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1 Introduction

Topic of the thesis

Over the last several years, multiple teams adopted machine learning to discover new

biological targets, propose molecular structures that can later become new drugs, predict

and optimize their properties [1, 2, 3, 4]. Recent works demonstrated potent molecules

generated using deep generative models: such molecules were tested in vitro and in vivo

[5, 6, 7, 8]. In this work, we study distribution learning, conditional generation, and

molecular property optimization problems and propose several novel approaches to solving

these problems.

In distribution learning problem, we aim to produce novel molecular structures from

the same distribution as the training set. Such an approach is useful for downstream tasks,

including unsupervised pre-training and virtual screening—ranking molecules according

to some quality function. In conditional generation problem, we generate molecules with

specific properties. Such an approach narrows down the chemical space and biases the

generative model towards desirable region. The aim of molecular property optimization

is to discover molecules with the highest possible score. For example, such a score may

be an activity predictor against a given target protein.

For each of the above mentioned problems, we propose novel machine learning mod-

els. In the first work [9], we demonstrate that node-level graph generative models fail on

distribution learning problem unlike string-based models. We propose a new graph gener-

ative model with a hierarchical generation strategy and significantly outperform existing

node-level graph generative models on distribution learning problem. We study condi-

tional generation problem in the second work [5] and apply adversarial autoencoders to

produce novel molecular structures with desirable properties. With a proposed model,

we were able to generate a molecular structure that later showed selective micromolar in

vitro activity against the selected target protein. In the third work, we analyze the molec-

ular property optimization task using Bayesian optimization combined with variational

autoencoders and propose to improve such a method with deterministic decoding [10].
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Relevance

Computational approaches have been widely adopted to predict molecular properties [11]

and to explore the chemical space with high throughput screening, combinatorial libraries,

and evolutionary algorithms [12, 13, 14, 15]. Unlike traditional drug discovery with hand

crafted molecules, generative models propose an automated approach where medicinal

chemist’s expertise is necessary only on final evaluation steps to confirm the quality of

newly discovered structures. Such an approach is unbiased to human preferences and

can take many explicit or implicit constraints into account. While a human expert can

create molecular structures with certain binding points and shape, our approaches can

also utilize highly accurate predictive models, conduct immediate novelty assessment and

patent purity. Such a powerful tool can propose initial potent hypotheses within a matter

of weeks and minimal human supervision [16].

We formulate drug discovery process as an optimization problem. Given an objective

function f(x) that scores a molecular structure x, we build a system that searches for the

best possible structure. An example function, f may be an activity prediction model or

a complex computational simulator. While building a relevant objective function is an

interesting and challenging task involving domain expertise, for the purpose of this work

we use standard toy functions to efficiently compare models in a unified environment. Real

objective functions such as the ones used in our recent papers [16, 6] analyze generated

structures’ activity, novelty, synthetic accessibility, and other carefully curated terms.

The first problem when solving an optimization problem is how to represent a molecu-

lar structure. Two common ways to represent a structure are graphs and strings. Graph

representation denotes atoms as nodes and bonds as edges. Alternatively, one can write

down the molecule’s atom symbols in depth first search traversal order with special tokens

indicating cyclic bonds and branching. Such representation is called simplified molecular

input-line entry system (SMILES) [17, 18]. There are other string representations that en-

code grammar rules using context-free grammar or reverse Polish notation to improve va-

lidity [19, 20]. String-based representations have an advantage that many previous works

on natural language processing can be used out of the box. For example, a character-based

neural language model can generate novel SMILES strings. It is also possible to incorpo-

rate grammar into the generative process [3]. Graph based models, on the contrary, are

less studied and it is a rapidly developing topic. Substructure-based representations such
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as junction tree graphs are also used for multiple problems [2]. Every representation can

be annotated with additional information such as 3D atom coordinates, molecular prop-

erties or fingerprints. Fingerprints are binary vectors capturing structural information.

For example, Morgan [21] fingerprints iterate over atoms and encode their neighborhood

into a fingerprint’s index. Such descriptors can be used to predict molecular properties

or to define similarity measure between molecules using Tanimoto coefficient—number of

bits that are on for both molecules divided by the number of bits that are on for at least

one molecule.

There are several approaches to optimize f(x)—using reinforcement learning, genetic

algorithms, or Bayesian optimization. It is possible to optimize molecular structures

directly using genetic algorithms or Bayesian optimization. In the latter case, graph

kernels or similar should be used to train a surrogate function [22]. Gómez-Bombarelli

et al. [1] train a variational autoencoder on molecular structures and optimize the objective

function using the variational autoencoder’s latent codes. The authors use Bayesian

optimization approach, but other optimization techniques have later been used to optimize

the objective function in the domain of latent codes.

Besides molecular property optimization, machine learning is used for distribution

learning. Given a set of molecular structures sampled from an unknown distribution,

distribution learning models learn the underlying distribution and produce new samples.

In [23], we proposed a dataset and a diverse set of metrics to compare generated sets

from different perspectives: uniqueness, validity, diversity, similarity to nearest neighbor,

and many others. We implemented multiple baseline models and compared them on

the basis of these metrics. Distribution learning models are useful for building virtual

screening libraries. Such models capture implicit rules from the training set and produce

new datasets that can be enumerated, stored and used for quick scoring and search. For

example, instead of optimizing a new function f(x), one can use a virtual library for

virtual screening to retrieve high scoring compounds. Such an approach saves time and

can quickly discover high scoring structures.

Over the last few years, we implemented several novel models and integrated them into

an automated drug discovery platform called Chemistry42. Chemistry42 supports both

ligand-based and structure-based drug design, producing high scoring structures within

a week. In my thesis, I describe some of the models developed during this time and

illustrate applications on standard datasets.
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The goal of this work is to develop new molecular generative models for conditional

generation, molecular property optimization, and distribution learning.

2 Key results and conclusions

Contributions. The main contributions of this work are three generative models and

their applications to drug discovery problem.

1. We analyzed node-level graph generative models and proposed a hierarchical genera-

tion procedure and a fragment-oriented atom ordering. We obtained state-of-the-art

results across node-level graph generative models for molecular property optimization

and distribution learning tasks.

2. The Entangled Conditional Adversarial Autoencoder extends the supervised adver-

sarial autoencoder and successfully handles multiple binary and continuous condi-

tions. We show that the proposed model can generate molecular structures for con-

ditions outside the original training range and generate structures with micromolar

activity.

3. For molecular property optimization, we studied Bayesian optimization on the la-

tent codes of variational autoencoders and proposed deterministic decoding to avoid

issues with standard stochastic decoding. We proposed the training approach based

on relaxed training objective and proved convergence to the original optimization

problem. We also proposed bounded support proposals to ensure that there exists a

set of encoder-decoder parameters providing lossless encoding-decoding.

Theoretical and practical significance. The proposed models pave the way for

further advancements in deep learning for drug discovery. These models can accelerate

discovery of new drugs and significantly reduce costs of initial hit finding, which is espe-

cially crucial during the time of a global pandemic. For conditional modeling, we proposed

a novel algorithm that was able to produce selective molecules with micromolar activity

against the selected protein. We also analyzed molecular property optimization problem

and proposed a new training approach for variational autoencoders with deterministic

decoding. Finally, we improved the quality of distribution learning models for node-level

graph generative models using hierarchical generation—we obtained 3.5-fold improvement

in the main distribution learning metric (Fréchet ChemNet Distance).
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Key aspects/ideas to be defended.

1. A hierarchical graph generative model for molecular generation and its application

to distribution learning and molecular property optimization problems

2. An entangled conditional adversarial autoencoder model for conditional molecular

generation

3. A method for training variational autoencoders with deterministic decoders and ap-

plication of this method for molecular property optimization

Personal contribution. In the second and third papers, the method was proposed

and implemented by the author, all experiments were conducted by the author, the text

has been written by an author; other authors supervised the research and helped with

domain expertise. In the first paper, the author designed the experiments, supervised the

research, and wrote the text.

Publications and probation of the work

First-tier publications

1. Daniil Polykovskiy, Alexander Zhebrak, Dmitry Vetrov, Yan Ivanenkov, Vladimir

Aladinskiy, Polina Mamoshina, Marine Bozdaganyan, Alexander Aliper, Alex Zha-

voronkov, and Artur Kadurin. Entangled Conditional Adversarial Autoencoder for

de Novo Drug Discovery. Molecular pharmaceutics, 15(10):4398–4405, 2018. Q1

journal, indexed by SCOPUS.

2. Daniil Polykovskiy and Dmitry Vetrov. Deterministic Decoding for Discrete Data

in Variational Autoencoders. In Proceedings of the Twenty Third International

Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of

Machine Learning Research, pages 3046–3056. Core A conference.

3. Maxim Kuznetsov and Daniil Polykovskiy. MolGrow: A graph normalizing flow

for hierarchical molecular generation. Association for the Advancement of Artificial

Intelligence Conference 2021. Core A* conference.

Reports at conferences

1. Neural information processing systems, Dec 2, 2018. Expo Tutorial. Topic: ”Gener-

ative models for drug discovery”.
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2. Neural information processing systems, Dec 2, 2018. Expo Workshop. Topic: ”Ma-

chine Learning for Drug discovery and Biomarker development”.

3. Undoing Aging, March 30, 2019. Topic: ”Deep Generative Approach for Transcrip-

tome Analysis of Human Aging”

4. International conference on machine learning, June 9, 2019. Expo Tutorial. Topic:

”Generative models for drug discovery”.

Volume and structure of the work. The thesis contains an introduction, contents

of publications and a conclusion. The full volume of the thesis is 67 pages.

3 Content of the work

3.1 MolGrow: A Graph Normalizing Flow for Hierarchical Molecular Gen-

eration

Recent works [24] demonstrated that graph representation is useful for molecular property

optimization, since graph is a more natural representation of a molecule. However, prior

works did not study distribution learning and molecular property optimization problems

simultaneously. Although pretrained as generative models, previous node-level graph

generative models perform significantly worse than simple string-based generative models.

In this section, we propose a new graph-based normalizing flow generative model for

molecular generation to narrow the performance gap between these domains.

Previous works on graph generation produced graphs either sequentially [25, 26], or

simultaneously in one-shot manner [27, 28]. We propose a new generation approach—

starting with a single node graph, we iteratively split each node into two and repeat this

procedure until we obtain a graph of a given size. We formulated a set of invertible trans-

formations for node splitting and merging, noise injection and separation. We also noticed

that standard breadth-first search ordering is prone to producing unwanted macrocycles

in the generated structures; hence, we proposed a new fragment-oriented atom ordering.

In such ordering, we first split a molecular structure into a set of meaningful fragments

and then align these fragments with node merging and splitting.

We represent a graph with node attribute matrix V ∈ RN×dv and edge attribute tensor

E ∈ RN×N×de , where dv and de are feature dimensions. For the input data, Vi defines

atom type and charge, Ei,j defines edge type. Since molecular graphs are non-oriented,
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Figure 1: MolGrow architecture. Left: Full architecture combines multiple levels to generate latent

codes zL, . . . , z0 from a graph (V,E) and vice versa. Middle: Each level separates noise, merges node

pairs, applies multiple blocks and linear transformations; Right: Each block applies three channel-wise

transformations and two RealNVP layers.

we preserve the symmetry constraint on all intermediate layers: Ei,j,k = Ej,i,k. The final

graph has N = 2L nodes, where L is a number of node-splitting layers in the model.

We use node merging and splitting operations to control the graph size. These opera-

tions are inverse of each other, and both operate by rearranging node and edge features.

Consider a graph (V k, Ek) with Nk nodes. Node merging operation joins nodes 2i and

2i+ 1 into a single node by concatenating their features and features of the edge between

them. We concatenate edge features connecting the merged nodes:

V k+1
i︸ ︷︷ ︸

2dv+de

= cat
(
V k

2i︸︷︷︸
dv

, V k
2i+1︸ ︷︷ ︸
dv

, Ek
2i,2i+1︸ ︷︷ ︸
de

)
, (1)

Ek+1
i,j︸ ︷︷ ︸
4de

= cat
(
Ek

2i,2j︸ ︷︷ ︸
de

, Ek
2i,2j+1︸ ︷︷ ︸
de

, Ek
2i+1,2j︸ ︷︷ ︸
de

, Ek
2i+1,2j+1︸ ︷︷ ︸

de

)
. (2)

Node splitting is the inverse of node merging layer: it slices features into original com-

ponents. MolGrow produces a latent vector for each level. We derive the latent codes

by separating half of the node and edge features before node merging and impose Gaus-

sian prior on these latent codes. During generation, we sample the latent code from the

prior and concatenate it with node and edge features. As we show in the experiments,

latent codes on different levels affect the generated structure differently. Latent codes
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from smaller intermediate graphs (top level) influence global structure, while bottom

level features define local structure. We illustrate the model in Figure 1.

Table 1: Molecular property optimization: penalized octanol-water partition coefficient (penalized logP)

and quantitative estimation of drug-likeness (QED). Results for baseline models from [29, 27].

Method
Penalized logP QED

1st 2nd 3rd 1st 2nd 3rd

ZINC250k 4.52 4.30 4.23 0.948 0.948 0.948

Graph-based models

GCPN [24] 7.98 7.85 7.80 0.948 0.947 0.946

MolecularRNN [26] 8.63 6.08 4.73 0.844 0.796 0.736

GraphNVP [27] - - - 0.833 0.723 0.706

GraphAF [29] 12.23 11.29 11.05 0.948 0.948 0.948

MoFlow [28] - - - 0.948 0.948 0.948

Proposed model

MolGrow (GE) 14.01± 0.364 13.95± 0.424 13.92± 0.422 0.9484± 0.0 0.9484± 0.0 0.9484± 0.0

MolGrow (GE, Top only) 11.66± 0.31 11.65± 0.319 11.63± 0.306 0.9484± 0.0 0.9484± 0.0 0.9484± 0.0

MolGrow (GE, Bottom only) 10.29± 3.32 10.29± 3.33 10.28± 3.32 0.9484± 0.0 0.9484± 0.0 0.9484± 0.0

MolGrow (predictor-guided optimization) 5.2± 0.347 4.94± 0.262 4.84± 0.22 0.9484± 0.0 0.9483± 0.0 0.9483± 0.0

MolGrow (REINFORCE) 4.81± 0.285 4.47± 0.145 4.39± 0.126 0.9468± 0.001 0.9459± 0.001 0.9455± 0.001

SMILES and fragment-based models

DD-VAE [10] 5.86 5.77 5.64 - - -

Grammar VAE [3] 2.94 2.88 2.80 - - -

SD-VAE [30] 4.04 3.50 2.96 - - -

JT-VAE [2] 5.30 4.93 4.49 0.948 0.947 0.947

In the experiments, we compare our model with state of the art graph and string based

generative models. Table 1 we show that MolGrow outperforms current best graph and

string-based generators for two of the most commonly used objective functions—penalized

octanol-water partition coefficient (penalized logP) and quantitative estimation of drug-

likeness (QED). We also significantly outperformed the best node-level graph model on

distribution learning task (Table 2) in terms of Fréchet ChemNet Distance (FCD).

3.2 Entangled Conditional Adversarial Autoencoder for de Novo Drug Dis-

covery

In this section, we switch to conditional generation problem, where a model has to pro-

duce novel molecular structures with given properties. Earlier papers on molecular gener-

ation [32, 33] produced molecular structures’ fingerprints and retrieved the most similar

molecules from a large database of molecular structures based on similarity search. Such

an approach requires little data, and discovered structures are readily available for pur-
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Table 2: Distribution learning metrics on MOSES dataset.

Method FCD/Test (↓) Frag/Test (↑) Unique@10k (↑) Novelty (↑)

Graph-based models

MolecularRNN [26] 23.13 0.56 98.6% 99.9%

GraphVAE [31] 49.39 0.0 5% 100%

GraphNVP [27] 29.95 0.62 99.7 % 99.9%

GraphAF (BFS) [29] 21.84 0.651 97% 99.9%

MoFlow [28] 28.05 0.685 100% 99.99%

Proposed model

MolGrow (fragment-oriented) 6.284± 0.986 0.929± 0.025 99.28± 0.62% 99.26± 0.12%

MolGrow (BFS) 9.962± 0.795 0.932± 0.01 100± 0.0% 99.37± 0.08%

MolGrow (BFS on fragments) 16.15± 1.026 0.868± 0.018 100± 0.0% 100± 0.0%

MolGrow (random permutation) 40.17± 4.709 0.051± 0.034 58.96± 38.11% 100± 0.0%

MolGrow (GAT instead of CAGE) 6.523± 0.302 0.941± 0.013 99.36± 0.3% 99.32± 0.05%

MolGrow (No positional embedding) 6.771± 0.555 0.937± 0.006 99.49± 0.19% 99.41± 0.06%

SMILES and fragment-based models

CharRNN (from MOSES benchmark) 0.073 0.9998 99.73% 84.19%

VAE (from MOSES benchmark) 0.099 0.9994 99.84% 69.49%

JTN-VAE (from MOSES benchmark) 0.422 0.9962 100% 91.53%

chasing. In contrast, training models directly on SMILES strings requires more data even

to produce semantically valid strings. We decided to combine fingerprints generator with a

conditional generative model to produce novel SMILES strings. A conditional generative

model learns a distribution p(x | y) over the molecular structures x with given properties

y.

In our paper [5], we proposed an adversarial autoencoder-based conditional model. Ad-

versarial Autoencoders (AAE) [34] are generative models that model the data distribution

pd(x) by training a regularized autoencoder. The regularizer forces a distribution of the

latent code q(z) =
∫
QE(z | x)pd(x)dx to match a tractable prior p(z). In this paper, we

will only consider deterministic autoencoders: the encoding distribution QE(z | x) and de-

coding distribution PG(x | z) are parameterized by neural networks E and G respectively:

z = E(x) and x = G(z).

Regularization of the latent space is implemented by an adversarial training procedure

[35] with the Discriminator model D(z). The Discriminator is trained to discriminate
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between samples from the latent distribution q(z) and the prior p(z). The Encoder E is

trained to modify the latent code so the discriminator could not distinguish the latent

distribution from the prior. This results in a minimax game minE maxD Ladv, where

Ladv = Ex∼pd logD (E(x)) + Ez∼p(z) log (1−D(z)) (3)

The adversarial training with the reconstruction penalty constitutes the following opti-

mization task:

min
E,G

max
D

Ex∼pd logD (E(x)) + Ez∼p(z) log (1−D(z))− Ex∼pd log p (x | G (E (x))) . (4)

The proposed model—Entangled Adversarial Autoencoder—introduces a conditional

prior model pθ(z | y) ∼ N (µθ(y),Σθ(y)) and uses a conditional discriminator to train

the model. We utilize a reparameterization trick z = gθ(z, y) = Σ
−1/2
θ (y) (z − µθ(y)) to

simplify the training objective:

min
E,G,θ

max
D

E(x,y)∼pd logD (gθ(E(x), y), y) + Ey∼p(y)Ez∼p(z) log (1−D(z, y))

− E(x,y)∼pd log p (x | G (E (x) , y)) .

(5)

We also proposed an additional regularizer that improved training. In the optimization

problem above, discriminator’s objective can be interpreted as enforcing independence of a

reparameterized latent code from the condition. We proposed a technique called predictive

disentanglement that uses a separate predictive model to infer y from z and adjusts latent

codes to fool the predictor. The additive regularizer takes a form of

min
E

max
q
λE(x,y)∼pd log q(y | gθ(E(x), y)). (6)

In the experiments, we studied different generation conditions and compared different

AAE modifications, including a model with a fixed prior network—pθ(z | y) = N (0, I). In

Table 3, we compared the proposed models on fingerprint-conditioned generation. In this

table, ‘No’ corresponds to Supervised Adversarial Autoencoder, ‘Predictive’ corresponds

to employing only predictive disentanglement and not supplying the condition to the dis-

criminator. ‘Joint’ corresponds to supplying condition to the discriminator. ‘Combined’

corresponds to predictive disentanglement and supplying condition to the discriminator.

In Table 4, we conditioned the model on three continuous properties—octanol-water

partition coefficient, synthetic accessibility score, and binding energy towards MCL1 pro-

tein. With such a model we were able to generate novel molecules with better binding
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energy than the best molecule from the training set. We also conducted a similar exper-

iment by training a conditional model on inhibition concentration 50 (IC50) for JAK3

protein and discovered a molecular structure that showed micromolar in vitro activity.

Table 3: Performance of models trained with different disentanglement techniques using fingerprint vec-

tors as the condition. Notice the large gap between the model with no disentanglement (corresponding

to [34]) and other models. First four models utilize an unconditional model of a prior distribution.

Disentanglement Tanimoto, % Hamming Exact, % Remaining MI

No 80.0 10.49 4.4 2.75

Predictive 86.2 7.13 11.4 0.64

Joint 88.7 5.78 17.4 1.56

Combined 91.8 4.18 27.8 0.32

Entangled, no Predictive 93.5 3.31 40.9 2.51

Entangled 93.6 3.28 41.3 1.30

Table 4: Performance of semi-supervised models on partially labeled binding energy dataset in terms of

Pearson correlation r between the requested value and the generated one.

Disentanglement logP, r SA, r E, r

No 0.311± 0.01 0.0522± 0.009 0.02± 0.04

Predictive 0.687± 0.006 0.0893± 0.008 0.063± 0.05

Joint 0.595± 0.007 0.0838± 0.008 0.109± 0.04

Combined 0.677± 0.007 0.0896± 0.007 0.116± 0.04

Entangled 0.804± 0.005 0.593± 0.007 0.406± 0.04

3.3 Deterministic Decoding for Discrete Data in Variational Autoencoders

While distribution learning and conditional modelling are useful for quickly exploring the

chemical space, the ultimate goal of drug discovery is to find one or several “perfect”

molecules. Molecular property optimization problem is commonly used for such appli-

cations as hit finding and hit-to-lead optimization, where a computational approach can

reliably estimate a quality of a given molecular structure, and the model’s goal to discover

a molecule with the maximum quality. In this section, we revise a common approach to

solving this task with variational autoencoders (VAE) and Bayesian optimization [1]. We
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discuss issues issues with stochastic decoding in VAEs and propose deterministic decoding

as a solution [10].

Molecular property optimization task, some times referred to as goal directed learning,

is one of the important tasks in computational chemistry. Given some objective function

f(x) that measures the compound’s quality, the goal is to find a compound x∗ that has

the highest quality: x∗ ∈ arg maxx∈X f(x). Depending on the task, f(x) can guide opti-

mization towards structures with desirable physiochemical properties or biological activity

[36]. It is also possible to restrict the search space X to compounds similar to the refer-

ence one. In this case, the optimization problem is referred to as a constrained molecular

optimization. An example of such a problem is hit optimization when a promising molec-

ular structure is optimized towards higher activity and better properties. Computation of

f(x) is commonly considered expensive and time consuming since for practical problems

f(x) either requires complex simulations or synthesis and in vitro testing.

Using recent advances in representation learning with variational autoencoders (VAE)

[37], Gómez-Bombarelli et al. [1] proposed to adapt VAEs for molecular property opti-

mization task. Their approach was to first train a VAE on a large collection of molecular

structures and then optimize molecular properties with respect to the latent codes of VAE.

More formally, given a labeled training set, they computed latent codes of all training ex-

amples and trained a regression model on the corresponding latent codes. Next, they

trained a sparse Gaussian process regression model [38] and found the latent code cor-

responding to the structure with the highest expected improvement—a commonly used

Bayesian optimization approach. They then added the newly labeled example to the

training set and repeated this procedure for a few iterations.

The paper mentioned above uses recurrent neural network encoder and decoder trained

on a string representation of molecular structure—a simplified molecular input line en-

try system (SMILES). Such complex decoders in VAE tend to ignore the latent codes

since they can model the generative distribution on their own. However, for the Bayesian

optimization to succeed, its latent codes must carry useful information about the corre-

sponding objects—the easier it is to predict target properties from the latent codes, the

easier it is to search for the optimal structures. To avoid the decoder ignoring the latent

codes, we consider deterministic decoding, where each latent code corresponds to a single

molecular structure. A simple way to turn a stochastic decoder into a deterministic one

is to replace all sampling operations with greedily selecting the most probable token at
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each iteration. However, such sampling scheme is biased and can decrease diversity of the

generated structures. We propose to optimize the evidence lower bound of a variational

autoencoder with deterministic decoding directly.

Consider an evidence lower bound of a variational autoencoder with sequential decoder:

L(θ, φ) = Ex∼p(x)

[
Ez∼qφ(z|x)

|x|∑
i=1

log πθx,i,xi(z)−KL (qφ(z | x) ‖ p(z))

]
, (7)

where p(x) is the data distribution, qφ is an encoding distribution, and πθx,i,s(z) is the

decoding distribution pθ(xi = s | z, x1, . . . , xi−1). In deterministic decoders, decoded

sequence x̃θ(z) is

x̃i = arg max
s

pθ(s | z, x1, . . . , xi−1) = arg max
s

πθx,i,s(z) (8)

A reconstruction probability and an evidence lower bound for deterministic decoding are

p (x | x̃θ (z)) =

1, x̃θ(z) = x

0, otherwise
(9)

L∗(θ, φ) = Ex∼p(x)

[
Ez∼qφ(z|x) log p (x | x̃θ(z))−KL (qφ(z | x) ‖ p(z))

]
(10)

We propose to optimize L∗ by approximating arg max with a smooth function and an-

nealing the temperature.

I
[
i = arg max

j
rj

]
=
∏
j 6=i

I [ri > rj] ≈
∏
j 6=i

στ (ri − rj), (11)

στ (x) =
1

1 + exp (−x/τ)
(

1
τ
− 1
) −−→

τ→0
I [x > 0] (12)

Lτ (θ, φ) = Ex∼p(x)

[
Ez∼qφ(z|x)

|x|∑
i=1

∑
s 6=xi

log στ
(
πθx,i,xi(z)− πθx,i,s(z)

)
−KL (qφ(z | x) ‖ p(z))

]
(13)

We faced two challenges: how to ensure that for some parameters (θ, φ) objective function

is finite (L∗ > −∞) and how does optimization of Lτ relates to optimization of L∗.

We show that it is impossible to obtain finite L∗ if proposal distribution q(x | z) has full

support: if encoder maps every object to every latent code, the decoder should decode

every object from every latent code. Hence, a deterministic decoder will always have

a non-zero reconstruction error rate and produce infinitely small ELBO. To overcome

this issue, we proposed bounded support proposals parameterized with shifted and scaled
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factorized kernels:

qφ(z | x) =
d∏
i=1

1

σφi (x)
K

(
zi − µφi (x)

σφi (x)

)
. (14)

We derived closed-form Kullback-Leibler divergence for a handful of kernels for a stan-

dard Gaussian and a uniform priors. Bounded support proposals and sufficiently flexible

encoder and decoder ensure that for some (θ, φ) L∗ is finite.

To connect Lτ to L∗, we proved the following theorem.

Theorem 1. Let Ω = {(θ, φ) | L∗(θ, φ) > −∞}. Let ∆(x̃θ, φ) be a sequence-wise recon-

struction error for the given encoder-decoder pair, and ∆(φ) be a sequence-wise reconstruc-

tion error rate for an optimal decoder (given by maximum a-posteriori probability across

all possible decoding sequences). Assume that Ω 6= ∅, length of sequences is bounded

(∃L : |x| ≤ L,∀x ∈ χ), and Θ and Φ are compact sets of possible parameter values.

Assume that qφ(z | x) is equicontinuous in total variation for any φ and x:

∀ε > 0,∃δ = δ(ε, x, φ) > 0 :

‖φ− φ′‖ < δ ⇒
∫
|qφ(z | x)− qφ′(z | x)| dz < ε.

(15)

Let τn, φn, θn be such sequences that:

lim
n→∞

τn = 0, τn ∈ (0, 1), (16)

(θn, φn) ∈ Arg max
θ∈Θ,φ∈Φ

Lτn(θ, φ), (17)

sequence {φn} converges to φ̃ and for any φ such that ∆(φ) = 0 exists θ such that

∆(x̃θ, φ) = 0. Let θ̃ be:

θ̃ ∈ Arg max
θ∈Θ

L∗(θ, φ̃). (18)

Then the sequence-wise reconstruction error rate decreases asymptotically as

∆(x̃θn , φn) = O
(

1

log(1/τn)

)
, (19)

Parameters (θ̃, φ̃) solve the optimization problem for L∗:

L∗(θ̃, φ̃) = sup
θ∈Θ,φ∈Φ

L∗(θ, φ). (20)

This theorem shows that if we optimize the model and anneal the temperature, we

will obtain an optimal encoder. If we then fine-tune the decoder, we will get an optimal

encoder-decoder pair. In the experiments, we optimized Lτ for gradually decreasing τ

and trained a model on molecular data. We considered distribution learning problem
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and molecular property optimization tasks. On distribution learning, proposed training

technique and bounded support proposals improve Fréchet ChemNet Distance (FCD)

and similarity to the nearest neighbor (SNN) on MOSES dataset (Table 5). On molecular

property optimization we optimized a commonly used penalized octanol-water partition

coefficient [3]. With standard setup, we obtained better molecules than standard VAE

and other baselines (Table 6). The model also showed better predictive performance of

the target property from the latent codes compared to the baselines.

Table 5: Distribution learning with deterministic decoding on MOSES dataset for different reconstruction

accuracies. We report generative modeling metrics: FCD/Test (lower is better) and SNN/Test (higher is

better). Mean ± std over multiple runs. G = Gaussian proposal, T = Triweight proposal.

Method
FCD/Test (↓) SNN/Test (↑)

70% 80% 90% 70% 80% 90%

VAE (G) 0.205 ± 0.005 0.344 ± 0.003 0.772 ± 0.007 0.550 ± 0.001 0.525 ± 0.001 0.488 ± 0.001

VAE (T) 0.207 ± 0.004 0.335 ± 0.005 0.753 ± 0.019 0.550 ± 0.001 0.526 ± 0.001 0.490 ± 0.000

DD-VAE (G) 0.198 ± 0.012 0.312 ± 0.011 0.711 ± 0.020 0.555 ± 0.001 0.531 ± 0.001 0.494 ± 0.001

DD-VAE (T) 0.194 ± 0.001 0.311 ± 0.010 0.690 ± 0.010 0.555 ± 0.000 0.532 ± 0.001 0.495 ± 0.001

Table 6: Reconstruction accuracy (sequence-wise) and validity of samples on ZINC dataset; Predictive

performance of sparse Gaussian processes on ZINC dataset: Log-likelihood (LL) and Root-mean-squared

error (RMSE); Scores of top 3 molecules found with Bayesian Optimization. G = Gaussian proposal, T

= Tricube proposal.

Method Reconstruction Validity LL RMSE top1 top2 top3

CVAE 44.6% 0.7% -1.812 ± 0.004 1.504 ± 0.006 1.98 1.42 1.19

GVAE 53.7% 7.2% -1.739 ± 0.004 1.404 ± 0.006 2.94 2.89 2.80

SD-VAE 76.2% 43.5% -1.697 ± 0.015 1.366 ± 0.023 4.04 3.50 2.96

JT-VAE 76.7% 100.0% -1.658 ± 0.023 1.290 ± 0.026 5.30 4.93 4.49

VAE (G) 87.01% 78.32% -1.558 ± 0.019 1.273 ± 0.050 5.76 5.74 5.67

VAE (T) 90.3% 73.52% -1.562 ± 0.022 1.265 ± 0.051 5.41 5.38 5.35

DD-VAE (G) 89.39% 63.07% -1.481 ± 0.020 1.199 ± 0.050 5.13 4.84 4.80

DD-VAE (T) 89.89% 61.38% -1.470 ± 0.022 1.186 ± 0.053 5.86 5.77 5.64
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4 Conclusion

In the final section, we summarize the main contributions of this work.

1. We proposed a new molecular graph generative model that produces molecular struc-

tures hierarchically—starting with a single node, it iteratively increases graph size by

splitting each node into two. We built this model aiming to achieve good performance

simultaneously in molecular property optimization and distribution learning. We dis-

covered that modern node-level graph generators produce poor distribution learning

results, significantly worse than existing string-based and substructure-based gener-

ators. Our model significantly improves distribution learning metrics for node-level

graph generators and discovers high scoring molecules on two common molecular

property optimization tasks.

2. We studied conditional generative models for drug discovery and proposed a new

model—Entangled Conditional Adversarial Autoencoder. This model can handle

multiple conditions and extrapolate beyond the condition’s training range. This pa-

per was one of the first to demonstrate in vitro activity and specificity of a generated

molecular structure against a selected target protein. The proposed direction of con-

ditional generation was later combined with reinforcement learning techniques in our

later publications [39, 16].

3. We studied a widely used combination of variational autoencoders and Bayesian

optimization and discovered potential issues with using deterministic decoding during

sampling and stochastic decoding during training. We constructed a deterministic

decoding procedure and proposed an intuitive training scheme using relaxed objective

function. In the experiments, we showed that training the model with deterministic

decoding improves molecular property optimization quality.

4. We proved a theorem connecting the relaxed objective function of a deterministic

decoder and the original training objective. We also observed that lossless decoding is

impossible with full support proposals. Hence, we proposed to use bounded support

proposals to improve the model.
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