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Introduction

0.1 Integrable field theories, integrable structures of CFT

As was pointed out by Zamolodchikov [Zam89] there is a natural relation between integrable and
conformal field theories. Namely having an integrable field theory it is always possible to consider
its ultraviolet (UV) limit which is controlled by conformal field theory (CFT). The infinite tower of
Integrals of Motion Is(λ) in this limit splits into two independent family of Integrals of Motion defined
in a purely CFT terms.

Is(λ) = Is +O(λ), I−s(λ) = Īs +O(λ),

here λ is a scale parameter and turns to zero in a UV limit, Is and Īs are two decoupled integrable
systems acting in the space of holomorphic and antiholomorphic fields correspondingly. More im-
portantly, as explained in [Zam89] it is often possible to recover the massive integrable field theory
out of integrable structure of CFT. The integrable systems in CFTs is much more simple than the
ones in massive integrable field theories, and so, the study of integrable structures in CFT serves as a
good playground to understand the space of Integrable quantum field theories (IQFT). In particular
the integrable structures of CFTs plays an important role in [Lit19], [LV20] and allows to guess new
integrable Toda field theories, and provide a duality between them and Integrable sigma models.

Despite the great simplifications complete diagonalization of chiral Integrals of Motion (IOMs) is
yet a nontrivial problem. The study of integrable structure of conformal field theory began with the
seminal series of papers of Bazhanov, Lukyanov and Zamolodchikov (BLZ) [BLZ96, BLZ97, BLZ99]
devoted to study of quantum KDV integrable system, which appears in the UV limit of sine-Gordon
theory. In particular, the set of generating functions for local and non-local Integrals of Motion
has been explicitly constructed. Unfortunately the construction of [BLZ96, BLZ97, BLZ99] does not
known to provide by itself any equations for the spectrum of the Integrals of Motion.

New ideas appear since the discovery of Ordinary Differential Equation/Integrable Model (ODE/IM)
correspondence [DT99a, BLZ01, DT99b]. Using this approach and bunch of analytic intuition, Bazhanov,
Lukyanov and Zamolodchikov [BLZ04] were able to express the spectrum of the local IOMs in terms
of solutions of certain algebraic system of equations. Later these equations were generalized for some
other integrable structures, such as Fateev models or quantum AKNS model (see [KL20] for the list of
all known cases). Despite the obvious success of BLZ program, it is still unclear where the algebraic
equations of [BLZ04] come from, and whether they can be easily generalized for other models of CFT.

In this thesis we develop a parallel approach based on the affine Yangian symmetry. The advantage
of this approach is that it fits in general framework of the quantum inverse scattering method, provides
Bethe ansatz equations for the spectrum and allows to treat a lot of integrable structures in a unified
way. Being originally formulated geometrically [Var00, Nak01, MO19], it can be rephrased entirely
algebraically in CFT terms1. In [LV20], using this algebraic approach, we studied the integrable
structures in CFT related to Y

(
ĝl(1)

)
, the affine Yangian of gl(1) [Tsy17]. These integrable structures

describe W algebras of An type and its super-algebra generalizations and can be viewed as twist

1For the modern review of the geometric approach and more advanced topics see Andrei Okounkov’s summer lecture
course sites.google.com/view/andrei-okounkov-lecture-course/home.

https://sites.google.com/view/andrei-okounkov-lecture-course/home
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deformations of the quantum Gelfand-Dikii hierarchies (quantum ILWtype integrable systems). We
also were able to study integrable structures of W algebras of BCD type, by realising corresponding
integrable systems as an affine Yangian ”spin chain” with boundaries [LV21].

Affine Yangian of gl(1) admits two different descriptions: the current realisation which is useful in
studying the spectrum and Bethe eigenfunctions, and the so called Chevalley description in terms of
generators of W1+∞ algebra. The second description is more useful in study of the local Integrals of
Motion. In order to clarify the structure of W algebra, it may be useful to study its q-deformation.
The q-deformations of W algebras have been provided in [AKOS96] for type A, and in [FR97] for
simple Lie algebras. The deformations of the local IOMs associated to W algebras of type A were
constructed in [KOJ06], [FJM17]. In the third chapter we review the q-deformation of W algebras
defined as a commutant of screenings and provide a construction for a q-deformation of local integrals
of motion of arbitrary high spin for W algebras of type B,C,D.

Chiral Integrals of Motion, example. In order to clarify the ideas above, let us consider an
example of classical Sinh-Gordon model living on a cylinder of length L = 2π and defined by the
action:

S =

∫ (
1

π

(
∂zϕ∂z̄ϕ

)
+ λ cosh

(
2bϕ

))
d2z, (0.1.1)

where z = x+ iy, z̄ = x− iy are the complex coordinates.
The theory is known to contain an infinite tower of Integrals of Motions:

∂z̄Ts+1 = λ∂zΘs−1, ∂zT−s−1 = λ∂z̄Θ−s+1, s ≥ 1

Is(λ) =

∫
dx

2π

(
Ts+1 − λΘs−1

)
.

In the classical limit the first few IOMs are given by the following formulas:

T2 = (∂zϕ)
2 , Θ0 = 2πλ cosh(2bϕ) (0.1.2)

T4 = (∂zϕ)
4 + b−2(∂2zϕ)

2 , Θ2 = 4πλ (∂zϕ)
2 cosh(2bϕ), (0.1.3)

which should be corrected at the quantum level. One may already see that in the UV limit (λ→ 0) Θs

vanishes, and we are left with the chiral mutually commuting Integrals of Motion Is
def
= Is(0). It may

also be shown (see for eg [FF95]) that that the classical chiral Integrals of Motion may be selected by
the condition of the Poisson commutativity with the screenings

{Is,Si} = 0,

where

S1 =
∮
e2bϕ(z)

dz

2π
, S2 =

∮
e−2bϕ(z) dz

2π
.

It turns out that the quantization of chiral integrable system may be defined very directly. Namely,
following the ideas of Zamolodchikov [Zam89] developed in [LF91] and also [FF96] we will postulate
the following formula for the chiral Integrals of Motion in the quantum case2:

[Is,Si] = 0, (0.1.4)

and

S1 =
∮
e2bϕ(z)

dz

2π
, S2 =

∮
e−2bϕ(z) dz

2π
.

2Strictly speaking, the commutator in the LHS is not well defined, as the contour of integration is not closed for
the general values of the zero mode of the field ϕ(z). We, nevertheless, make this inaccuracy, the proper definition is
explained below (see (0.1.6), (0.1.7)).
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We would like to stress out that the rigorous quantization and definition of the IOMs for the full
massive integrable model with non zero λ is far more non trivial problem, which we don’t even touch
in this thesis.
Let us be more precise, we are working in a second quantisation picture, ϕ(z) is the free bosonic field:

∂ϕ(z) = u+
∑

n 6=0

ane
inz, [an, am] =

m

2
δm,−n. (0.1.5)

The field ϕ(z) acts in the standard Fock space Fu:

Fu = {C[a−1, a−2, . . . ]|∅〉},
an|∅〉 = 0, for n > 0,

a0|∅〉 = u.

We will search for the Integrals of Motion of fixed spin s, as an integrals of local densities
Is =

∫ 2π
0 Gs+1(∂ϕ(z), ∂

2ϕ(z), . . . ) dz2π , which are polynomials in ∂ϕ and its derivatives. We further

introduce two vertex operators V±(z) = e±2bϕ(z), the equations (0.1.4) then reads as a conditions on
the coefficients in the operator product expansion:

V±(w)Gs+1(z) = reg +
∂X

(1)
s (z)

z − w +
∑

k≥2

X
(k)
s (z)

(z − w)k , (0.1.6)

or equivalently: ∮

z

V±(w)Gs+1(z)
dw

2π
= ∂X(1)

s (z), (0.1.7)

whereX
(k)
s (z) are some local fields. Equations (0.1.4) then is nothing but a system of a linear equations

on a coefficients of density Gs+1. Direct computation provides for the first few Integrals of Motion:

G2 =: (∂zϕ(z))
2 :

G4 =: (∂zϕ)
4 : +(Q2 + 1) : (∂2zϕ)

2 :

G6 =: (∂zϕ)
6 : −5

8
: (∂ϕ)4 : +5(Q2 + 2)

(
: (∂2zϕ)

2∂zϕ
2 : − 1

24
: (∂2ϕ)2 :

)
+
(
Q4 +

8

3
Q2 +

19

12

)
: (∂2ϕ)2 :

G8 =
(
: (∂zϕ)

8 : + . . .
)
,

here Q = b+ 1
b , and ” : : ” denotes the Wick normal ordering.

While I3 and I5 obviously commute with the I1 which plays the role of grading operator, the
commutativity of I3 and I5 is not obvious but straightforward to check. Note that this densities
coincide with densities Ts (0.1.2),(0.1.3) in the semiclassical limit b→∞ as it should be.

More generally, one can consider the tensor product of n Fock spaces Fu1 ⊗ · · · ⊗ Fun and the
corresponding n-component bosonic field ϕ(z) = (ϕ1, . . . , ϕn)

3:

∂ϕj(z) = uj +
∑

n 6=0

a(j)n einz, [ain, a
j
m] = mδi,jδm,−n,

and affine set of screenings corresponding to an affine Lie algebra ĝ.

Sr =
∮
eb(αr·ϕ(z)) dz

2π
,

3Note that commutation relation of bosonic modes a
(i)
n are different from ones defined previously in case of a single

field (0.1.5). This is because the Sinh-Gordon model is an Â1 Toda and in (0.1.1) we already decouple the U(1) center
of mass U = ϕ1+ϕ2

2
, and left with a single bosonic field ϕ = ϕ1−ϕ2

2
.
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where αr have scalar products corresponding to the Dynkin diagram of an affine Lie algebra ĝ:
(αr · αs) = cr,s. The Integrals of Motion can be again found as the intersection of kernels of all the
screenings [LF91], [FF96]:

[Is,Sr] = 0.

In this thesis we will consider in details the cases of ĝ = Ân and ĝ = B̂n, Ĉn, D̂n. The existence of
a grading operator I1 among the Integrals of Motion allows to restrict the IOMs on a finite dimen-
sional space I1 = N , such that they becomes a finite dimensional matrices. Nonetheless their exact
diagonalization is by far a non trivial problem. Our strategy in analysing this problem is to identify
corresponding integrable systems with integrable ”spin chains” with the symmetry of affine Yangian,
and then apply to them a machinery of algebraic Bethe ansatz.

0.2 Thesis results

The main results of chapters 1 and 2 are the Bethe ansatz equations and the Bethe eigenvectors,
which provide a diagonalization of the chiral integrals of motion obtained as a UV limit of the Toda
integrable system.

• For the An case we derive the Bethe ansatz equations for the spectrum of the local (1.1.13) and
KZ (1.4.2) Integrals of Motion:

q
∏

j 6=i

3∏

α=1

xi − xj − ǫα
xi − xj + ǫα

n∏

k=1

xi − uk + ǫ3
xi − uk

= 1 for all i = 1, . . . , N, (0.2.1)

here we used Nekrasov epsilon notations ǫ1 ∼ b−1, ǫ2 ∼ b, ǫ3 ∼ −Q, see formula (1.3.7) for
details. Corresponding Bethe vectors are given by the formula (1.4.19).

• For the BCD case we derive the boundary Bethe ansatz equations for the spectrum of the local
(2.2.1),(2.2.5) and KZ (2.3.8) Integrals of Motion:

rα(xi)r
β(xi)A(xi)A

−1(−xi)
∏

j 6=i
G(xi − xj)G−1(−xi − xj) = 1,

G(x) =
(x− ǫ1)(x− ǫ2)(x− ǫ3)
(x+ ǫ1)(x+ ǫ2)(x+ ǫ3)

, A(x) =
n∏

k=1

x− uk + ǫ3
2

x− uk − ǫ3
2

, rα(x) = −x+ ǫα/2

x− ǫα/2
.

(0.2.2)

And the Bethe vectors are defined in (2.4.5).

Another important results include:

• explicit computation of the current realisation (1.3.9) of the RLL algebra with Maulik-Okounkov
[MO19] R−matrix.

• three different solutions Ki (2.3.5)-(2.3.6) of the Sklyanin’s KRKR relation with the Maulik-
Okounkov [MO19] R−matrix.

In chapter 3 we studied Integrals of Motion for the q-deformed W algebras.

• We provide explicit formulas for the Integrals of Motion of the q-deformed W algebras of BCD
type (3.4.23).

• We construct the q-deformed versions of the reflection R and K operators (3.5.1).
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0.3 Thesis review

This section is a short guide through the thesis, which contains main statements and ideas. The thesis
consists of three chapters. The chapter 1 of the thesis is devoted to the study of ĝl1 affine Yangian
and related integrable systems. We studied in details the connection between the RLL algebra and
its current realisation. We derive the local Integrals of Motion for W algebras of type A (1.1.13) and
corresponding Bethe ansatz equations (1.4.17) for their spectrum. In the chapter 2 we introduce the
Integrals of Motion of BCD type (2.2.1),(2.2.5), and studied their spectrum by means of the boundary
Bethe ansatz of the affine Yangian. We provide three different solutions K1,2,3 of the Sklyanin’s KRKR
equation (2.3.5)-(2.3.6), and the Bethe ansatz equations (2.4.7) for the spectrum of the local Integrals
of Motion. In the chapter 3 we studied the q-deformation of the Local and KZ Integrals of Motion.
We provide explicit formulas for the q-deformed versions of the local Integrals of Motion of arbitrary
high spin (3.4.23) for the q-deformed W algebras of type BCD.

W algebras and Maulik-Okounkov R−matrix. In section 1.2 we recall the definition of our
main tool the Maulik-Okounkov R−matrix [MO19] as a unique (up to a normalisation factor) solution
of the intertwining relation:

Ri,j
(
Q∂ − ∂ϕi

)(
Q∂ − ∂ϕj

)
=
(
Q∂ − ∂ϕj

)(
Q∂ − ∂ϕi

)
Ri,j , (0.3.1)

where the product of two brackets is a Miura-Gelfand-Dikii transformation [FL88, Luk88] which defines
generators of W algebra. Multiplying the brackets in different orders we obtain two isomorphic but
not identical W algebras

(
Q∂ − ∂ϕj

)(
Q∂ − ∂ϕi

)
= (Q∂)2 +W (1)(z)(Q∂) +W (2)(z),

(
Q∂ − ∂ϕi

)(
Q∂ − ∂ϕj

)
= (Q∂)2 + W̃ (1)(z)(Q∂) + W̃ (2)(z)

The operator Ri,j then intertwines the two W algebras and acts in the tensor product of two Fock
representations of Heisenberg algebra with the highest weight parameters ui and uj

Fui ⊗Fuj
Ri,j−→ Fui ⊗Fuj

and its matrix depends on the difference ui − uj . Then, by considering W3 algebra generated by the
product of three terms

(
Q∂−∂ϕ1

)(
Q∂−∂ϕ2

)(
Q∂−∂ϕ3

)
, we immediately obtain from the definition

(0.3.1) that the Ri,j(ui − uj) matrix satisfies the Yang-Baxter equation

R1,2(u1 − u2)R1,3(u1 − u3)R2,3(u2 − u3) = R2,3(u2 − u3)R1,3(u1 − u3)R1,2(u1 − u2),

and hence the whole machinery of quantum inverse scattering method can be applied.

RLL algebra and its current realisation. In section 1.3 we introduce an RLL algebra:

Rij(u− v)Li(u)Lj(v) = Lj(v)Li(u)Rij(u− v). (0.3.2)

The left and right hand sides of this equation both act in the tensor product of three Fock spaces
Fui ⊗Fuj ⊗Fq. The Rij(ui−uj) matrix acts in the product of two Fock spaces Fui ⊗Fuj , and Li(ui)
operator acts in Fui ⊗ Fq. Hence the RLL algebra (0.3.2) may be considered as an infinite set of
quadratic relations between the matrix elements of L−operator, labeled by two partitions

Lλ,µ(u)
def
= 〈u|aλL(u)a−µ|u〉 where a−µ|u〉 = a−µ1a−µ2 . . . |u〉.

It is well known that the commutation relations of RLL algebras could be rewritten in an equivalent
current form, see [DF93] where such an analysis was performed for Uq(gl(n)). In this thesis we
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provide similar analysis for the case of Maulik-Okounkov R−matrix. We conjecture that the RLL
algebra (0.3.2) factorized over its center is related to the Yangian of ĝl(1) considered by Tsymbaliuk
in [Tsy17]. This is similar to the well known fact that the Yangians of gl(n) and of sl(n) are differ by
central elements [KS82]. We will usually refer to the RLL algebra as Yang-Baxter algebra and denote
as YB

(
ĝl(1)

)
, reserving the notation Y

(
ĝl(1)

)
for Tsymbaliuk’s algebra.

Our methods are similar to the analysis performed in [DF93]. We introduce three basic currents
of degree 0, 1 and −1 (see appendix A.2 for more details)

h(u)
def
= L∅,∅(u), e(u)

def
= h−1(u) · L∅,2(u) and f(u)

def
= L2,∅(u) · h−1(u),

as well as an auxiliary current (as we will see (1.3.9a) it also belongs to the Cartan subalgebra of
YB
(
ĝl(1)

)
)

ψ(u)
def
=
(
L2,2(u−Q)− L∅,2(u−Q)h−1(u−Q)L2,∅(u−Q)

)
h−1(u−Q). (0.3.3)

The direct computation (provided in the appendix A.2) allows to rewrite the RLL commutation
relations (0.3.2) in terms of e, f, h currents. The results are presented at the beginning of section
1.3.1. There also exists an inverse mapping which allows to express Lλ,µ(u) operators in terms of
e, h, f, ψ currents. In particular there is an important for us formula

Lλ,∅(u) =
1

(2πi)|λ|

∮
· · ·
∮
Fλ(z|u)h(u)f(z|λ|) . . . f(z1)dz1 . . . dz|λ| (0.3.4)

where Fλ(z) is a concrete function and contours go clockwise around ∞ and all poles of Fλ(z). This
formula and recurrent definition of function Fλ(z) is explained in the appendix A.3, see formulas
(A.3.8),(A.3.10).

ǫ- notations. It is easy to note that quantum Integrals of Motion depends only on combination
Q = b+ 1

b and not b, b−1 themselves. Which results in a very well known symmetry b→ b−1. As can
be seen for example in [Tsy14], defining relations of affine Yangian algebra are symmetric under all
three parameters b, b−1 and Q parameters4. For this reason it will be more convenient to use Nekrasov
epsilon notations rather than Liouville notations. Formally, they are obtained by replacing central
charge parameter

b→ ǫ2√
ǫ1ǫ2

, b−1 → ǫ1√
ǫ1ǫ2

, Q→ − ǫ3√
ǫ1ǫ2

=⇒ ǫ1 + ǫ2 + ǫ3 = 0.

Note that without loss of generality it is always possible to put ǫ1ǫ2 = 1.

Center of YB(ĝl(1)) The section 1.3.2 is insufficient for the understanding of the main results of
the thesis. In this section we show that the algebra YB(ĝl(1)) contains an infinite dimensional center.
Namely for any singular vector |s〉 of Wn algebra acting in the space of n bosons we assign a central
element Ds (1.3.21). First element of this series is related to the operator ψ(u) (0.3.3) as

D1,1(u) = ψ(u)
h(u)h(u+ ǫ3)

h(u− ǫ1)h(u− ǫ2)
.

ψ(u) =
〈s1,1|L1(u)L2(u+ ǫ3)|s1,1〉

h(u)h(u+ ǫ3)
,

4For the case of KDV and ILW integrable systems this symmetry is broken by a particular choice of Fock represen-
tation.
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where
|s1,1〉u def

=
(
a
(1)
−1 − a

(2)
−1

)
|∅〉u ⊗ |∅〉u+ǫ3

is a singular vector of a W algebra which appears in the tensor product of two Fock spaces Fu1 ⊗Fu2
at special value of spectral parameters u2 = u1 + ǫ3.
In general, for the singular vector |s〉 ofWn algebra acting in the space of n Fock spaces F1(u1) . . .Fn(un)5
we may define a Cartan current acting on a quantum space as

hs = 〈s|L1(u− u1) . . .Ln(u− un)|s〉.

And the operator:

Ds =
hs(u)

n∏
i=1

h(u− vi)
(0.3.5)

is central.

Zero twist integrable system. In section 1.3.3 we considered the integrable system with zero
twist q = 0. In this case twist deformed transfer matrix Tq turns to the h(u) current introduced in
previous section. The spectrum and eigenbasis of h(u) is very simple and may be written explicitly.
For example for a representation in the tensor product of n Fock spaces: Fx1⊗· · ·⊗Fxn the eigenbasis
is enumerated by the collection of n Young diagrams ~λ = {λ(1), . . . λ(n)} and known as a basis of
generalised Jack polynomials. The eigenvalues may be conveniently written in terms of contents of
the Young diagrams

h(u)|~λ〉 =
∏

2∈~λ

(u− c2)
(u− c2 − ǫ3)

|~λ〉.

For a cell 2 = (i, j) the content c2 is defined as

c2 = xk − (i− 1)ǫ1 − (j − 1)ǫ2.

We proof that explicit formulas for the action of e, f generators in the eigenbasis of h are given by the
formulas (1.3.29):

e(u)|~λ〉 =
∑

2∈addable(~λ)

E(~λ, ~λ+2)

u− c2
|~λ+2〉,

f(u)|~λ〉 =
∑

2∈removable(~λ)

F (~λ, ~λ−2)

u− c2
|~λ−2〉,

(0.3.6)

where the amplitudes E(~λ, ~λ+2) and F (~λ, ~λ−2) are given by the formulas

E(~λ, ~λ+2) =
ǫ1ǫ2
ǫ3

∏

2′∈~λ+2

S−1(c2′ − c2)
n∏

k=1

(c2 − xk + ǫ3)

(c2 − xk)
,

F (~λ, ~λ−2) =
∏

2′∈~λ−2

S(c2 − c2′), (0.3.7)

with

S(x) =
(x+ ǫ1)(x+ ǫ2)

x(x− ǫ3)
.

This formulas plays the crucial role in definition of Bethe vector, study of its matrix elements.

5Note that a singular vector may exist only if evaluation parameters ui are not arbitrary, but they are restricted by
some resonance conditions.
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Transfer matrix and ILW Integrals of Motion. At the beginning of section 1.4 we recall that
the transfer matrix defined by

Tq(u) = Tr
(
qL

(0)
0 R0,1(u− u1)R0,2(u− u2) . . .R0,n−1(u− un−1)R0,n(u− un)

)∣∣∣
Fu

,

admits the following large u expansion

Tq(u) = Λ(u, q) exp

(
1

u
I1(q) +

1

u2
I2(q) + . . .

)
,

where Λ(u, q) is a normalization factor and I1 and I2 are the first ILWn Integrals of Motion.

I1(q) =
iQ

2π

∫ [
1

2

n∑

k=1

(∂ϕk)
2

]
dx,

I2(q) =
iQ

2π

∫ 
1
3

n∑

k=1

(∂ϕk)
3 +Q


 i

2

∑

i,j

∂ϕiD∂ϕj +
∑

i<j

∂ϕi∂
2ϕj




 dx,

I3(q) =
iQ

2π

∫ [
1

4

n∑

k=1

(∂ϕk)
4 + . . .

]
dx,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

where (Q = − ǫ3√
ǫ1ǫ2

), and D is the non-local operator whose Fourier image is

D(k) = k
1 + qk

1− qk .

Now let us define KZ Integral of Motion as Tq(u) operator at the special value of the parameter u = u1.
Using the fact that R0,1(0) = P0,1 is a permutation operator, one finds for the KZ IOM:

IKZ
1 (q)

def
= Tq(u1) = qL

(1)
0 R1,2(u1 − u2)R1,3(u1 − u3) . . .R1,n(u1 − un).

The rest of this section is aimed to show that the simultaneous spectrum of KZ and first few local
Integrals of Motion is governed by Bethe ansatz equations (0.2.1).

Special vector |χ〉, definition of Bethe vector. In section 1.4.1 we define the Bethe vector
B(x) which turns to the eigenvector of corresponding integrable system after imposing the Bethe
equations. In order to define Bethe vector we introduce the tensor product of n+N Fock spaces, with
n “quantum” and N “auxiliary” spaces

Fu1 ⊗ · · · ⊗ Fun︸ ︷︷ ︸
quantum space

⊗Fx1 ⊗ · · · ⊗ FxN︸ ︷︷ ︸
auxiliary space

generated from the vacuum state

|∅〉x ⊗ |∅〉u = |x1〉 ⊗ · · · ⊗ |xN 〉 ⊗ |u1〉 ⊗ · · · ⊗ |un〉.

We then searched for the Bethe vector in the form6:

|B(x)〉u def
=x〈∅|R(x,u)|χ〉x ⊗ |∅〉u where R(x,u) = Rx1u1 . . .RxNu1 . . .Rx1un . . .RxNun ,

6This definition is similar to the very general approach investigated in [AO17] (in particular this construction is
explained in section 1.3.3 of [AO17]).
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here |χ〉x is some vector in auxiliary space. The convenient choice for the vector |χ〉 is to choose it
equal to an eigenvector of zero twist integral of motion h(u) acting on auxiliary Fock space. Among
the various eigenvectors the simplest one is (see (1.4.4) for details)

|χ〉x def
= |2, . . . ,2︸ ︷︷ ︸

N

〉 ∼
∮

xN

dzN · · ·
∮

x1

dz1 e(zN ) . . . e(z1)|∅〉x.

Alternatively vector |χ〉x is fixed (up to proportionality factor) as an eigenvector of zero twist integrable
system with concrete eigenvalue

h(u)|χ〉x =
N∏

k=1

u− xk
u− xk − ǫ3

|χ〉x.

Explicit computation of Bethe vector and its properties. Here we continue to describe the
results of section 1.4.1. A direct consequence of (0.3.6),(0.3.7) implies a convenient formula :

x〈∅|f(zN ) . . . f(z1)|χ〉x = Symx

(
N∏

a=1

1

za − xa
∏

a<b

S(xa − xb)
)
,

where Symx means the symmetrization over the xi variables. Together with the formula (0.3.4) for an
L-operators in terms of f and h currents it allows to explicitly compute the matrix elements of Bethe
vector - the so called weight functions:

ω~λ(x|u)
def
= u〈∅|a(1)

λ(1) . . . a
(n)

λ(n) |B(x)〉u =x〈∅|Lλ(1),∅(u1) . . .Lλ(n),∅(un)|χ〉x.

After the straightforward computation we get

ω~λ(x|u) =
1

(2πi)N

∮
· · ·
∮

Ω~λ(~z|u) Symx

(
N∏

a=1

1

za − xa
∏

a<b

S(xa − xb)
)
d~z,

where function

Ω~λ(~z|u) = F~λ(~z|u)




|λ(1)|∏

j=1

u2 − z(1)j

u2 − z(1)j − ǫ3






|λ(2)|∏

j=1

u3 − z(2)j

u3 − z(2)j − ǫ3

|λ(1)|∏

j=1

u3 − z(1)j

u3 − z(1)j − ǫ3


 . . .

. . .




|λ(n−1)|∏

j=1

un − z(n−1)
j

un − z(n−1)
j − ǫ3

|λ(n−2)|∏

j=1

un − z(n−2)
j

un − z(n−2)
j − ǫ3

· · ·
|λ(1)|∏

j=1

un − z(1)j

un − z(1)j − ǫ3




The integral shrinks to the points x and one obtains explicit formula (see (1.4.14) for details)

ω~λ(x|u) = Symx

(
Ω~λ(~x|u)

∏

a<b

S(xa − xb)
)
.

The simplicity of this formula explains our choice of vector |χ〉.

Diagonalization of local and KZ Integrals of Motion. Using the computation methods de-
scribed above, in sections 1.4.2,1.4.4 we were able to compute the action of local and KZ Integrals of
Motion on a Bethe vector. Namely we were able to prove that upon the Bethe equations:

q
∏

j 6=i

3∏

α=1

xi − xj − ǫα
xi − xj + ǫα

n∏

k=1

xi − uk + ǫ3
xi − uk

= 1 for all i = 1, . . . , N,
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the Bethe vector becomes an eigenvector of KZ integral of motion IKZ
1 = qL

(1)
0 R1,2R1,3 . . .R1,n−1R1,n,

with eigenvalue:

t1q(u) =
N∏

k=1

xk − u1
xk − u1 + ǫ3

.

And also becomes an eigenvector of Local integral of motion I2:

−ǫ3
∫ 
1
3

√
ǫ1ǫ2

∑

i

(∂φi)
3 − ǫ3


1

2

∑

i,j

∂φiD(q)∂φj +
∑

i<j

∂φi∂
2φj




 dx
2π
− ǫ3I1(q)

2
− ǫ3

3

√
ǫ1ǫ2

∑

i

u3i ,

with eigenvalue
( N∑

1
xk

)
. We were also able to write explicitly the solution (1.4.19) of a difference

Knizhnik-Zamolodchikov (KZ) (1.4.20) and Okounkov-Pandharipande (OP) (1.4.32) equation in terms
of Bethe vector. This finishes the review of the first chapter.

Integrable structure of B,C,D conformal field theory. The second chapter is devoted to the
study of integrable structure of B,C,D conformal field theory and its relation to boundary Bethe
ansatz of affine Yangian.
In section 2.2 we introduce the affine Toda QFT associated to an affine Lie algebra g of BCD type.
We recall that Integrals of Motion can be found as a commutant of the affine set of screenings:

Sr =
∮
eb(αr ·ϕ(z) dz

2π
, (0.3.8)

[Is,Sr] = 0,

where vectors αr have the Gram matrix of BCD type affine Lie algebra and b = ǫ2√
ǫ1ǫ2

is the coupling
constant.

D̂n

B̂n

B̂∨
n

Ĉn

Ĉ∨
n

B̂Cn

Using the standard parametrization for the roots one can express the scalar products in the exponents
in (0.3.8) as

(α0 ·ϕ) =





−ϕ1

−2ϕ1

−ϕ1 − ϕ2

(αr ·ϕ) = ϕr − ϕr+1 for 0 < r < n, (αn ·ϕ) =





ϕn

2ϕn

ϕn−1 + ϕn

That is each of the affine diagrams can be interpreted as non-affine An−1 diagram with two boundary
conditions which can be of three types B, C or D corresponding to the short root, the long root or the
root of the length

√
2 correspondingly.
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As in the first chapter, we will search local Integrals of Motion in terms of integrals of local

densities Is =
2π∫
0

Gs+1(z)
dz
2π . First few local Integrals of Motion can be computed explicitly by solving

the equation
1

2πi

∮

z
eb(αr·ϕ(ξ))Gs+1(z)dξ = ∂Xs(z),

where Xs(z) is some local field. The first non trivial density has the form

G4(z) =
(
∂ϕ · ∂ϕ

)2 − 1

3

(
2n− ǫα + ǫβ

ǫ3

) n∑

k=1

(
∂ϕk

)4
+

+
4ǫ3√
ǫ1ǫ2

n∑

k=1

∂ϕ2
k


∑

j<k

(
j − 1 +

ǫ3 − ǫα
2ǫ3

)
∂2ϕj −

∑

j>k

(
n− j + ǫ3 − ǫβ

2ǫ3

)
∂2ϕj


+

+

(
2n+

4(n− 1)(ǫ21 + ǫ22)

3ǫ1ǫ2
+

(ǫ1ǫ2 − 2ǫ23)(ǫα + ǫβ − 2ǫ3)

3ǫ1ǫ2ǫ3

)(
∂2ϕ · ∂2ϕ

)
−

− 4ǫ23
ǫ1ǫ2

∑

i≤j

(
i− 1 +

ǫ3 − ǫα
2ǫ3

)(
n− j + ǫ3 − ǫβ

2ǫ3

)
(2− δij)∂2ϕi∂2ϕj , (0.3.9)

here α, β = {1, 2, 3} for the B,C or D type of endings correspondingly.

Sklyanin’s K−matrix of affine Yangian. The crucial step in understanding the relation of this
integrable structure to the boundary affine Yangian is to introduce reflection K−matrix. This is done
in section 2.3. The idea is to consider reflection operator K as an intertwining operator of W algebra,
analogically to how it was done for the R−matrix (0.3.1).

Let us introduce two currents of W4 algebra acting in the space of two bosonic Fock modules
Fu1 ⊗Fu2 :

W (2) = (∂ϕ1)
2 + (∂ϕ2)

2 +
2ǫ3√
ǫ1ǫ2

∂2ϕ1 +
ǫ3 − ǫα√
ǫ1ǫ2

(∂2ϕ2 + ∂2ϕ1)

and

W (4) = (∂ϕ1)
2(∂ϕ2)

2 +
2ǫ3√
ǫ1ǫ2

∂ϕ1∂ϕ2∂
2ϕ2 +

ǫ3 − ǫα√
ǫ1ǫ2

(
(∂ϕ1)

2∂2ϕ2 + (∂ϕ2)
2∂2ϕ1

)
−

− ǫ3ǫα
ǫ1ǫ2

(∂2ϕ1)
2 +

(ǫ3 − ǫα)2
ǫ1ǫ2

∂2ϕ1∂
2ϕ2 −

(ǫ1 − ǫα)(ǫ2 − ǫα)
2ǫ1ǫ2

(
∂ϕ1∂

3ϕ1 + ∂ϕ2∂
3ϕ2

)
−

− ǫ3(ǫ3 − ǫα)
ǫ1ǫ2

(
∂ϕ1∂

3ϕ1 − ∂ϕ1∂
3ϕ2

)
+

ǫ3√
ǫ1ǫ2

(
ǫα(ǫ3 − ǫα)

2ǫ1ǫ2
− ǫ23
ǫ1ǫ2

− 1

3

)
∂4ϕ1

where α = 1, 2, 3 correspond to the W algebras of types B, C or D correspondingly.
By definition the R and K operators are defined by the following intertwining relations:

R1,2W
(s) =W (s)

∣∣∣∣∣
ϕ1↔ϕ2

R1,2, K2W
(s) =W (s)

∣∣∣∣∣
ϕ2→−ϕ2

K2, (0.3.10)

for s = 2, 4. The R1,2 operator is identified with the Maulik-Okounkov R−matrix defined earlier
(0.3.1) R1,2 = R[∂ϕ1 − ∂ϕ2], while K2 is also equal to the MO R−matrix of the re-scaled argument

K1
2 = R[

√
2∂ϕ2]

∣∣∣
ǫ1→

√
2ǫ1,ǫ2→ǫ2/

√
2

for B series

K2
2 = R[

√
2∂ϕ2]

∣∣∣
ǫ1→ǫ1/

√
2,ǫ2→

√
2ǫ2

for C series

K3
2 = Id for D series
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Note that the simplest K operator is very explicit K3
2 = Id and it does not depend on spectral

parameter.

Now, similar to the argument of Maulik and Okounkov, the K−operator obeys Sklyanin’s KRKR
equation7

R[∂ϕ1 − ∂ϕ2]Kα1R[∂ϕ1 + ∂ϕ2]Kα2 = Kα2R[∂ϕ1 + ∂ϕ2]Kα1R[∂ϕ1 − ∂ϕ2]. (0.3.11)

KZ Integrals of Motion. In section 2.3.1 we have defined KZ Integrals of Motion:

T +
i = Ri,i+1 . . .Ri,nKαi Ri,n . . .Ri,i+1,

T −
i = Ri,1 . . .Ri,i−1Kβi R1,̄i . . .Ri−1,̄i,

IKZ
i = T −

i T +
i (0.3.12)

where the barred index ī means the conjugation by the operator of sign reflection Di

Dif(ϕ) = f(ϕ)
∣∣∣
ϕi→−ϕi

Di,

Ri,j̄ = DjRi,jDj = R[∂ϕi + ∂ϕj ],

Rī,j = DiRi,jDi = R[−∂ϕi − ∂ϕj ],

Their mutual commutativity is provided by KRKR equation (0.3.11)

[IKZ
i , IKZ

j ] = 0.

We also proved a commutativity between KZ and local Integrals of Motion [Is, IKZ
i ] = 0 which follows

from the intertwining relations (0.3.10) (see (2.3.9) for details)

T +
i Is = Is

∣∣∣
ϕi→−ϕi

T +
i , T −

i Is

∣∣∣
ϕi→−ϕi

= Is T −
i .

Of-shell Bethe vector. The section 2.4 goes in parallel to the section 1.4.1 where we considered
the type A integrable structures. We introduce a product of n + N Fock spaces where the first n
products is a quantum Fu Fock space and the second N products is an auxiliary Fock space Fx

Fun ⊗ · · · ⊗ Fu1︸ ︷︷ ︸
quantum space

⊗Fx1 ⊗ · · · ⊗ FxN︸ ︷︷ ︸
auxiliary space

= Fu ⊗ Fx.

We then define two types of L− operators (2.4.1),(2.4.2), and Ku|x operator fixed by the recurrent
relations (2.4.4).

Finally we define an of-shell Bethe vector by the formula (see (2.4.5) for details)

|B(x)〉 =x〈∅|L̄vKxLv|∅〉v|χ〉x =x〈∅|Kv|x|∅〉v|χ〉x, (0.3.13)

where |χ〉x is the same vector as in the first chapter (1.4.4). The definition of Bethe vector may be

7Let us note that originally [Skl88] the KRKR equation was written in a quite different form:

R1,2(u1 − u2)K̃1(u1)R2,1(u2 + u1)K̃2(u2) = K̃2(u2)R1,2(u1 + u2)K̃1(u1)R2,1(u1 − u2).

The difference is actually insufficient as the two equations are differ by the redefinition of K−operator and overall
conjugation by the reflection of bosonic modes a1,2n → −a1,2n , n 6= 0
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illustrated by a picture:

|∅〉

∅ ∅∅∅∅∅∅∅

u1u2u3

x1

x2

x3

un−1un

|B(x)〉 =

|χ〉x

In the beginning of section (2.5) we suggest to interpret the Bethe vector |B(x)〉 as a product of some

L−operators L(un) . . .L(u1) sandwiched between bra and ket states 〈Kx| and
∣∣∣χ
∅

〉
x
, see the picture

below. This bra and ket vectors then should live in the tensor product of the Fock space and its dual
Fx ⊗F⋆x.

|∅〉

∅ ∅∅∅∅∅∅∅

u1u2u3

x1

x1

x2

x2

x3

x3

un−1un

|B(x)〉 =

〈Kx| L(u2)

|χ〉x

∣∣∣χ
∅

〉
x

Strange module. In section 2.5 we observe that modified operators L obeys the same RLL com-
mutation relations:

Rij(u− v)Li(u)Lj(v) = Lj(v)Li(u)Rij(u− v).

And we still can define h
def
= L∅,∅,e

def
= h−1L∅,2,f

def
= L2,∅h

−1 operators.

The difference is that L−operators act in the tensor product of Fock module and its dual Fx⊗F⋆x.
This representation for the L−operator doesn’t have a highest weight, however the action of h(z) still
can be diagonalized, the eigenvectors of h(u), ψ(u) in Fx⊗F⋆x are enumerated by the collection of 2N

Young diagrams and denoted by
∣∣∣
~λ
~µ

〉
. The eigenvalues are given by the formulas:

h(u)
∣∣∣
~λ
~µ

〉
=
∏

2∈~λ

(u− c2)
(u− c2 − ǫ3)

∏

2∈~µ

(u− c2 − ǫ3)
(u− c2)

∣∣∣
~λ
~µ

〉
,

where

c2 = xk − (i− 1)ǫ1 − (j − 1)ǫ2, for 2 = (i, j) ∈ ~λ,
c2 = −ǫ3 − xk + (i− 1)ǫ1 + (j − 1)ǫ2, for 2 = (i, j) ∈ ~µ.
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One can also find the action of e, f currents:

e(u)
∣∣∣
~λ
~µ

〉
=

∑

2∈addable(~λ)

E
(~λ → ~λ+2

~µ → ~µ

)

u− c2

∣∣∣
~λ+2

~µ

〉
+

∑

2∈removable(~µ)

E
(~λ → ~λ
~µ → ~µ−2

)

u− c2

∣∣∣
~λ

~µ−2

〉
,

f(u)
∣∣∣
~λ
~µ

〉
=

∑

2∈removable(~λ)

F
(~λ → ~λ−2

~µ → ~µ

)

u− c2

∣∣∣
~λ−2

~µ

〉
+

∑

2∈addable(~µ)

F
(~λ → ~λ
~µ → ~µ+2

)

u− c2

∣∣∣
~λ

~µ+2

〉
.

The E,F coefficients are given in (2.5.3),(2.5.4). Note that now operators e, f not only add or remove
boxes, but do both.

Reflection property of the 〈K| state. The final ingredient which allows to calculate the matrix
elements of Bethe vector the so called of-shell Bethe functions is the formula which describe the action
of the operator f on the state 〈K|. In section 2.5.2 we derive the following reflection properties (2.5.11):

〈K|h(u) = 〈K|h(−u)
〈K|f(u) = r(u)〈K|f(−ǫ3 − u),

with

r(u− ǫ3/2) = −
u+ ǫ3/2

u− ǫ3/2
for the D case,

r(u− ǫ3/2) = −
u+ ǫi/2

u− ǫi/2
for the BC case,

where in the last line i = 1 corresponds to the B case and i = 2 corresponds to the C case.

This formula allows to compute the coupling between 〈K| and |
~λ
~µ

〉
state (2.5.2),(2.5.2).

Diagonalization of KZ and local IOMs. In section 2.5.3 we derive the Bethe ansatz equation
for the diagonalization of KZ Integrals of Motion:

BAE(x)
def
= rα(xi)r

β(xi)A(xi)A
−1(−xi)

∏

j 6=i
G(xi − xj)G−1(−xi − xj) = 1,

G(x) =
(x− ǫ1)(x− ǫ2)(x− ǫ3)
(x+ ǫ1)(x+ ǫ2)(x+ ǫ3)

, A(x) =
n∏

k=1

x− uk + ǫ3
2

x− uk − ǫ3
2

, rα(x) = −x+ ǫα/2

x− ǫα/2
.

(0.3.14)

We also prove that the on-shell Bethe vector with shifted x parameters |B(x− ǫ3
2 )〉 are the eigenvectors

of KZ IOMs IKZ
i (0.3.12):

IKZ
i |B(x− ǫ3

2
)〉 BAE(x)=1

=
∏

a

(ui +
ǫ3
2 )

2 − x2a
(ui − ǫ3

2 )
2 − x2a

|B(x− ǫ3
2
)〉. (0.3.15)

Equations (0.3.14) and (0.3.15) together with the explicit form of off-shell Bethe vector (0.3.13) are
the main results of the second chapter.

In contrast to the A case we will not provide a proof for the diagonalization of local Integrals of
Motion, however we conjectured and checked numerically the formula for eigenvalues of
I3 =

1
2π

∫
G4(x)dx, the local density G4 is given by (0.3.9). Namely, on level N one has an eigenvalue:

Ivac3 +

(
4N − 4

n∑

k=1

u2k
ǫ1ǫ2

+
ǫ21 + ǫ22
3ǫ1ǫ2

(
2n− ǫα + ǫβ

ǫ3

))
N +

4

ǫ1ǫ2

(
2n− ǫα + ǫβ

ǫ3

) N∑

k=1

x2k,

where Ivac3 =u 〈∅|I3|∅〉u - is the vacuum expectation value.
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More general integrable systems. One may note that affine Yangian commutation relations
(1.3.9) are symmetric with respect to permutations of all ǫα. Nevertheless Bethe Ansatz equations

(0.3.14) are not symmetric in all ǫα, because of the source term A(x) =
n∏
k=1

x−uk+ ǫ3
2

x−uk− ǫ3
2

. In fact this

symmetry is broken by a choice of a particular Fock representation, in order to restore the symmetry
back one should introduce three types of Fock modules Fα (see [FJMM13, BFM18, LS16]). The whole
machinery then may be applied to associate an integrable system to the chain of colored Fock spaces

with two colored boundaries βL

∣∣∣Fα1
1 ⊗ Fα2

2 · · · ⊗ Fαn
n

∣∣∣βR , αi, βL,R = 1, 2, 3. The corresponding

systems of screenings are summarised in picture (B.1). We present the details in Appendix B.1, here

we just mention a particular interesting model given by: 1
∣∣∣F1

1 ⊗ F3
2 · · · ⊗ F1

2n−1 ⊗ F3
2n

∣∣∣3. This model

provides a UV limit for the (dual of) O(2n+1) sigma model considered in [LS18]. Similarly the model

3
∣∣∣F3

1 ⊗F1
2 · · · ⊗ F3

2n+1

∣∣∣3 provides the UV limit of O(2n) sigma model.

q-deformation of local and KZ IOMs. In the last chapter we provide the q-deformation of objects
considered in first two chapter. In section 3.2 we review the definition of the q-deformed W algebra as
a commutant of the screenings. In section 3.3 we provide a construction of a commutant of affine set of
screenings, it turns out that in a q-deformed case the commutant can be found explicitly. We provide
explicit formulas for q-deformed Integrals of Motion of arbitrary high spin (3.4.23) for W algebras of
BCD cases, and considered in details an example of affine Lie algebra of type D in section 3.4. We
found that all W algebras of BCD case fits into the same scheme, which allows to introduce a new
algebra K which unifies the W algebras of type BCD. The detailed study of algebra K is reported in
paper [FJMV21], while in this thesis we restrict ourselves to a more elementary approach. Finally in
section 3.5 we provide a construction for a q-deformed versions of R and K reflection operators, as
well as q-deformed KZ IOMs.

The results of the thesis are based on three publications.

1. Alexey Litvinov; Ilya Vilkoviskiy. Liouville reflection operator, affine Yangian and Bethe ansatz.
JHEP, 12:100, 2020.

2. Alexey Litvinov; Ilya Vilkoviskiy. Integrable structure of BCD conformal field theory and boundary
Bethe ansatz for affine Yangian. JHEP, 141 (2021).

3. B. Feigin, M. Jimbo, E. Mukhin and I. Vilkoviskiy. Deformation of W algebras via quantum toroidal algebras.
Selecta Mathematica, 27(4):1-62, 2021
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