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Dissertation topic

Many real-world systems can be represented by networks whose ver-

tices (nodes) are items and edges (links) are relations between these items.

Countless empirical studies demonstrated that many observed networks

share some typical properties: heavy-tailed degree distribution, small di-

ameter, community structure, etc. Numerous random graph models have

been proposed to reflect and predict important quantitative and topolog-

ical aspects of real-world networks. Such models are of use in experimen-

tal physics, bioinformatics, information retrieval, and data mining [2, 9].

Studying the properties of complex networks and their models is essen-

tial for understanding their formation principles, predicting their future

behavior, and developing effective algorithms.

Probably the most extensively studied property of networks is their

vertex degree distribution. For the majority of studied real-world net-

works, the degree distribution was shown to approximately follow the power

law [9]. This phenomenon is often explained by a principle called prefer-

ential attachment [6] that lies behind numerous models of complex net-

works [10, 17, 22].

Another key characteristic of real networks is their community structure

characterized by the presence of highly interconnected groups of vertices

relatively well separated from the rest of the network. For example, in

social networks, communities are formed by users with similar interests;

in citation networks, they represent the papers in different areas; on the

Web, communities may correspond to pages on related topics, etc. The

presence of communities highly affects, e.g., the promotion of products via

viral marketing, the spreading of infectious diseases, computer viruses and

information, and so on [47]. Thus, being able to identify communities is

an important and actively studied research problem [14, 23, 30].

Beyond community detection, there are other important applications

of graph analysis that will be discussed below in more detail: detecting

influential nodes [45], graph-based nearest neighbor search [4], and others.

Objectives and goals of the dissertation The goal of the dissertation is

twofold. First, analyze the properties of existing models of complex net-
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works and develop new realistic models with desirable quantitative and

topological properties. The second goal is to apply graph-based techniques

to various practical tasks: community detection, publication date predic-

tion, detecting influential nodes, and graph-based nearest neighbor search.

Key results

Models of complex networks and their analysis

• We propose a wide class of models called Generalized Preferential At-

tachment that includes many existing models. For the whole class, we

rigorously analyze the degree distribution, local and global clustering

coefficients, and degree correlations [20, 21, 35, 37].

• We prove a general result that the global clustering coefficient tends to

zero for all graphs with power-law degree distribution with an infinite

variance (assuming that degrees are sampled i.i.d. from a regularly

varying distribution with an infinite variance) [36, 37].

• We analyze the asymptotic behavior of modularity (a measure that

characterizes the community structure of a graph) in many random

graph models, including d-regular, preferential attachment, and spa-

tial preferential attachment graphs [38].

• We develop a novel principle called preferential placement that al-

lows for generating structures with a power-law distribution of cluster

sizes [13].

• We propose a new model called recency-based preferential attachment.

This model is shown to give the best fit for the part of the Web related

to media content. The basic properties of this model are theoretically

analyzed [24, 40].

Community detection

• We theoretically and empirically compare likelihood-based community

detection algorithms based on different null models. We propose a

more theoretically grounded null model for this task [42].
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• We systematically analyze the following problem: given only the infec-

tion times, find communities of highly interconnected nodes. We thor-

oughly compare existing and new approaches on several large datasets

and show that the most stable performance and the most significant

improvement over the current state-of-the-art are achieved by our pro-

posed simple heuristic approaches [43].

• We address an important problem of choosing a proper performance

measure for community detection algorithms. We use a theoretic ap-

proach: develop a list of desirable properties for performance measures

and formally check each property for each relevant measure [15].

Other applications of graph analysis

• Using the proposed recency-based model, we propose a new algorithm

for dating web pages [39].

• We propose a new algorithm for quick detection of high-degree nodes

in complex networks [5].

• We obtain novel time and space complexity guarantees for graph-based

nearest neighbor search algorithms [41].
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Analysis of complex networks models

The evolution of complex networks attracted much attention in recent

years. In particular, numerous random graph models have been proposed

to reflect and predict important quantitative and topological aspects of

growing real-world networks. Studying such models and their properties

is extremely important as it helps to understand fundamental principles

underlying the formation of complex networks, predict the future behavior

of networks, and construct efficient algorithms for network analysis.

Generalized Preferential Attachment

The results of this section are based on the papers [20, 21, 35, 37].

The most extensively studied property of networks is their vertex de-

gree distribution. For the majority of studied real-world networks, the

portion of vertices of degree d decreases approximately as d−γ−1, usually

with 1 < γ < 2 [9]. Such networks are often called scale-free. Regarding

the cumulative degree distribution, the portion of vertices of degree greater

than d decreases as d−γ. The most well-known approach to the modeling

of complex networks with a power-law degree distribution is the prefer-

ential attachment [6]. The main idea of this approach is to add vertices

one by one, and each new vertex connects to several existing vertices with

probabilities proportional to their degrees. Numerous models are based

on the idea of preferential attachment: Bollobás–Riordan [10], Buckley–

Osthus [11], Holme–Kim [17], RAN [48], and many others. We propose

a unified framework that allows for obtaining rigorous theoretical results

simultaneously for all such models.

PA-class of models

Let Gn
m (n > n0) be a graph with n vertices {1, . . . , n} and mn edges

obtained as a result of the following process. We start at the time n0 from

an arbitrary graph Gn0
m with n0 vertices and mn0 edges. On the (n+ 1)-th

step (n ≥ n0), we make the graph Gn+1
m from Gn

m by adding a new vertex

n+ 1 and m edges connecting this vertex to some m vertices from the set

{1, . . . , n, n + 1}. We denote by dnv the degree of a vertex v in Gn
m. If for
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some constants A and B the following conditions are satisfied

P
(
dn+1
v = dnv | Gn

m

)
= 1− Ad

n
v

n
−B 1

n
+O

(
(dnv )

2

n2

)
, 1 6 v 6 n , (1)

P
(
dn+1
v = dnv + 1 | Gn

m

)
= A

dnv
n

+B
1

n
+O

(
(dnv )

2

n2

)
, 1 6 v 6 n , (2)

P
(
dn+1
v = dnv + j | Gn

m

)
= O

(
(dnv )

2

n2

)
, 2 6 j 6 m, 1 6 v 6 n , (3)

P(dn+1
n+1 = m+ j) = O

(
1

n

)
, 1 6 j 6 m , (4)

we say that the random graph process Gn
m is a model from the PA-class.

Here we require 2mA+B = m and 0 6 A 6 1.

Even if we fix A and m, we still do not specify a concrete procedure for

constructing a network since we do not completely define the joint distri-

bution of m endpoints of new edges. Therefore, there is a range of models

possessing very different properties and satisfying the conditions (1)–(4).

For example, the Bollobás–Riordan [10], the Holme–Kim [17], and the

RAN [48] models belong to the PA-class with A = 1/2 and B = 0. The

Buckley–Osthus model [11] belongs to the PA-class with A = 1
2+β and

B = mβ
2+β .

It turns out that some rigorous results can be proven for the whole PA-

class without specifying a concrete model. Such results generalize previous

theoretical analyses made for each model independently.

Degree distribution in the PA-class

Denote by Nn(d) the number of vertices of a given degree d in Gn
m. We

prove the following result on the expectation of Nn(d).

Theorem 1. For every d > m we have ENn(d) = c(m, d)
(
n+O

(
d2+ 1

A

))
,

where

c(m, d) =
Γ
(
d+ B

A

)
Γ
(
m+ B+1

A

)
AΓ
(
d+ B+A+1

A

)
Γ
(
m+ B

A

) d→∞∼
Γ
(
m+ B+1

A

)
d−1− 1

A

AΓ
(
m+ B

A

)
and Γ(x) is the gamma function.
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We also show that the number of vertices of a given degree d is concen-

trated around its expectation.

Theorem 2. For any model from the PA-class and for any δ > 0 there

exists a function ϕ(n) = o(1) such that

lim
n→∞

P
(
∃ d 6 n

A−δ
4A+2 : |Nn(d)− ENn(d)| > ϕ(n)ENn(d)

)
= 0 .

Theorems 1 and 2 imply that the degree distribution in Gn
m follows

(asymptotically) the power law with the parameter 1 + 1
A . So, the cumula-

tive degree distribution follows the power law with the parameter γ = 1
A .

Clustering coefficient in the PA-class

Another important characteristic of a network is its clustering coeffi-

cient, a measure capturing the tendency of a network to form clusters,

densely interconnected sets of vertices. Several definitions of the clustering

coefficient can be found in the literature, for instance, the global clustering

coefficient and the average local clustering coefficient. The global cluster-

ing coefficient C1(G) is the ratio of three times the number of triangles to

the number of pairs of adjacent edges in G. The average local clustering

coefficient is defined as follows: C2(G) = 1
n

∑n
i=1C(i), where C(i) = T i

P i2

is the local clustering coefficient for a vertex i, T i is the number of edges

between the neighbors of the vertex i, and P i
2 is the number of pairs of

neighbors. It is believed that for many real-world networks, both the av-

erage local and the global clustering coefficients tend to a non-zero limit

as the networks become large. Thus, a natural question is: can we say

something about the clustering coefficient in the whole PA-class?

T-subclass It turns out that models from the PA-class may have very dif-

ferent clustering coefficients even for fixed parameters A and m. Therefore,

in order to be able to analyze the behavior of the clustering coefficients,

we have to add some additional constraints. Thus, we define a T-subclass.

In order to belong to the T-subclass, a model has to satisfy the following

property in addition to (1)–(4):

P
(
dn+1
i = dni + 1, dn+1

j = dnj + 1 | Gn
m

)
= eij

D

mn
+O

(
dni d

n
j

n2

)
. (5)
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Here eij is the number of edges between vertices i and j in Gn
m and D is

a non-negative constant. Note that this property still does not define the

correlation between m edges completely. Note that the Bollobás-Riordan

and the Buckley–Osthus models belong to the T-subclass with D = 0, the

Holme–Kim model with D = Pt · (m−1), and the RAN model with D = 3.

Global clustering coefficient in the T-subclass Let us first discuss the be-

havior of the global clustering coefficient C1(G
n
m). The following theorem

holds.

Theorem 3. Let Gn
m belong to the T-subclass with D > 0. Fix any ε > 0,

then

(1) If 2A < 1, then whp 6(1−2A)D−ε
m(4(A+B)+m−1) 6 C1(G

n
m) 6 6(1−2A)D+ε

m(4(A+B)+m−1) ;

(2) If 2A = 1, then whp 6D−ε
m(4(A+B)+m−1) log n 6 C1(G

n
m) 6

6D+ε
m(4(A+B)+m−1) log n ;

(3) If 2A > 1, then whp n1−2A−ε 6 C1(G
n
m) 6 n1−2A+ε .

Note that in some cases (2A > 1, i.e., γ 6 2) the global clustering coeffi-

cient C1(G
n
m) tends to zero (for any D) as the number of vertices grows. A

generalization of this result to all scale-free graphs will be discussed below.

Local clustering coefficient in the T-subclass Let us now discuss the be-

havior of the local clustering coefficient. First, one can easily show that

C2(G
n
m) does not tend to zero if the condition (5) holds with D > 0.

However, a deeper analysis of the local clustering is possible if we con-

sider the function C2(d) — the local clustering coefficient for the vertices

of degree d. It was previously shown that in real-world networks C2(d)

usually decreases as d−ψ with some parameter ψ > 0. For some networks,

C2(d) scales as d−1 [26].

It turns out that in all models of the T-subclass the local clustering

coefficient C2(d) asymptotically behaves as 2D
Am · d

−1. Formally, we prove

the following result.

Theorem 4. Let Gn
m belong to the T-subclass of the PA-class. Then, for

any δ > 0 there exists a function ϕ(n) = o(1) such that
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(1) if 2A 6 1: limn→∞ P
(
∃ d 6 n

A−δ
4A+2 : |C2(d)− F (d)| > ϕ(n)

d

)
= 0,

(2) if 2A > 1: limn→∞ P
(
∃ d 6 n

A(3−4A)−δ
4A+2 : |C2(d)− F (d)| > ϕ(n)

d

)
= 0,

where F (d) = 2D
d (d−1)m

(
m+

∑d−1
i=m

i
Ai+B

)
d→∞∼ 2D

mA · d
−1.

Thus, despite the fact that the T-subclass generalizes many different

models, it is possible to analyze the local clustering coefficient for all these

models. It turns out that C2(d) asymptotically decreases as 2D
Am · d

−1. In

particular, this result implies that one cannot change the exponent −1 by

varying the parameters A,D, and m. This basically means that preferential

attachment models in general are not flexible enough to model C(d) ∝ d−ψ

with ψ 6= 1.

Assortativity

Next, we consider another key measure in complex networks analysis

that is called assortativity coefficient and was first introduced by New-

man [32] as the Pearson’s correlation coefficient for the degrees of adjacent

nodes. However, this coefficient is known to have certain drawbacks when

applied to scale-free networks [28]. Thus, a more informative way of an-

alyzing assortativity is to consider the behavior of dnn(d) — the average

degree of a neighbor of a vertex of degree d. A graph is called assorta-

tive if dnn(d) is an increasing function of d, whereas it is referred to as

disassortative when dnn(d) is a decreasing function of d.

It was previously empirically shown that in some real-world networks

dnn(d) behaves as dν for some ν, which can be positive (assortative net-

works) or negative (disassortative networks) [9]. Assortativity has many

applications; for instance, it can be used in epidemiology. In social net-

works, we usually observe assortative mixing, so diseases targeting high

degree individuals are likely to spread to other high degree nodes. On the

other hand, biological networks are usually disassortative; therefore, vac-

cination strategies targeting the high degree vertices may quickly destroy

the epidemic.

We are able to analyze dnn(d) in the whole T-subclass of models for

γ > 3 (the case of finite variance). We prove that the expectation of dnn(d)
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asymptotically behaves as log(d) (up to a constant multiplier). However,

this approximation works reasonably well only for very large values of d

and for d < 104 we observe a different behavior which may look like dν for

some ν > 0.

Let us formulate the main results, while the details can be found in [20].

Theorem 5. Let Gn
m belong to the T-subclass of the PA-class with A < 1

2.

Then, for any ε > 0 and for every d = d(n) > m,

Ednn(d) = F (d)

(
1 +O

(
n2A+εd2+ 1

A

n
+
d2+ 1

A log n√
n

))
,

where F (d)
d→∞∼ Am+B

A · log(d) and the non-asymptotic expression for F (d)

can be found in [20].

According to Theorem 5, all networks from the T-subclass with A < 1
2

are assortative. However, Ednn(d) increases slowly, as log(d), unlike dν in

real-world networks. It is also worth noting that in Theorem 5 we analyze

only the average value of dnn(d) and proving concentration is left for future

research.

Global clustering coefficient in scale-free networks

The results of this section are based on the papers [36, 37].

While the degree distribution of preferential attachment models allows

adjustment to reality, the clustering coefficient is challenging to model in

some cases. Indeed, for most real-world networks, the parameter γ of their

cumulative degree distribution belongs to the interval (1, 2). However,

as discussed above (Theorem 3), once γ < 2 in a preferential attachment

model, the global clustering coefficient decreases as the graph grows, which

does not correspond to the majority of real-world networks. The main

reason for this behavior is that the number of edges added at each step

is constant; consequently, the number of triangles can grow only linearly

with the number of vertices n, while the number of pairs of adjacent edges

grows as n2/γ.

Under some assumptions on the degree sequence, we rigorously prove

that a model with a power-law degree distribution, with γ < 2, and with an
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asymptotically constant global clustering coefficient cannot exist. In order

to do this, we consider a sequence of graphs Gn (n refers to the number

of vertices) with degrees independently sampled from a regularly varying

distribution F with parameter γ of the cumulative distribution. Regularly

varying distributions form a broad class of heavy-tailed distributions and

generalize power-law distributions. Then, we assume that for a given out-

come of the degree sequence, a graph can be built in any arbitrary way. We

prove that if a simple graph has degrees sampled from a regularly varying

degree distribution with an infinite variance (1 < γ < 2), then the global

clustering coefficient for any such sequence of graphs tends to zero with

high probability. Note that we do not assume any random graph model

here.

Theorem 6. For any ε > 0 and any α such that 0 < α < 1
γ+1 with

probability 1 − O(n−α) the global clustering coefficient of Gn satisfies the

following inequality

C1(Gn) 6 n−
(2−γ)
γ(γ+1)+ε .

The obtained result is especially interesting due to the fact that in

many observed networks, the global clustering coefficient is considerably

high [33]. However, it is hard to compare the asymptotic result of Theo-

rem 6 with empirical measurements made on finite networks. More exciting

is the fact that there are models of complex networks with asymptotically

power-law degree distribution with infinite variance and with non-vanishing

global clustering coefficient. For instance, such results have been obtained

for the random intersection graphs [8]. This contradiction can be explained

by our formalization of “power-law degree distribution”. Indeed, we assume

that degrees are sampled independently from a regularly varying distribu-

tion. The independence assumption is quite restrictive and may not hold

for some realistic random graph models. In our analysis, we use this as-

sumption to show that the largest degrees are sufficiently large. Without

the independence assumption, the largest degrees can be smaller (i.e., we

may have a cut-off in the empirical degree sequence), while the empirical

degree sequence is still asymptotically regularly varying.

In addition to the upper bound obtained for the global clustering coef-

ficient, we also present an algorithm that allows constructing graphs with
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nearly maximum (up to no(1) multiplier) clustering coefficient for the con-

sidered sequence of graphs [36].

Analysis of modularity

The results of this section are based on the paper [38].

The clustering coefficient is a basic characteristic for analyzing the ten-

dency of a network to form highly interconnected clusters. A more ad-

vanced measure allowing to characterize the community structure is mod-

ularity [34]. Modularity is at the same time a global criterion to define

communities, a quality function of community detection algorithms, and a

way to measure the presence of community structure in a network. Many

community detection algorithms are based on finding partitions with high

modularity.

The main idea behind modularity is to compare the actual density of

edges inside communities with the density one would expect to have if

the vertices were attached randomly, regardless of community structure.

Formally, for a given partition A = {A1, . . . , Ak} of the vertex set V (G),

let

qA =
∑
A∈A

(
e(A)

|E(G)|
−

(
∑

v∈A deg(v))2

4|E(G)|2

)
, (6)

where E(G) denotes the set of edges in G, e(A) = |{uv ∈ E(G) : u, v ∈ A}|
is the number of edges in the graph induced by the set A, and deg(v) is

the degree of a vertex v.

The modularity of a graph G is

q∗(G) = max
A

qA(G).

If q∗(G) approaches 1 (the maximum), we observe a strong community

structure. Conversely, if q∗(G) is close to zero, we are given a graph with

no community structure.

We theoretically investigate modularity in random d-regular graphs,

graphs with bounded average degree, the preferential attachment mod-

el [10], and the spatial preferential attachment model [1].
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Random d-regular graphs We consider the probability space of random d-

regular graphs with uniform probability distribution. This space is denoted

by Gn,d, and asymptotics are for n → ∞ with d > 2 fixed, and n even if

d is odd. We first obtain a numerical upper bound on the modularity of

Gn,d. We also prove the following weaker but explicit bound that can be

obtained using the expansion properties of random d-regular graphs that

follow from their eigenvalues.

Theorem 7. Let d ∈ N \ {1, 2} and ε > 0 be an arbitrarily small constant.

Then, a.a.s., q∗(Gn,d) 6 2√
d
.

Graphs with bounded average degree For graphs with bounded average

degree, the following theorem holds.

Theorem 8. Let {Gn} be a sequence graphs, Gn is a connected graph on

n vertices with the average degree 2|E(Gn)|
n 6 D for some constant D, and

maximum degree ∆ = ∆(Gn) = o(n). Then, q∗(Gn) > 2
D − O

(√
∆
n

)
=

2
D − o(1).

Preferential Attachment model Next, we analyze modularity in the pref-

erential attachment model Gn
m [10]. The following theorem easily follows

from Theorem 8 and the fact that a.a.s. ∆(Gn
m) = O

(
n

1
2+2ε

)
for any ε > 0.

Theorem 9. For any ε > 0 a.a.s. q∗(Gn
m) > 1

m −O
(
n−1/4+ε

)
= 1

m − o(1).

However, this bound is not sharp, and we also prove a stronger lower

bound. Here we present only the asymptotic result as m → ∞, while the

complete statement and the numerical values for small m can be found

in [38].

Theorem 10. A.a.s. q∗(Gn
m) = Ω (1/

√
m).

Regarding the upper bound, we the following holds.

Theorem 11. For any ε > 0 a.a.s. q∗(Gn
2) 6 15+ε

16 . For any m > 3 a.a.s.

q∗(Gn
m) 6 15

16 .
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Spatial Preferential Attachment model We also study a so-called Spatial

Preferential Attachment model [1]. This model combines preferential at-

tachment with geometry by introducing “spheres of influence” whose vol-

ume grows with the degree of a vertex. The parameters of the model

are the number of vertices n, the dimension of a latent space m, the link

probability p ∈ [0, 1], and two constants A1, A2 defining the probability of

attachment, such that 0 < A1 <
1
p and A2 > 0.

The SPA model is known to produce scale-free networks, which exhibit

many characteristics of real-life networks. The following theorem shows

that the modularity of the SPA model is asymptotically one, unlike d-

regular and preferential attachment graphs.

Theorem 12. Let p ∈ (0, 1], A1, A2 > 0, and suppose that

pA1 < 1. Then, a.a.s., the modularity of the SPA model is 1 −
O
(
nmax{−1/m,−1+pA1}/2 log9/2 n

)
= 1− o(1).

Preferential placement

The results of this section are based on the paper [13].

An important aspect of complex networks modeling is generating re-

alistic community structures. Several empirical studies have shown that

the community structure of different real-world networks has some typical

properties: e.g., the cumulative community size distribution obeys a pow-

er law with some parameter [3, 12, 16]. Unfortunately, the widely used

preferential attachment model and many other models fail to provide the

desired clustering structure.

We propose a process called preferential placement that naturally gen-

erates clustering structures. We assume that all vertices are embedded in

Rd for some d > 1. One can think that coordinates of this space correspond

to latent features of vertices. The vertices appear one by one, and their

positions are defined according to preferential placement: each new vertex

chooses a ‘parent’ among the existing vertices uniformly at random and is

then placed uniformly at some distance from the parent. The distance is

sampled from a distribution Ξ. We argue that in order to obtain a realistic

clustering structure, one should take Ξ to be a heavy-tailed distribution.

In this case, according to the procedure described above, new vertices will
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usually appear in the dense regions, close to some previously added ver-

tices; however, due to the heavy tail of Ξ, from time to time, we get outliers

that originate new clusters.

Our empirical studies confirm that a reasonable clustering structure is

produced if Ξ has a power-law distribution with a proper parameter. We

observe that the distribution of the cluster sizes (if clusters are obtained via

the DBSCAN algorithm) follows the power law. Moreover, the obtained

structure is hierarchical, which agrees with numerous practical observa-

tions.

We then discuss why we expect to observe a power-law distribution of

cluster sizes from a theoretical point of view. The main difficulty with the

analysis of clustering structures is that there are no standard definitions

of clusters, both in graphs and metric spaces. Thus, we can only give

some insights into the fact that the proposed algorithm is expected to

generate a power-law distribution of cluster sizes. Namely, we make some

strong assumptions and then rigorously prove that the distribution follows

a power law.

Formally, let Ft(s) denote the number of clusters of size s at step t. We

assume that all clusters can only grow, they cannot merge or split. Then,

at step t + 1, a new cluster appears with probability p(t) = c
tα , c > 0,

0 6 α 6 1. Finally, given that a vertex t+ 1 does not create a new cluster,

the probability to join a cluster C with |C| = s is equal to s
t . The last

assumption is motivated by the observation that the probability to choose

a parent from some cluster C with |C| = s is equal to s
t by the definition of

the model. These assumptions are quite strong and even not very realistic,

but they allow us to analyze the behavior of Ft(s) formally. Namely, we

prove the following theorem (see [13] for the full statement).

Theorem 13. Under the assumptions above, the following holds.

1. If α = 0 and 0 < c < 1, then: EFn(s) ∼
cΓ(2+ 1

1−c)
(2−c) · n

s
1+ 1

1−c
.

2. If 0 < α 6 1, then for any ε > 0: EFn(s) ∼ cΓ(3−α)
2−α · n1−αs2−α .

To sum up, if the probability p(n) of creating a new cluster is of order
1
nα for α > 0, then the distribution of cluster sizes follows a power law with
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parameter 2 − α growing with p(n) from 1 to 2; if p(n) = c, 0 < c < 1,

then the parameter grows with c from 2 to infinity. Informally, this theorem

allows us to connect the distribution Ξ with the distribution of the obtained

cluster sizes, since Ξ affects the probability p(n).

Finally, note that preferential placement allows one to generate the po-

sitions of nodes in a latent space. Then, to obtain a graph, one can use

any existing spatial graph model. In [13] we analyze several possible op-

tions and show that the obtained graphs indeed have desirable properties,

including a realistic degree distribution and a power-law distribution of the

cluster sizes.

Recency-based preferential attachment

The results of this section are based on the papers [24, 40].

We end the first part by describing a new principle called recency-based

preferential attachment. This idea was suggested in [24] based on a detailed

empirical study of the part of the Web related to media content. Using

publicly available data, we analyze the evolution of incoming and outgoing

links from and to media pages. In particular, in addition to the degree

distribution, for graphs evolving in time, we also define a so-called recency

property. Namely, denote by e(T ) the fraction of edges connecting nodes

whose age difference is larger than T . We observe that media pages tend

to connect to pages of similar age, and e(T ) decreases exponentially fast,

which is not the case for preferential attachment models.

Thus, the idea is to generalize the preferential attachment principle

in the way that the probability to cite a page p is proportional to the

attractiveness of p, which is some function of d(p) (current degree of p), q(p)

(intrinsic quality of p), and a(p) (current age of p). Different attractiveness

functions are considered:

attr(p) = q(p)α1 · d(p)α2 · e−
a(p)
τ ·α3 ,

where (α1, α2, α3) ∈ {0, 1}3 and τ corresponds to the mean lifetime of the

decaying attractiveness. For example, attr(p) = d(p) leads to preferential

attachment, while attr(p) = q(p) · d(p) leads to the fitness model.

To depict the recency property of the Media Web, one has to include the
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recency factor e−
a(p)
τ in the attractiveness function. Our mean-field approx-

imation analysis and computer simulations show that in order to have the

power-law degree distribution with a realistic exponent, the attractiveness

function attr(p) = q(p) e−
a(p)
τ should be chosen. Moreover, the distribution

of qualities q should follow the power law. The superiority of this form of

the attractiveness function was also confirmed by analyzing the likelihood

of real data given the model.

The proposed principle was further formalized and theoretically ana-

lyzed in [40]. Here, we focus on the attractiveness function q(p) · e−
a(p)
τ .

Formally, we construct a sequence of random graphs {Gn}. The sequence

is parametrized by a positive integer constant m (vertex outdegree) and an

integer function N(n). We also need a sequence of mutually independent

random variables ζ1, ζ2, . . . with some given distribution taking positive

values.

Each graph Gn is defined according to its own constructing procedure

based on the idea of preferential attachment. At the beginning, we have

two vertices and one edge between them (graph G̃n
2). The first two vertices

have inherent qualities q(1) := ζ1 and q(2) := ζ2. At the t + 1-th step

(2 6 t 6 n − 1) one vertex and m edges are added to G̃n
t . New vertex

t + 1 has an inherent quality q(t + 1) := ζt+1. New edges are drawn

independently, and they go from the new vertex to previous vertices. For

each edge, the probability that it goes to a vertex i (1 6 i 6 t) is equal to

attrt(i)∑t
j=1 attrt(j)

, where attrt(i) = q(i) e−
t−i
N(n) .

Further we assume that N = N(n)→∞ as n grows.

Assume that the random variables ζ1, ζ2, . . . have the Pareto distribution

with the density function f(x) = γaγI[x>a]
xγ+1 , where γ > 1, a > 0. Then, the

expectation of the number of vertices with degree d in Gn (denoted by

Nn(d)) decreases as d−γ−1.

Theorem 14. Let us define a constant α as follows: if γ > 2, then α = 2;

if 1 < γ 6 2, then α can be any constant such that 1 < α < γ. If d = d(n)
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increases with n and d = o

(
min

{(
n

N logN

) 1
γ+1

, N
α−1

α+(γ+1)(α+1)

})
, then

E[Nn(d)]

n
=

γ

dγ+1

(
(γ − 1)m

γ

)γ
(1 + o(1)) .

The following theorem shows that the number of vertices of degree d is

concentrated near its expectation.

Theorem 15. For every d the following inequality holds:

P
(
|Nn(d)− E[Nn(d)]| >

√
Nn log n

)
= O

(
1

log n

)
.

Note that for d = o

((
n

N log n

) 1
2(γ+1)

)
we have

√
Nn log n = o (E[Nn(d)])

and Theorem 15 gives the concentration.

Finally, we show that the behavior of e(T ) is realistic, i.e., e(T ) decreases

exponentially with T .

Theorem 16. For any integer T ,

E[e(T )] = e−
T
N +O

(
N

n

)
,

P

(
|e(T )− E[e(T )]| >

√
N log n

n

)
= O

(
1

log n

)
.

Community detection

As discussed above, community structure is one of the most important

graph properties. It is characterized by the presence of highly interconnect-

ed groups of vertices relatively well separated from the rest of the network.

In social networks, communities (a.k.a. clusters) are formed by users with

similar interests; in citation networks, they represent the papers in different

areas; on the Web, communities may correspond to pages on related top-

ics, etc. The presence of communities highly affects, e.g., the promotion of

products via viral marketing, the spreading of infectious diseases, comput-

er viruses, information, and so on. Identifying communities in a network
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could help us exploit this network more effectively: clusters in citation

graphs are helpful for finding similar scientific papers, discovering users

with similar interests is important for targeted advertisement, clustering

can also be used for network compression and visualization. Thus, in this

section we discuss different aspects of community detection problem [14].

Community detection through likelihood optimization

The results of this section are based on the paper [42].

Among other algorithms proposed for community detection, the notable

ones are methods based on statistical inference. In such methods, some un-

derlying random graph model is assumed, the evidence is represented by the

observed graph structure (its adjacency matrix), and the hidden variables

to be inferred are the model’s parameters together with community as-

signments. Such methods are appealing since they are theoretically sound

and consistent: e.g., it has been proved that when the maximum-likelihood

method is applied to networks generated from the same stochastic block

model, it returns correct assignments of nodes to groups in the limit of

large node degrees [7]. Also, likelihood can be used as a tool to formalize

the notion of community.

The choice of the proper null model is essential for statistical inference

algorithms as it highly affects their performance. The most commonly

used model is called the planted partition model (PPM). In this model,

the vertices are divided in k clusters and for each pair of vertices i, j we

draw an edge between them with probability pin if they belong to the same

cluster and pout otherwise, pin > pout.

However, the PPM model is unable to model the degree heterogeneity

observed in most real-world networks. To overcome this issue, degree-

corrected stochastic block model [18] and its simplified variant degree-

corrected planted partition model (DCPPM) [31] were proposed. In

DCPPM, the vertices are assigned to k clusters and edges are placed in-

dependently at random. The expected number of edges between vertices i

and j is d(i)d(j)
2m pin if they belong to the same cluster or d(i)d(j)

2m pout otherwise.

Here d(i) is the desired degree of a vertex i and m is the total number of

edges. However, we show that in DCPPM, for any reasonable choice of
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pin and pout, the expected degree is not equal to d(i). Motivated by this

observation, as well as by the well-known LFR benchmark [23], we develop

a one-parametric model which does not suffer from the above issue.

We argue that the inability of DCPPM to preserve the desired degree

sequence is caused by the fact that the probability of an internal edge is

independent of the size of the community and thus the expected fraction

of internal edges depends on the size of the community the vertex belongs

to. In contrast, similarly to the LFR model [23], we use the mixing pa-

rameter µ which controls this fraction and makes it equal for all vertices

in the graph. Formally, we assume that all edges are independent and the

expected number of edges between two vertices i and j is equal to µd(i)d(j)
2m

if c(i) 6= c(j) or to (1−µ)d(i)d(j)
D(Cq)

+ µd(i)d(j)
2m if c(i) = c(j) = q. Here µ is the

mixing parameter (0 < µ < 1), c(i) is the cluster assignment for a vertex

i, and D(C) is the sum of the degrees of all the vertices belonging to a

cluster C. With this definition, the expected degree of a vertex i is equal

to d(i). Moreover, the proposed model has only one parameter µ instead of

pin and pout in the planted partition models. We call the proposed model

Independent LFR or ILFR.

We derive the exact formula of the likelihood for the proposed ILFR

model. For simplicity, let us show its approximation:

logLILFR′(C, G, µ) = min log(1− µ) +mout log µ

−mout log 2m−
∑
C

Din(C)

2
logD(C) +

∑
i

d(i) log d(i)−m, (7)

where min and mout are the number of intra- and iter-cluster edges, re-

spectively, and Din(C) is twice the number of edges induced by C. The

optimal µ according to (7) is µ = mout

m .

The obtained likelihood allows us to apply likelihood-based methods

to the ILFR model. Through extensive experiments, we compare the

likelihood optimization algorithms based on three null models discussed

above — PPM, DCPPM, and ILFR. We also demonstrate that the pro-

posed ILFR model shows the best fit for various real-world networks ac-

cording to the likelihood of observed structures.
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Community detection based on cascade data

The results of this section are based on the paper [43].

Let us discuss a more challenging problem of inferring community struc-

ture of a given network based solely on cascades (e.g., information or epi-

demic) propagating through this network. Compared to the traditional

community detection, the task is quite different because we do not have

the network available; we have only cascade data observed on this network.

For each cascade, we observe only infected nodes and their infection times.

Formally, assume that we observe a set of cascades C = {C1, . . . , Cr}
that propagate on a latent undirected network G = (V,E) with |V | = n

nodes and |E| = m edges. Each cascade C ∈ C is a record of observed

node activation times, i.e., C = {(vi, tCvi)}
nC
i=1, where vi is a node, tCvi is its

activation time in C, |C| = nC is a size of a cascade. Note that we do not

observe who infected whom.

We further assume that G is partitioned into communities: A =

{A1, . . . , Ak}, ∪ki=1Ai = V , Ai ∩ Aj = ∅ for i 6= j. We expect to observe a

high intra-community density of edges compared to inter-community den-

sity. By observing only a set of cascades C we want to find a partition A′
similar to A.

We propose and analyze two types of approaches for this task: based

on likelihood maximization under specific model assumptions and based

on clustering of a surrogate network.

Approaches based on likelihood maximization are called ClustOpt and

GraphOpt. In ClustOpt, we assume the cascade model in which each

activated node can infect all other susceptible nodes independently after an

exponentially distributed time. If a susceptible node belongs to the same

community, then the infection rate is αin, otherwise it is αout, αout < αin.

Epidemic stops at time Tmax. This is a simplified epidemic model since

spreading depends only on the community structure and not on the graph

G. We derive the formula for the likelihood of cascades L(C,A) for this

model. Note that the likelihood depends on the parameters αin and αout.

We propose the following algorithm and refer to [43] for the details.

GraphOpt is based on a more complex epidemic model introduced

in [44]. In this model, an activated node infects its neighbors after an
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ALGORITHM 1: ClustOpt
1. Find initial partition Ainit;
2. Find α̂in, α̂out = arg maxαin,αout

logL(C,Ainit);
3. For fixed α̂in, α̂out find Â = arg maxA logL(C,A).

exponentially distributed time with intensity α. All nodes recover simulta-

neously at some threshold time Tmax and the epidemic stops. For simplicity,

we further assume Tmax to be fixed, but our methods allow varying Tmax
for different epidemics. We propose an expectation-maximization-based

method, where a graph G is a latent variable. We assume the following

generative probabilistic process. For a given partition A of n nodes, we

construct a graph G according to the ILFR model discussed in the previous

section. Then, based on G, we generate a set of cascades C according to

the epidemic model P(C|G). We observe C and our aim is to recover the

partition Ā which maximizes the likelihood, i.e., Ā = arg maxA P(C|A) .

We propose the following algorithm and refer to [43] for its derivation and

details.

ALGORITHM 2: GraphOpt

1. Choose some initial partition Â and graph Ĝ;

2. Update Ĝ: Ĝ = arg maxG

(
log P(C|G) + log P(G|Â)

)
;

3. Update Â: Â = arg maxA log P(Ĝ|A);

4. Iterate (2)-(3) until convergence.

The second group of algorithms is based on constructing a surrogate

graph Ĝ and then clustering this graph (using, e.g., the Louvain community

detection algorithm). It is crucial that Ĝ does not need to be similar to G,

it just needs to capture the community structure on an aggregated level.

For instance, in the algorithm Path, we connect all consecutive nodes that

participated in one cascade. In the algorithm Clique, we connect all pairs

of nodes that participated in a cascade by weighted edges (weights depend

on the time difference between the infection times).

We conduct extensive experiments on various real-world networks to

compare the proposed approaches with the existing baselines. Surpris-

ingly, we conclude that the most stable performance is obtained by our

proposed surrogate-graph-based heuristics that are agnostic to a partic-
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ular graph structure and epidemic model. These heuristics work equally

well on different networks and for epidemics of different types.

Analysis of cluster similarity indices

The results of this section are based on the paper [15].

When developing and analyzing community detection algorithms, it is

crucial to be able to validate the results, i.e., measure the performance of

different algorithms and compare the results. We demonstrate that this

problem is crucial: dozens of cluster similarity measures exist, they often

disagree with each other, these disagreements do affect which algorithms

are preferred in applications, and this can lead to degraded performance

in real-world systems.

We propose a theoretical framework to tackle this problem: we develop

a list of desirable properties and conduct an extensive theoretical analysis

to verify which indices satisfy them. This allows for making an informed

choice: given a particular application, one can first select properties that

are desirable for the task and then identify indices satisfying these. Our

approach leads to recommendations that considerably differ from how val-

idation indices are currently being chosen by practitioners. Some of the

most popular indices are even shown to be dominated by previously over-

looked ones.

Let us briefly discuss the properties that are fully described in [15]. By

V (A,B) we denote a validation (similarity) index applied to two partitions

A and B of a given set of elements.

1. First, the numerical value that an index assigns to a similarity must

be easily interpretable. In particular, it should be easy to see whether

the candidate clustering is maximally similar to (i.e., coincides with)

the reference clustering. Formally, we require that V (A,A) = cmax is

constant and is a strict upper bound for V (A,B) for all A 6= B. This

property is called maximal agreement.

2. Similarity is intuitively understood as a symmetric concept. There-

fore, a good similarity index is often expected to be symmetric, i.e.,

V (A,B) = V (B,A) for all partitions A,B.
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3. Running time is crucial for clustering tasks on large datasets, and algo-

rithms and validation indices with superlinear time can be infeasible.

So, we say that an index has linear complexity when its worst-case

running time is linear in the number of elements.

4. For some applications, a distance interpretation of dissimilarity may

be desirable: whenever A is similar to B, and B is similar to C,

then A should also be somewhat similar to C. Thus, we say that an

index satisfies the distance property if it is linearly transformable to

a distance metric.

5. When one clustering is changed to resemble the other clustering more,

the similarity score ought to improve. Hence, we require an index to

be monotone w.r.t. changes that increase the similarity. This property

is fully formalized in [15].

6. Finally, the constant baseline property is arguably the most signifi-

cant: it is less intuitive than the other ones and may lead to unex-

pected consequences in practice. Informally, a good similarity index

should not prefer a candidate clustering B over another clustering C

just because B has many or few clusters. This intuition can be for-

malized using random partitions: assume that we have a reference

clustering A and two random partitions B and C. Intuitively, both

random guesses are equally bad approximations of A. Therefore, we

require the similarity value of a random candidate w.r.t. the reference

partition to have a fixed expected value cbase (independent of A or

the sizes of B). However, this does require a careful formalization of

random candidates, which is done in [15].

Our main results are summarized in Tables 1 and 2, and we refer to [15]

for formal definitions of the indices and all the properties.

Other applications

In this part, we discuss other applications of graph analysis. First,

we cover publication date estimation, where the proposed algorithm is
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Table 1: Requirements for general

similarity indices
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NMI 3 3 7 3 3 7

NMImax 3 3 3 3 7 7

FNMI 3 7 7 3 7 7

VI 3 3 3 3 3 7

SMI 7 3 7 7 7 3

FMeasure 3 3 7 3 7 7

BCubed 3 3 7 3 3 7

AMI 3 3 7 7 3 3

Table 2: Requirements for pair-counting indices
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R 3 3 3 3 3 3 3 7 7 ↗↘
AR 3 7 3 7 3 3 7 3 3

J 3 7 3 3 3 3 7 7 7 ↘
W 7 7 7 7 3 7 7 7 7 ↘
D 3 7 3 7 3 3 7 7 7 ↘

CC 3 3 3 7 3 3 3 3 3

S&S 3 3 3 7 3 3 3 3 3

CD 3 3 3 3 3 3 3 7 3

motivated by the recency-based model discussed above. Then, we discuss

the problem of detecting high-degree vertices in large complex networks.

Finally, we address the problem of nearest neighbor search and discuss

graph-based algorithms for this problem.

Publication date prediction

We start with an example of how the recency-based model introduced

above can be used to improve the quality of publication date prediction.

The results of this section are based on the paper [39].

The task is to detect a document’s publication date. Knowing web

page publication dates is essential, for instance, for computing features

for recency-sensitive ranking of web documents. Unfortunately, the publi-

cation dates of a large share of web pages cannot be reliably determined.

The most common way to determine the publication date of a web page

is content-based, i.e., to find this date in the HTML body of this page.

However, pages may contain no or several candidate dates to choose from;

these dates can be written in different formats and for different time zones,

etc. In some other cases, a web page’s publication date can be considered

equal to the date of the first crawl of that page. However, due to resource
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constraints, not all websites are re-crawled frequently enough to make it

possible to detect new pages immediately after their publication.

The proposed algorithm combines content-based methods of date ex-

traction with link-based methods. The first stage of the algorithm is to

extract candidate dates from the URL and the HTML body of each page

and choose the most probable publication date from among the candidates.

For some pages, it is possible to detect highly reliable anchor dates, which

will be fixed for the rest of the algorithm. For some other pages, candidate

dates can also be extracted, but they are less reliable, and their estimates

can be improved at the third stage; such dates are called seed dates. For

the rest of the pages, content-based date extraction is simply impossible.

At the second stage of our algorithm, we choose approximate dates for

all pages without the seed or anchor dates. For this, we use and compare

several date propagation methods, where we iteratively propagate known

dates using, for instance, averaging over the neighbors.

The obtained initial dates can further be improved at the third stage

by our likelihood optimization method based on the model [24]. In [24],

the publication dates of web pages are used to predict the evolution of

the Web link structure. Here we do the reverse operation, i.e., we use

the recency-based model to estimate the publication dates of web pages.

Given only the currently observed link structure, we apply “reverse engi-

neering” to reveal the whole process of the Web’s evolution. Namely, we

find such publication dates which maximize the probability that the web

graph observed in reality is produced by this model.

The particular model we assume has several parameters. For each page

p, we have the number of outgoing links mp, its intrinsic quality qp, and the

publication time tp. Besides these page-specific parameters, we also have

the rate of attractiveness decay λ, an auxiliary constant c (c > λ), and the

number of pages n. At the beginning, we have n pages and no links between

them. Each page p has its publication time tp. Then, for each page p, we

generate mp outgoing links. All links are modeled as mutually independent

random variables that determine their target pages. The probability of a

page r to be chosen as a target page for a link from a page p is proportional

to the relative attractiveness of r according to p, which is a function of qr
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(intrinsic quality of r) and the age difference ap,r for the pages p and r,

that is, tp − tr. Note that in the model the difference ap,r can be negative,

i.e., there is a possibility of an edge between p and r with tp < tr. In a real

web graph such a link can be added at a moment t > tr if p was updated

at t. The attractiveness function is defined as follows:

attr(qr, ap,r) =

qr · e−λap,r ·
(

1− e−cap,r

2

)
if ap,r > 0 ,

qr · e−λap,r · e
cap,r

2 if ap,r < 0 .
(8)

First of all, the attractiveness of r is proportional to its quality. Second, the

attractiveness decreases with the age of r, i.e., older pages are less popular.

These two multipliers are proposed and motivated in [24]. The third mul-

tiplier is the sigmoid function that replaces the indicator 1ap,r>0 from [24].

This is done to make the probabilities of edges differentiable. The sigmoid

also allows us to avoid degenerate likelihood since all probabilities become

greater than zero.

We use this model to estimate the publication dates of web documents.

Namely, we are given an oriented graph (nodes are the web documents

and edges are the links between them), and we assume that this graph is

constructed according to the procedure described above. We are given the

observed values of some parameters (the numbers of outgoing links mp and

some anchor publication dates tp). We want to find the rest of the unknown

values to maximize the probability that the observed graph is constructed

under the described model. The parameters with unknown values are the

rate of attractiveness decay λ, the constant c, the qualities of all pages qp,

the publication times for non-anchor pages tp.

We optimize the unknown parameters using gradient descent. The for-

mulas for the likelihood and its derivatives can be found in [39].

In the paper, we evaluate the proposed algorithm on two datasets: the

web crawled dataset obtained by Yandex (4M pages from 70 hosts) and

the MemeTracker public dataset consisting of blog posts and news articles

(12M pages from 250K hosts).

Detection of high-degree nodes in large networks

The results of this section are based on the paper [5].
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We address the problem of quick detection of high-degree entities

(nodes) in large online social networks. The entities can be, for exam-

ple, users, interest groups, user categories, geographical locations, etc. For

instance, one can be interested in finding a list of Twitter users with many

followers or Facebook interest groups with many members. The practical

importance of this problem is attested by many companies that continu-

ously collect and update statistics about popular entities, usually using the

degree of an entity as an approximation of its popularity.

With the full search, one can find top-k in-degree nodes in a directed

graph G of size N with O(N) complexity. For very large networks, even

such linear complexity is a too high cost to pay. Furthermore, the data of

social networks is typically available only to managers of social networks

and can be obtained by other interested parties only through API (Ap-

plication Programming Interface) requests, while the rate of allowed API

requests is usually very limited.

Formally, let V be a set of N entities, typically users, that can be

accessed using API requests. Let W be another set of M entities (possibly

equal to V ). We consider a bipartite graph (V,W,E), where a directed

edge (v, w) ∈ E, with v ∈ V , and w ∈ W , represents a relation between

v and w. For instance, for the Twitter graph, V is a set of Twitter users,

W = V , and (v, w) ∈ E means that v follows w or that v retweeted a

tweet of w. Note that any directed graph G = (V,E) can be represented

equivalently by the bipartite graph (V, V, E). One can also suppose that

V is a set of users and W is a set of interest groups, while the edge (v, w)

represents that the user v belongs to the group w. Our goal is to quickly

find the top in-degree entities in W .

Let n be the allowed number of requests to API. Our algorithm consists

of two steps. We spend n1 API requests on the first step and n2 API

requests on the second step, with n1 + n2 = n.

First step We start by sampling uniformly at random a set A of n1

nodes v1, . . . , vn1 ∈ V , the nodes are sampled independently. For each node

in A, we record its out-neighbors in W . In practice, we bound the number

of recorded out-links by the maximal number of IDs that can be retrieved

within one API request. Thus the first stage uses exactly n1 API requests.
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For each w ∈ W , we identify S[w], which is the number of nodes in A that

have a (recorded) edge to w.

Second step We use n2 API requests to retrieve the actual in-degrees

of the n2 nodes with the highest values of S[w]. The idea is that the

nodes with the largest in-degrees in W are likely to be among the n2 nodes

with the largest S[w]. For example, if we are interested in the top-k in-

degree nodes in a directed graph, we hope to identify these nodes with high

precision if k is significantly smaller than n2.

In [5] we empirically demonstrate that our algorithm outperforms other

known methods by a large margin. For instance, we need only one thousand

API requests to find the top-100 most followed users, with more than

90% precision, in the online social network Twitter with approximately

a billion registered users. An important contribution of this work is the

analysis of the proposed algorithm using Extreme Value Theory — a branch

of probability that studies extreme events and properties of largest order

statistics in random samples. Using this theory, we derive an accurate

prediction for the algorithm’s performance. We show that the number of

API requests for finding the top-k most popular entities is sublinear in the

number of entities. Moreover, we formally show that the high variability

of the entities, expressed through heavy-tailed distributions, is the reason

for the algorithm’s efficiency.

Analysis of graph-based nearest neighbor search

The results of this section are based on the paper [41].

Let us discuss another important practical application of graph analysis.

Many methods in machine learning, pattern recognition, coding theory,

and other research areas are based on nearest neighbor search (NNS). In

particular, the k-nearest neighbor method is included in the list of top 10

algorithms in data mining [46]. Since modern datasets are mostly massive

(both in terms of the number of elements n and the dimension d), reducing

the computation complexity of NNS algorithms is of the essence. The

nearest neighbor problem is to preprocess a given dataset D so that for an

arbitrary forthcoming query vector q, we can quickly (in time o(n)) find

its nearest neighbors in D.
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Many efficient methods exist for the NNS problem. Recently, graph-

based approaches were shown to demonstrate superior performance over

other types of algorithms in many large-scale applications of NNS [4]. Most

graph-based methods are based on constructing a nearest neighbor graph

(or its approximation), where nodes correspond to the elements of D, and

each node is connected to its nearest neighbors by directed edges. Then,

for a given query q, one first takes an element in D (either random or

fixed predefined) and makes greedy steps towards q on the graph: at each

step, all neighbors of a current node are evaluated, and the one closest

to q is chosen. Various heuristics were proposed to speed up graph-based

search [29].

While there is much evidence empirically showing the superiority of

graph-based NNS algorithms in practical applications, there is very little

theoretical research supporting this. We make a step in this direction. Our

analysis assumes the uniform distribution on a sphere, and we mainly focus

on the dense regime d� log n.

Formally, assume that we are given a dataset D = {x1, . . .xn}, xi ∈ Rd+1

and assume that all elements of D belong to a unit Euclidean sphere, D ⊂
Sd. This special case is of particular importance for practical applications

since feature vectors are often normalized. For a given query q ∈ Sd let

x̄ ∈ D be its nearest neighbor. The aim of the exact NNS is to return x̄,

while in c, R-ANN (approximate near neighbor), for given R > 0, c > 1,

we need to find such x′ that ρ(q,x′) 6 cR if ρ(q, x̄) 6 R. By ρ(·, ·) we

denote a spherical distance.

We assume that the elements xi ∈ D are i.i.d. random vectors uniform-

ly distributed on Sd. Random uniform datasets are considered to be the

most natural “hard” distribution for the ANN problem. Hence, obtaining

theoretical guarantees for such datasets is an important step towards un-

derstanding the limits and benefits of graph-based NNS algorithms.1 We

further assume that a query vector q ∈ Sd is placed uniformly within a dis-

tance R from the nearest neighbor x̄ (since c, R-ANN problem is defined

conditionally on the event ρ(q, x̄) 6 R).

1From a practical point of view, real datasets are usually far from being uniformly distributed. How-

ever, in our experiments we show that uniformization and densification applied to a general dataset may

improve some graph-based NNS algorithms [41].
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We assume that the dimensionality d = d(n) grows with n. We distin-

guish three fundamentally different regimes in NN problems: dense with

d� log(n); sparse with d� log(n); moderate with d = Θ(log(n)).

Assuming that we have constructed a graph G on the elements of D and

we are given a query q, we sample a random element x ∈ D and perform

a graph-based greedy descent: at each step, we measure the distances

between the neighbors of a current node and q and move to the closest

neighbor, while we make progress.

Plain NN graphs

We first investigate how this greedy search over NN graphs works in

dense and sparse regimes. In the dense regime, when d� log(n), we take

any M > 1 and let G(M) be a graph obtained by connecting xi and xj iff

ρ(xi,xj) 6 arcsin
(
M n−1/d

)
. We prove the following theorem.

Theorem 17. Assume that log log n � d � log n and we are given some

constant c > 1. Let M be a constant such that M >
√

4c2

3c2−1, then, with

probability 1 − o(1), G(M)-based NNS solves c, R-ANN for any R (or the

exact NN problem if c = 1); time complexity is Θ
(
d1/2 · n1/d ·Md

)
= no(1);

space complexity is Θ
(
n · d−1/2 ·Md · log n

)
= n1+o(1).

In other words, for the dense regime, the main term of the time com-

plexity is n1/d · Md for some constant M . Here Md corresponds to the

complexity of one step and n1/d to the number of steps.

In the sparse regime, when d � log(n), for any M , 0 < M < 1,

let G(M) be a graph obtained by connecting xi and xj iff ρ(xi,xj) 6

arccos

(√
2M lnn

d

)
. The following theorem holds.

Theorem 18. For any c > 1 let αc = cos
(
π
2c

)
and let M be any constant

such that M < α2
c

α2
c+1. Then, with probability 1 − o(1), G(M)-based NNS

solves c, R-ANN (for any R and for spherical distance); time complexity of

the procedure is Θ
(
n1−M+o(1)

)
; space complexity is Θ

(
n2−M+o(1)

)
.

Interestingly, as follows from the proof, in the sparse regime, the greedy

algorithm converges in at most two steps with probability 1 − o(1) (on a

uniformly distributed dataset).
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Effect of long-range edges

According to the discussion above, if d �
√

log n (very dense setting),

the number of steps becomes the main term of time complexity. In this

case, it is reasonable to reduce the number of steps by adding so-called

long-range links (or shortcuts) — some edges connecting elements that are

located far from each other — which may speed up the search on early

stages of the algorithm.

Our approach to adding such long-range links is motivated by

Kleingerg’s analysis [19], where a 2-dimensional grid supplied with some

random long-range edges is considered. Kleinberg assumed that in addition

to the local edges, each node creates one random outgoing long link, and

the probability of a link from u to v is proportional to ρ(u, v)−r. He proved

that for r = 2, the greedy graph-based search finds the target element in

O
(
log2 n

)
steps, while any other r gives at least nϕ steps with ϕ > 0. This

result can be extended to constant d > 2: in this case, one should take

r = d to achieve polylogarithmic number of steps.

Following [19], we draw long-range edges with the following probabili-

ties:

P(edge from u to v) =
ρ(u, v)−d∑
w 6=u ρ(u,w)−d

. (9)

Theorem 19. Under the conditions of Theorem 17, sampling Θ(log n)

independent long-range edges for each node according to (9) reduces the

number of steps to O(log n) (with probability 1− o(1)).

Importantly, in contrast to [19], we assume d→∞. Theorem 19 implies

that long-range edges allow to guarantee O (log n) steps, while plain NN

graphs give Θ
(
n1/d

)
. Hence, reducing the number of steps is reasonable if

log n < n1/d, which means that d < log n
log log n .

However, it is non-trivial how to apply Theorem 19 in practice due to

the dependence of probabilities in (9) on d: real datasets usually have

a low intrinsic dimension even when embedded to a higher-dimensional

space [27], and the intrinsic dimension may vary over the dataset. Thus,

it is hard to choose a proper value of d in (9).

However, as we discuss in [41] in more detail, one can make the distri-

bution in (9) dimension-free. For this, we reformulate the probabilities in
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terms of ranks instead of distances. Let us sort all the elements by their

closeness to some element u. Then, we define the following probability of

adding an edge from u to another element:

P(edge to k-th neighbor) =
1/k∑n
i=1 1/i

∼ 1

k lnn
. (10)

This distribution is dimension independent and for uniform d-dimensional

datasets it gives the same guarantees as (9).

Effect of beam search

Beam search is a heuristic algorithm that explores a graph by expanding

the most promising element in a limited set. It is widely used in graph-

based NNS algorithms as it drastically improves the accuracy [29]. The

following theorem shows that beam search provably reduces graph-based

NNS complexity in our setting.

Theorem 20. Let M > 1, L > 1 be such constants that M 2
(

1− M2

4L2

)
> 1

and let log log n � d � log n. Assume that we use beam search with
C Ld√
d

candidates (for a sufficiently large C) and we add Θ(log n) long-range

edges. Then, G(M)-based NNS solves the exact NN problem with probabil-

ity 1− o(1). The time complexity is O
(
Ld ·Md

)
.

As a result, beam search allows us to significantly reduce degrees of a

graph, which finally leads to time complexity reduction. To show that,

we can take M =
√

3
2 and any L >

√
9
8 . Then, the main term of the

time complexity can be reduced to
(

27
16

)d/2
, which is less than 2d/2 from

Theorem 17.

Conclusion

This thesis is based on published papers [5, 13, 15, 20, 21, 24, 35, 36,

37, 38, 39, 40, 41, 42, 43].

In papers [13, 20, 21, 24, 35, 36, 37, 38, 40], we analyze the properties

of existing models of complex networks and develop new realistic models

with desirable quantitative and topological properties.
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In papers [15, 42, 43], we study several aspects of community detection:

the choice of a null model for likelihood-based community detection, com-

munity detection based on cascade data, and the problem of choosing a

proper validation index for community detection algorithms.

In papers [5, 25, 41], we discuss other applications of graph analysis:

likelihood-based publication date estimation, detecting high-degree ver-

tices in large complex networks, and theoretical analysis of graph-based

algorithms for nearest neighbor search.

The main results submitted for defense are the following:

• A new class of Generalized Preferential Attachment models and theo-

retical results obtained for all models in this class (degree distribution,

local and global clustering coefficients, and degree correlations).

• A general statement that the global clustering coefficient tends to zero

with size for all graphs with a power-law degree distribution with an

infinite variance (assuming that the degrees are sampled independent-

ly).

• Theoretical analysis of modularity for d-regular, preferential attach-

ment, and spatial preferential attachment graphs.

• A novel principle called preferential placement that allows for gen-

erating structures with a power-law distribution of cluster sizes; the

analysis of the obtained structures.

• A new model called recency-based preferential attachment and the

analysis of its properties.

• Analysis of likelihood-based community detection algorithms based on

different null models; new ILFR model for this task.

• Systematic analysis of community detection based on information

propagation; new effective methods for this problem.

• Theoretical analysis of performance measures for community detection

algorithms.
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• A new algorithm for dating web pages based on likelihood optimiza-

tion under the recency-based model.

• A new algorithm for quick detection of high-degree nodes in complex

networks.

• Theoretical guarantees for graph-based nearest neighbor search algo-

rithms.
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