Standard Model
(SM) of particle physics, has achieved outstanding successes. Yet there are
unexplained phenomena, such as dark matter and the mass of the neutrinos;
and gaps in theory, e.g. the lack of explanation for the predominance of matter
over antimatter (CP violation). This incompleteness suggests that the SM is
only an effective theory at the energies explored so far and that a more complete
theory should exist.

When looking for more complete theories, the physics beyond the Standard
Model, one of the best places to start is where existing theory says an event is
not likely to happen: any deviations will be large compared to what we expect.
For example, on the one hand, the branching fractions BR(Bd,s → µ+µ−) are
tiny in the SM and can be predicted with high accuracy. On the other hand,
a large class of theories that extend the Standard Model, like supersymmetry,
allows significant modifications to these branching fractions and therefore an
observation of any significant deviation from the SM prediction would indicate
a discovery of new effects.

These decays have been extensively studied, most recently at the LHC ex-
periments: LHCb [6, 1], CMS [16] and ATLAS [17]. There is also the combined
analysis of the two results from the joint efforts of LHCb and CMS collabora-
tions [23]. Thus far the decay Bs → µ+µ− has been observed. For branching
fraction of Bd → µ+µ− only upper limits have been set.

Finding and studying rare decays presents many practical challenges. The
rejection of background while preserving signal is of crucial importance. It is
fundamental to develop selection criteria and muon identification to enable the
discovery of Bd → µ+µ−, and to place even more stringent limits on supersym-
metry and other new physics models.

Another way to look for new physics is the study of fundamental properties
within the SM. One of the more appealing currently is the lepton universality
which requires equality of couplings between the gauge bosons and the three
families of leptons. Hints of lepton non-universal effects have been reported in
B+ → K+e+e− and B+ → K+µ+µ− [4, 3] decays. But there is no defini-
tive observation of a deviation yet. A large class of models that extend the
SM contains additional interactions involving enhanced couplings to the third-
generation that would violate the lepton universality principle [2]. Semileptonic
decays of b hadrons to third-generation leptons provide a sensitive probe for
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such effects. In particular, the presence of additional charged Higgs bosons,
which are often required in these models, can have a significant effect on the
rate of the semitauonic decays of b-quark hadron b → cτ+ντ [12].

The LHCb experiment is one of the world’s premier b-physics experiments.
It is designed to exploit the high pp → cc̄ and pp → bb̄ cross-sections at the LHC
in order to perform precision measurements of CP violation and rare decays.

The majority of physics analyses using data from the LHCb detector [9]
rely on particle identification variables to separate charged tracks of different
species: pions, kaons, protons, electrons, and muons. LHCb has three subdetec-
tors that are used for particle identification: Ring Imaging Cherenkov (RICH)
detectors, calorimeter (CALO), and muon identification system (MUON). Par-
ticle identification variables are used extensively to increase signal purity, reduce
the processing time required to reconstruct high-multiplicity signal decays, and
allow selections to reduce biases on quantities of physical interest, such as decay
time.

Simulated data are needed at every stage of data processing for algorithm de-
velopment and performance evaluation. To minimise the statistical uncertainty,
the number of simulated events must be greater or equal to the number of events
in real data. Once the LHCb experiment restarts in 2021, the luminosity will
be increased by a factor of five. There is a pressing need for correspondingly
faster simulation to be able to produce the required amount of the simulated
data under the available computing budget.

Data-driven methods for measuring the performance of particle identifica-
tion are needed, as the usage of simulated data has several serious shortcomings.
First, particle identification variables are poorly reproduced by the simulation.
Second, for some purposes, it is prohibitively expensive in terms of computing
resources to accumulate a sufficiently large sample of simulated events. The
LHCb collaboration developed data-driven methods based on so-called calibra-
tion samples. Calibration samples consist of charged tracks of different particle
species that have been selected without the use of particle identification infor-
mation about the RICH, CALO or MUON systems response to those tracks. In
addition to being used in physics analyses, these samples can be used to monitor
temporal variations in performance and to study future improvements in recon-
struction algorithms [26]. Calibration samples are contaminated by background,
i. e. they contain not only the particles of the desired type. In order to use
those samples for algorithms development and evaluation, the contamination
must be taken into account.

The role of the particle identification in achieving the physics goals of the
upgraded experiment will remain critical. Furthermore, the calorimeter and
muon system will continue to be essential in triggering because of their input
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to the low-level trigger, which has the most stringent timing requirements [25].
All particle identification systems will contribute to the decision of the software
trigger.

The higher collision energy available at the LHC makes that the underlying
event of collisions from Run 2 is more complicated than those from Run 1. This
effect has a severe impact on particle identification reducing the probability
of correct particle identification. In order to overcome this complication, new
identification techniques are being developed, also to be applied in the future
upgrade scenario, where the number of interaction vertices will increase by a
factor 5. These new techniques need to be executed already at the trigger level
in order not to compromise the online/offline alignment achieved for Run 2. The
muon identification is executed upfront on the trigger chain. Therefore, what is
needed at the end is a single fast, high-performance algorithm.

1.2 The Study Objectives

The top-level goal of the dissertation is to improve the quality of event recon-
struction in the LHCb experiment – the accuracy of the match between the real
physical process that occurred in the detector and our results of reconstructing
it from the detector readout. Reconstruction is handled by a sophisticated sys-
tem of data processing algorithms. My contribution is concentrated around the
following objectives:

Muon ID The objective is to develop an algorithm to distinguish muons from
the other charged particles using only information from the muon subdetector.
It must have better quality than state-of-the-art approaches. The algorithm
must be fast enough to be used for online data processing. The performance
of the algorithm on real data (calibration samples) needs to be experimentally
evaluated.

Machine learning on background-contaminated data The objective is
to develop a universal and theoretically-proven way to train machine learning
algorithms on data contaminated with background. In machine learning terms,
this is a particular model of label noise in a binary classification problem. Each
label might be flipped from the true value. The flipping is random and occurs
independently for each example. For each example, we know the probability
that its label has been flipped, the probabilities for different examples are not
necessarily equal.

Global PID The objective is to develop an algorithm that combines all avail-
able information about a particle candidate in the detector into a single rule
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about its type and achieves better quality than the competing approaches.

Fast simulation The objective is to develop a method for fully-parametric
simulation of Cherenkov detectors, which must be at least an order of magnitude
faster than ab initio simulation while providing good precision. It also needs to
be applicable for different detector hardware model and data taking conditions
with minimal manual adaptations.

2 Key results and conclusions

Muon identification. I developed a novel method based on oblivious deci-
sion trees. When evaluated on data after preliminary filtration and setting the
decision threshold to maintain 90% signal efficiency (true positive rate), it re-
duces background passthrough (false positive rate) from 14% to 10%, compared
to the competing physics-based χ2

CORR approach in the low-momentum region.
The algorithm is implemented in the LHCb software stack.

Machine learning on background-contaminated data. My contribution
is a novel and formally proven way to use any machine learning methods on
such data. It is evaluated on two datasets from high energy physics and exhibits
stable training and greater or equal performance compared to alternatives.

Global particle identification. I developed a novel method based on gra-
dient boosting decision trees. It allowed reducing error, as measured by 1-vs-all
1−AUC (area over the ROC curve) score, by 18%-54% compared to the base-
line solution (a shallow fully-connected neural network) on simulated data. The
method is implemented in the LHCb software stack.

Fast simulation. I developed a method based on generative adversarial net-
work (GAN) for fully-parametric simulation. It is evaluated on two datasets
corresponding to two different Cherenkov detectors: simulated BaBar DIRC
data and real LHCb RICH data. The same method works in both of the cases
with minimal tuning and provides good precision. The method is 1 – 2 orders of
magnitude faster than ab initio simulation even when running on a single CPU
without batching. Aside from speed and quality, the novel characteristics of the
method, compared to the previous approaches to fully-parametric simulation,
are the following. The method is easily tunable in case of detector or data taking
condition modifications, in contrast to explicit expert-written parametrisations.
The final point of novelty is the usage of GANs to precisely model a relatively
low-dimensional distribution, in contrast to the vast majority of published GAN
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applications being about approximate modelling of high-dimensional objects,
such as images.

3 Publications and approbation of research

3.1 First-tier publications

1. Denis Derkach, Nikita Kazeev, Fedor Ratnikov, Andrey Ustyuzhanin, and
Alexandra Volokhova. “Cherenkov detectors fast simulation using neural
networks”. In: Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment
952 (2020), p. 161804. issn: 0168-9002. doi: https://doi.org/10.
1016/j.nima.2019.01.031, I am the main author, Scopus Q1

2. M. Borisyak and N. Kazeev. “Machine Learning on data with sPlot back-
ground subtraction”. In: Journal of Instrumentation 14.08 (Aug. 2019),
P08020–P08020. doi: 10.1088/1748-0221/14/08/p08020, I am the
main author, Scopus Q1

3.2 Second-tier publications

1. A Maevskiy, D Derkach, N Kazeev, A Ustyuzhanin, M Artemev, and L
Anderlini and. “Fast Data-Driven Simulation of Cherenkov Detectors Us-
ing Generative Adversarial Networks”. In: Journal of Physics: Conference
Series 1525 (Apr. 2020), p. 012097. doi: 10.1088/1742-6596/1525/1/
012097, Scopus Q3

2. M Borisyak and N Kazeev. “Machine Learning on sWeighted data”. In:
Journal of Physics: Conference Series 1525 (Apr. 2020), p. 012088. doi:
10.1088/1742-6596/1525/1/012088, I am the main author, Scopus Q3

3. Denis Derkach, Mikhail Hushchyn, Tatiana Likhomanenko, Alex Rogozh-
nikov, Nikita Kazeev, Victoria Chekalina, Radoslav Neychev, Stanislav
Kirillov, and Fedor Ratnikov and. “Machine-Learning-based global particle-
identification algorithms at the LHCb experiment”. In: Journal of Physics:
Conference Series 1085 (Sept. 2018), p. 042038. doi: 10.1088/1742-
6596/1085/4/042038, Scopus Q3

3.3 Conferences

1. Data Driven Simulation of Cherenkov Detectors using Generative Adver-
sarial Network, Second Workshop on Machine Learning and the Physical
Sciences (NeurIPS 2019), Vancouver, Canada, 8 Dec 2019 – 14 Dec 2019
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2. Training machine learning algorithms on background-contaminated data,
SecondWorkshop on Machine Learning and the Physical Sciences (NeurIPS
2019), Vancouver, Canada, 8 Dec 2019 – 14 Dec 2019

3. Machine Learning on sWeighted data, 19-th International Workshop on
Advanced Computing and Analysis Techniques in Physics Research, 10 –
15 March 2019, Saas-Fee, Switzerland

4. Machine Learning for Muon Identification at LHCb, 9-th International
Workshop on Advanced Computing and Analysis Techniques in Physics
Research, 10 – 15 March 2019, Saas-Fee, Switzerland

5. Machine learning at LHCb, IV international conference on particle physics
and astrophysics, 22 – 26 October 2018, Moscow, Russia

6. Cherenkov Detectors Fast Simulations Using Neural Networks, 10-th Inter-
national Workshop on Ring Imaging Cherenkov Detectors (RICH 2018),
Moscow, Russia from July 29 – August 4, 2018

4 Contents

The thesis consists of 9 chapters. Chapter 1 is the introduction equivalent to
section 1 in this resume. Chapter 2 contains the descriptions of the machine
learning methods used in the dissertation. Chapter 3 gives an overview of pub-
lished applications of machine learning methods in high-energy physics. Chapter
4 describes the hardware and data processing of the LHCb experiment. Chap-
ters 5 to 8 contain my contributions. Chapter 9 is the conclusion that contains
the information from section 2 of the resume.

4.1 Introductory materials

Chapter 2 begins with a historical outlook of the AI field. Next, it formally
defines different tasks addressed by machine learning. After that, it contains
the descriptions of various metrics used to assess the quality of machine learn-
ing models. The next section discusses the limitations of machine learning –
the so-called no free lunch theorem. It states that the performance of all ma-
chine learning algorithms is the same when averaged over all possible datasets.
Machine learning works in practice in the cases where the algorithm incorpo-
rates, even if implicitly, some assumption about the data, usually some form of
smoothness. The next section formally defines fully-connected neural networks
and discusses their practical implementation. Next, there is an introduction to
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gradient boosting decision trees. Afterwards, we introduce generative adversar-
ial networks (GANs).

Chapter 3 begins with an overview of the main aspects of using machine
learning in high-energy physics. The use of machine learning is enabled by the
availability of large amounts of training data, usually, but not always simulated.
Its results are validated using several described techniques. Next in the chap-
ter are the descriptions of two related machine learning algorithms developed
specifically for high-energy physics use cases. They provide a way to train a
model who’s output is independent of the defined nuisance parameters. The
next section looks at three established areas of machine learning applications:
event selection, event reconstruction and monitoring.

Chapter 4 begins with the description of the Large Hadron Collider. Then it
continues to the LHCb detector hardware with a focus on the particle identifica-
tion subsystems. The last section describes the LHCb data processing: real-time
online trigger, more precise offline selection, and the ongoing implementation of
the first level of the online trigger in GPU.

4.2 My contributions

4.2.1 Muon Identification – Chapter 5

Muons are present in the final states of many decays sensitive to new physics
that are studied by the LHCb experiment [11, 6, 5]. Efficient and precise muon
identification is of paramount importance for the LHCb.

The schematic view of the LHCb Muon subdetector is presented in figure
1. It consists of 5 sensitive planes (M1-M5) placed perpendicular to the beam
axis. The muon detector is placed downstream of the rest of the detector,
except for M1, which is in front of the calorimeters. Stations M2 to M5 are
placed downstream the calorimeters and are interleaved with 80-cm thick iron
absorbers.

The physical principle behind muon identification is the high penetration
power of muons. If a charged particle leaves hits in the muon chambers, it is
highly likely a muon. A muon identification algorithm is given two inputs:

• The reconstructed particle track’s extrapolation into the muon chambers

• The coordinates and technical information about the hits in the muon
chambers

There are two main sources of misidentification. The first is combinatorial –
when unrelated hits align by chance with the track. The second is decays in
flight for pions and kaons. Formally, this is a binary classification problem,
where we strive to achieve the best quality on the given datasets.
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Figure 1: Side (a) and front (b) views of the LHCb Muon system. Reproduced
from [8]

.

The baseline algorithm is based on a simple probabilistic model. The decision
variable is defined as follows:

χ2
CORR = δxTV −1

x δx + δyTV −1
y δy, (1)

where δx and δy are the vectors with distances, in the x and y directions,
between the track extrapolation points and the closest hit position in the M2-
M5 stations. Vx and Vy are the covariance matrices, defined as a sum of two
parts: V RES and V MS. V RES is a diagonal matrix, computed separately for
x and y direction, that takes into account the spatial resolution of the muon
stations:

V RES
jj =

d2j
12

(2)

V RES
jk = 0 for j 6= k, (3)

where dj is the x or y pad size corresponding to the muon hit. V MS accounts
for the uncertainty introduced by multiple scattering (MS):

V MS
jk =

∑
zi<zj ,zk

(zj − zi)(zk − zi)σ
2
MS,i. (4)

σ2
MS,i is estimated as [28, 10]:

σ2
MS,i =

13.6MeV
βcp

q

√
zi
X0

[1 + 0.038 ln(zi/X0)] ≈
13.6MeV

βcp
q

√
zi
X0

, (5)

where p is the particle’s momentum, βc the velocity, and q the charge; zi/X0

is the thickness of the scattering medium in units of radiation length. The
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position along the z−axis and the thickness of the considered scattering centres
are presented in the table 1.

MS contribution z position (m) zi/X0

ECAL+SPD+PS 12.8 28
HCAL 14.3 53

M23 filter 15.8 47.5
M34 filter 17.1 47.5
M45 filter 18.3 47.5

Table 1: Position and thickness in units of radiation length for the scattering
media contributing to the multiple scattering experienced by particles traversing
the muon system. Reproduced from [10].

The probability of a muon to reach a given muon station depends on its
momentum [24]. For a low-momentum particle, hits in the farthest stations are
likely to be combinatorial background. Therefore, for low-momentum particles
(p < 6 GeV/c), only M2 and M3 stations are used, while for particles with
p ≥ 6 GeV/c all stations are used. The 6 GeV/c threshold coincides with one
of the used in IsMuon, around 90% of muons with this momentum reach M5.

Next in the chapter is the analysis of several machine learning approaches
culminating in the algorithm that is proposed as a key contribution of the dis-
sertation. In consists of CatBoost trained on muon, pion and proton calibration
samples, using the background subtraction method proposed in chapter 6 of the
thesis. The following features are used:

• Information about the closest hits in each station: space residuals, hit
time, hit delta time, whether the hit is crossed

• χ2
CORR

• Track momentum and transverse momentum

Since muon identification is used for many different analyses in different
regions of the phase space, it is hard to put a single figure of merit. To compare
quality of different algorithms, we used a proxy method. We compared the
ROC curves in different momentum bins for true positive rate greater than
90%. The method proposed in the dissertation achieves the best quality among
the evaluated algorithms, as presented in figures 2 and 3.

The final section of the chapter describes an outreach activity – the Interna-
tional Data Analysis Olympiad, where this problem was offered for the online
part of the competition.
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Figure 2: Muon efficiency versus pion rejection after applying IsMuon selection
using 2016 calibration data that is weighted in momentum and nPVs. “χ2 2/4
closest hits” is described in the algorithm based on physics principles “Run II
Catboost” and “Run II TMVA” are the early machine learning solutions. “Dev
Catboost” are the best machine learning solutions. “Dev Catboost, with χ2”
uses χ2

CORR as a feature, “Dev Catboost, no χ2” does not.

4.3 Machine Learning on Data With sPlot Background
Subtraction – Chapter 6

Experimental data obtained in high energy physics experiments usually consists
of contributions from different processes. A large part of a typical data anal-
ysis consists of selecting the target decay from all collected data. A common
technique used as a part of this process is sideband subtraction. It requires a
signal-enriched and a signal-poor phase-space regions be identified (usually by
an invariant mass fit). A commonly used method is sPlot [29]. It assigns weights
(sWeights) to events, some of them negative. This does not present a problem if
the next analysis steps use simple single-dimensional tools, like histograms, but
is an obstacle for some multivariate machine learning methods. In this chapter,
we prose a mathematically rigorous way of training machine learning algorithms
on such data.

In machine learning terms, we are dealing with a particular model of label
noise coupled with prior knowledge. For each example, we know the probabil-
ity that its label has been flipped. The flipping probabilities are not constant
but are sampled from some distribution independently of the features’ distribu-
tion. As an example, consider the case where you have a dataset of with stars
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Figure 3: Muon efficiency versus proton rejection after applying IsMuon selec-
tion using 2016 calibration data that is weighted in momentum and nPVs. “χ2

2/4 closest hits” is described in the algorithm based on physics principles “Run
II Catboost” and “Run II TMVA” are the early machine learning solutions.
“Dev Catboost” are the best machine learning solutions. “Dev Catboost, with
χ2” uses χ2

CORR as a feature, “Dev Catboost, no χ2” does not. 2

labelled from telescope observations. The observations were taken in different
atmospheric conditions. For each observation the atmospheric conditions are
known; the probability of misclassifying a star is a known function of atmo-
spheric conditions.

The sPlot method works as follows. Take a dataset populated by events
from Ns sources. Assume that distribution of some variables is known for each
source, call these variables discriminative. Usually, the discriminative variable
is the reconstructed invariant mass, and the probability densities are estimated
by a maximum likelihood fit. sPlot reconstructs the distributions of the rest of
the variables (call them control), provided they are independent of the discrim-
inative variables for each event source.

Let pk(m) be probability density function of the discriminative variable m

of the k-th species, Nk be the number of events expected on the average for the
k-th species, N be the total number of events, me be the value of m for the e-th
event. Compute the covariance matrix of the signal and background probability
density functions V:

(
V−1

)
nj

=

N∑
e=1

pn(me)pj(me)(∑Ns

k=1 Nkpk(me)
)2 (6)
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The sWeight for the e-th event corresponding to the n-the species is obtained
using the following transformation:

sWeightn(me) =

∑Ns

j=1 Vnjpj(me)∑Ns

k=1 Nkpk(me)
(7)

The problem with using the sWeights directly as example weights is that
they remove the lower bound of an algorithm’s loss function – the more an
algorithm errors on an example with negative weight, the less is the value of the
loss.

My solution for the problem is to replace the classification problem with
example negative weights with a regression problem, where the model is asked
to predict said weights. Let m be the variable that was used to compute the
sWeights, x is the rest of variables. Let psignal(x) be the probability density
function of signal, pmix(x) be the probability function of the signal and back-
ground mixture from which the data were sampled. It is possible to weight the
dataset, so distribution of x will be that of the signal component with positive
weights equal to class probabilities W (x) =

psignal(x)
pmix(x)

. The data weighted with
the sWeights achieve the same distribution. Therefore the signal probability for
an example with features x will be the average of the sWeights over examples
with features x:

Em [w(m) | x] =
psignal(x)

pmix(x)
. (8)

Since the optimal output lies in [0, 1], one can easily avoid a priori incorrect
solutions by applying the sigmoid function to the model output. The resulting
loss function is the following:

L =
∑
i

(
wi −

efθ(xi)

1 + efθ(xi)

)2

, (9)

where wi is the sWeight and fθ(xi) is the model output. Therefore the loss
is called Constrained MSE. We have implemented this loss for the CatBoost
machine learning library [30] and the source code is available on GitHub.1

Next in the section is an alternative method developed by a coauthor. In-
stead of using the sPlot method, he directly applies the maximum likelihood
principle. The loss function is the following:

L(θ) = −
∑
i

log [fθ(xi)psignal(mi) + (1− fθ(xi))pbackground(mi)] , (10)

where fθ(xi) is the output of the model, psignal(mi) and pbackground(mi) are the
probability densities of the signal and background m distributions.

1https://github.com/kazeevn/catboost/tree/constrained_regression
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Finally, the proposed methods are evaluated on two datasets: UCI Higgs
and muon identification. In our experiments, CatBoost training converges for
both our methods and naive training on the sWeights; due to a large number
of regularisations embedded in the algorithm, it is able to avoid the problems
with unbounded loss. The quality is similar in all cases, with a slight advantage
of Constrained MSE on the muon identification. For a fully-connected neural
network, naive training on the sWeights diverges, our methods converge and
provide similar quality.

4.4 Global Charged Particle Identification – Chapter 7

The chapter begins with addressing the difficulty of formalising the quality of a
particle identification algorithm. The physical goal of the algorithm is to match
the reconstructed particle types with the real particle types in the detector.
The problem is that the value of any quality metric depends on the dataset over
which it is measured. Different plausible alternatives are discussed. The LHCb
collaboration uses a simulated dataset which includes a representative sample
of processes under study.

Global PID is the last step of particle identification; its goal is to combine
the responses of all the subdetectors into a single decision about the particle
class. The earliest and most straightforward approach is to compute the log-
likelihoods separately for each subdetector. This approach is far from ideal, as
it disregards potentially informative correlations between different features and
relies upon the log-likelihoods to be well-defined and computed using the same
priors.

The next logical step is to put all the available information into a machine
learning algorithm which is described in the following sections. We investigate
two state-of-the-art approaches: a deep neural network and gradient boosting
decision trees. The performance is evaluated on simulated and real data. Both
of the approaches outperform the baseline (a shallow neural network) and show
similar performance, with gradient boosting having a slight lead. The results
of an evaluation performed on simulated data presented in figure 4. Since two
very different methods perform similarly, we have likely achieved the limit of
performance for this stage, and further improvement must be thought either in
better subdetector-specific preprocessing (e. g. muon identification) or training
dataset composition.
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Figure 4: Performance of the models in terms of one-vs-rest ROC curves. Re-
produced from [22].

5 Fast Simulation of the Cherenkov Detector –
Chapter 8

The chapter begins with a description of the role of simulated data in high-
energy physics – it is used at every stage of experiments, from detector design
to reconstruction algorithms evaluation and final analysis.

Simulation in LHCb consists of three stages. First, the p-p collision and the
processes resulting from it are simulated. Second, the interaction between the
resulting particles and the detector hardware is simulated. Third, the simulated
readout is reconstructed with the same algorithms that are used for reconstruct-
ing the collected experimental data.

Simulation is computationally expensive. Given the budget constraints, the
LHCb collaboration won’t be able to produce the required amount of simulated
data after the experiment is restarted with 5x luminosity in 2021. Therefore,
faster simulation is needed. The core idea behind fast simulations is that the
detector is the same for different events and simulating it from scratch for each
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event is a waste of effort. A possible way to take advantage of this is the so-called
ReDecay method, where the background part is shared between the different
events. The issue with this method is that the resulting events are not indepen-
dent. This complicates the analysis. An alternative is parametrisation, where a
heuristic parametrisation replaces some part of ab initio computations. If this
includes the reconstruction step, such simulation is called fully-parametrised.

My contribution is a method for fully-parametrised simulation of Cherenkov
detectors with a generative adversarial network. It takes as its input the track
true particle type, kinematic parameters and a proxy for detector occupancy.
The model outputs the likelihoods for particle types. The model is evaluated
for two use Cherenkov detectors: BaBar DIRC detector and LHCb RICH.

DIRC training and evaluation are done on a dataset with two particles simu-
lated with FastDirc software [21]. The model inputs are the signal particle type
and the energies, pseudorapidities and the transverse coordinates of both parti-
cles in the event — 7 variables in total. Its outputs are the delta log-likelihoods
with pion hypothesis for the electron, kaon, muon, proton and “beyond thresh-
old” particle type hypotheses — 5 variables. We used the Cramer (energy)
GAN [13] for the sake of unbiased gradient estimates. The generator and dis-
criminator are fully connected neural networks with 10 layers, each containing
128 neurons with ReLu activation. We trained a separate model for each signal
particle type. Each model was trained using 1 million generated events. We
transformed each observable distribution into a Gaussian using quantile trans-
formation before passing them to the neural network. The speed improvement
with respect to the full simulation in GEANT 4 [7] is 8 · 104 times on a single
CPU core. The speed is also improved with respect to the FastDIRC genera-
tion, where a factor up to 80 can be achieved. The batch generation on GPU
produces up to 1 million track predictions per second.

The LHCb collaboration is developing an application for parametrised simu-
lation of the detector response called Lamarr. Our RICH simulation method has
been implemented as a part of the application. Lamarr architecture is described
in the corresponding section. The model for RICH simulation is the same as
for DIRC simulation; it is presented in figure 5. The model input parameters
are momentum, pseudorapidity and the number of reconstructed tracks in the
event. The model outputs are RichDLL* – the delta log-likelihoods between a
particle type hypothesis and the pion hypothesis. The model is trained on the
2016 calibration samples. On a single CPU core, the proposed model is at least
2 orders of magnitude faster than the full simulation with Geant4. We test the
quality on the same calibration channel that was used for training, and on a
different one. GAN shows a good approximation of the real data distributions
in the same channel. The results of one of the tests are presented in figure 6.
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The main source of systematic uncertainty in Lamarr will likely be the selection
of parametrisation and the training data.
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Figure 5: Architecture of the RICH GAN. First presented at [19].

21



50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

LHCb preliminary

kaon (real)
kaon (gen)
pion (real)
pion (gen)

50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025
LHCb preliminary

40 20 0 20 40
RichDLLk

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

LHCb preliminary

100 50 0 50 100
RichDLLk

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200
LHCb preliminary

100 50 0 50 100
RichDLLk

0.000

0.005

0.010

0.015

0.020

LHCb preliminary

50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

LHCb preliminary

100 50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
LHCb preliminary

50 0 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

0.030

LHCb preliminary

50 25 0 25 50
RichDLLk

0.000

0.005

0.010

0.015

0.020

0.025

0.030

LHCb preliminary

3.
16

e+
04

 <
= 

P 
<=

 2
.5

e+
05

1.
52

e+
04

 <
= 

P 
<=

 3
.1

6e
+0

4
3.

35
e+

03
 <

= 
P 

<=
 1

.5
2e

+0
4

1.91 <= ETA <= 2.84 2.84 <= ETA <= 3.39 3.39 <= ETA <= 4.88

Figure 6: Weighted real data and generated distributions of RichDLLk for kaon
and pion track candidates in bins of pseudorapidity (ETA) and momentum (P,
MeV) over the full phase-space. First published in [27].
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