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Let X be a projective algebraic variety defined over a field k. The set of invertible algebraic
self-maps f: X — X forms the group Aut(X) of regular automorphisms. Given a regular automor-
phism f: X — X one can consider its graph:

I'y={(z, f(z))|ze X} C X xX.

It is a subvariety of X x X such that the projections pr;: I'y — X are isomorphisms for 7 = 1
and 2. More generally, we may consider the set of all birational self-maps f: X --» X. Such maps
are determined by a subvariety I'y of X x X such that both projections pr;: I'y — X induce an
isomorphism between a Zariski open subset of I'y onto a Zariski open subset of X. Then for any
point € X one can define its total image: it is the set f(z) = pra (Ff N prl_l(m)). A birational
automorphism may have indeterminacy locus: it is an algebraic subvariety Ind(f) C X such that
the total image of any point p € Ind(f) has positive dimension. If X is normal then one has
codim(Ind(f)) > 2. The union of all irreducible subvarieties Z C X such that dim(f(Z)) < dim(Z)
is called the ezceptional locus of f and we denote it by Exc(f) € X. When X is smooth, then Exc(f)
is of pure codimension 1. The composition of two birational automorphisms remains birational hence
the set of all birational automorphisms Bir(X) also forms a group.

By construction Aut(X) is a subgroup in Bir(X). Moreover, by [Han87] both groups Aut(X)
and Bir(X) have natural structures of k-schemes. Namely, any regular or birational automorphism f
of X is determined by a subscheme I'y in X x X and Aut(X) and Bir(X) can be considered as
subschemes in the Hilbert scheme Hilb(X x X).

Note that the composition of maps in Aut(X) induces a natural structure of a group scheme.
Denote by Aut(X)° the connected component of the identity map idx: X — X. It is a group
scheme of finite type and Aut(X) fits into the following exact sequence of groups:

1 — Aut(X)? — Aut(X) — Aut(X)/Aut(X)° — 1.

The quotient group Aut(X)/Aut(X)? is a constant group scheme over k associated to at most
countable abstract group with an action of the Galois group of k. Thus, the study of automorphisms
of X can be reduced to the understanding of Aut(X)° and of the quotient group Aut(X)/ Aut(X)°.

It is a fact that Bir(X) cannot be in general endowed with a structure of a group scheme, see
[Han87, Remark 2.9]. Complexity of groups Aut(X) and Bir(X) highly depends on the geometry
of the algebraic variety X defined over the field k. We will cover various problems on Aut(X) and
Bir(X) in this thesis, and roughly explore the differences and similarities between these two groups.

If X is a smooth curve, then Aut(X) = Bir(X) and one can understand the structure of this
group very well. For simplicity let us here discuss the case where k is algebraically closed. First,
if the genus of X is zero, then X = P! and Aut(X) = PGLy(k). If the genus of X equals 1
then X is an elliptic curve and the group of points of X (k) form a subgroup of finite index in
the group Aut(X), see [HKTO8, Theorem 11.94]. If the genus of X equals g > 2 then by Hur-
witz theorem Aut(X) is a finite group, see [HKTOS8, Theorem 11.50], and its cardinality is at
most 84(¢g — 1) when the characteristic of k equals 0. In the case when the characteristic of k
is positive there are also uniform bounds for the cardinality of Aut(X) depending only of the genus
of X, see [HKTO08, Theorem 11.127].

If dim(X) > 2 then Aut(X) does not coincide with Bir(X) in general. For instance, if X is
a projective space P} over a field k, then Aut(X) = PGLy41(k). The group Cr,(k) of birational
automorphisms of P}, so-called Cremona group of rank n, is much bigger than the group of regular
automorphisms Aut(Py) if n > 2. In particular, if we consider Cr, (k) as a k-scheme then it has
infinitely many components and their dimensions are not bounded, see [BF13].



On the other hand there are many varieties X for which the groups Aut(X) and Bir(X) co-
incide. Varieties satisfying this condition are said to be birationally super-rigid. If we assume
that X is a minimal model, i.e. that the canonical class Kx of X is nef, and if there are no other
minimal models in the birational class of X then one has Aut(X) = Bir(X). Important classes of
such varieties include abelian varieties and minimal surfaces of non-negative Kodaira dimensions,
see [BHPVAV04, Theorem VI.1.1]. If dim(X) > 3 we know fewer examples of birationally super-
rigid varieties. If X is a variety of general type then by [HMX13|] the cardinality of Bir(X) can be
bounded solely in terms of the dimension and volume of the canonical class, thereby generalizing
Hurwitz theorem. Therefore, there exists a birational model X of X such that Aut(X) = Bir(X).
In [BCHMTIO) there is a construction of such variety X, it is the canonical model of X. If the Kodaira
dimension of a variety X is negative, then X does not admit a minimal model. However, among
these varieties, some of them are still birationally super-rigid. It is a deep fact due to [IM71] that
any smooth quartic hypersurface in P4 is a birationally super-rigid Fano threefold. More examples
of such phenomenon have been subsequently found, see, e.g., [Puk9g|, [dF13], [CP17].

Given a variety X, the construction of its minimal model is the subject of the minimal model
program (MMP). The idea of this method is to single out curves intersecting negatively Ky, and
to contract them (then maybe compose this with a small birational transformation). The result of
MMP is a model X of one of the following types:

e X is a minimal model of X i.e. the canonical class Kx, is nef;

o there exists a dominant morphism 7: X¢ — B where dim(B) < dim(X), the rank of the
relative Picard group Pic(X)/7* Pic(B) equals 1 and the relative anticanonical class —K x, /5
is ample.

Recall that the variety X as in the second case and with a restriction on its singularities is called
a Mori fiber space. The case when we get a Mori fiber space corresponds to the situation when X
admits no minimal model; nevertheless, MMP produces a model of X with nice properties which
can be used in the study of birational and regular automorphisms of X.

Here is a brief list of the main topics of this thesis.

In the first chapter, we focus on the description of finite subgroups of Bir(X) when X is a ra-
tionally connected complex threefold. We shall also describe Aut(X) when X is a quasi-projective
surface defined over a field k such that char(k) > 0. One of the main ingredients here is MMP,
which allows us to reduce questions about finite subgroups of Bir(X) to classifying groups of auto-
morphisms of very special algebraic varieties that arise as the final result of MMP.

In the second chapter we consider birational automorphisms of infinite order, and try to un-
derstand when it is possible to construct a birational model where the induced automorphism is
regular. We are mainly interested in the example of a birational automorphism of a rational three-
fold introduced by J. Blanc in [Blal3]. The main result here is that it is not conjugate to a regular
automorphism. Approach which we take in this part is dynamical in nature, and the action of
birational maps on the cohomology groups plays an important role.

Finally the third chapter is concerned with the description of the automorphism groups of non-
Kéhler manifolds introduced by D. Guan [Gua94] and further studied by F. Bogomolov [Bog96].
These manifolds are non-Kéahler analogues of hyperkéhler manifolds; thus, we expect that their
properties are similar. By Bogomolov’s construction these manifolds fiber over the projective space
with abelian varieties as generic fibers; thus, algebraic tools can be used to study their geometry.



1. Finite groups of automorphisms

In this section, we summarize the results that will be presented in the first chapter of this thesis.
Recall that the Cremona group Cr, (k) of rank n is the group of birational automorphisms of
the projective space P. Two striking results about the Cremona group of rank 2 were nearly
simultaneously published in 2009. On the one hand, I. Dolgachev and V. Iskovskikh in [DI09] gave
a complete classification of all finite subgroups of Cry(C). On the other hand, J.-P. Serre in [Ser09]
proved that the group Cra(k) satisfies the Jordan property for any field & of characteristic 0.

Definition 1.1. A group I is said to satisfy the Jordan property if there exists J > 0 such that
any finite subgroup G C T' contains a normal abelian subgroup A C G with [G : A] < J.

Serre subsequently conjectured that the Cremona group of any rank satisfies the Jordan prop-
erty over a field of characteristic 0. Serre’s conjecture was proved by Yu. Prokhorov and C.
Shramov in [PS16]: they established the Jordan property for Cremona groups of all ranks over a
field of characteristic 0 assuming the Borisov—Alexeev-Borisov conjecture which was later proved
by C. Birkar in [Bir21]. The Serre’s conjecture inspired study of Jordan property for automor-
phisms groups of different varieties. An interesting statement of this type was proved by V. Popov
in [Pop11], Theorem 2.32]: he showed that in characteristic 0 the group of birational automorphisms
of a surface satisfies the Jordan property for all but concretely described birational classes of sur-
faces. Then S. Meng and D.-Q. Zhang in [MZ18] showed that the Jordan property holds for groups
of regular automorphisms of all projective varieties over a field of characteristic 0. The Jordan prop-
erty was also established for groups of regular automorphisms of Kahler manifolds and manifolds in
Fujiki class €, see [KimI8] and [MPZ20(]. Groups of birational automorphisms of complex surfaces
and threefolds were also proved to be Jordan, see [PS21a], [PS20], [PS21b]. Also T. Bandman
and Yu. Zarkhin in [BZ15] showed that the group of regular automorphisms of a quasi-projective
complex surface always satisfies the Jordan property.

Some of these results are true over a field k of positive characteristic p. For instance, Prokhorov
and Shramov managed to show that the Cremona group Cra(k) is Jordan if & is a finite field.
However, if k is an algebraically closed field of positive characteristic the situation is much harder.
Actually, many Lie groups over such field do not satisfy the Jordan property. In view of this F. Hu
suggested the following analogue of the Jordan property:

Definition 1.2 ([Hu20, Definition 1.6]). We say that a group I' is p-Jordan, if there exist con-
stants J(I") and e(T") depending only on I' such that any finite subgroup G C T contains a normal

abelian subgroup A with
(G Al < J(D) - |Gy,

where G, is a Sylow p-subgroup of G.

This definition was motivated by the work of M. J. Larsen and R. Pink [LP11] in which they
established the p-Jordan property for the group GL,, (Fp) for any prime number p and any n > 0.
Then Hu proved in [Hu20] that the group of regular automorphisms of any projective variety over
a field of characteristic p > 0 satisfies the p-Jordan property. Moreover, Y. Chen and C. Shramov

in [CS21] generalized Popov’s result to positive characteristic; namely, they proved that the group



of birational automorphisms of an algebraic surface over an algebraically closed field of charac-
teristic p > 0 satisfies the p-Jordan property for all but concretely described birational classes of
surfaces. The birational type of the surface S when Bir(S) is not Jordan is if S is the product P! x E
where F is an elliptic curve.

We study finite subgroups in groups of automorphisms of quasi-projective surfaces, thereby
extending Bandman and Zarkhin’s theorem to positive characteristic. Here is the first result of the
thesis:

Theorem 1.3. If S is a quasi-projective surface defined over a field of characteristic p > 0, then
the group Aut(S) is p-Jordan.

The idea of the proof is the following. Since the subgroup of a p-Jordan group is p-Jordan then
in view of Chen and Shramov’s result the theorem can be reduced to the case when S is birationally
equivalent to the product P! x E where E is an elliptic curve. We construct a compactification
S of S and consider the Albanese map m: S — E. If there is an irreducible component of S\ S
whose image under 7 is a point on E then we prove that Aut(S) is Jordan. If S\ S consists of
multisections of 7 then we show that the action of any element of the group Aut(S) induces a
regular automorphism of S. The proof of Theorem highly relies on the fact that any unirational
curve is rational. Note that this fact is not true in higher dimensions in positive characteristic,
there exist many examples of unirational non-rational surfaces; see, for instance, [Shi74], [Kat8&1],
[Miy76].

We now turn to a more precise discussion of finite groups of birational automorphisms of pro-
jective varieties. For n > 3 a complete description of all finite subgroups of Cr,(C) is out of reach.
We shall thus focus on bounding the cardinality of the generating sets of p-subgroups in Crs(C).
Recall that if p is a prime number then a p-group is a finite group of order p™ for some m > 0.

The idea of considering such groups comes from the work [BB0OO] by L. Bayle and A. Beauville
where they classified all birational involutions of P2. Then T. de Fernex in [dF04] studied birational
automorphisms of P? of prime order, and Blanc in [Bla09] described all conjugacy classes of finite
abelian subgroups in Cry(C). Beauville in [BeaO7] proved sharp bounds on ranks of abelian p-
subgroups of Cry(C) for all prime numbers p. Prokhorov in [Proll] and [ProI4] extended this result
to dimension 3 and to a wider class of varieties; he proved bounds on the rank of abelian p-subgroups
in the group Bir(X) of birational automorphisms of any rationally connected threefold X.

Prokhorov and Shramov in [PS18] proved that if p > 17 is a prime number and X is a rationally
connected threefold, then a p-subgroup in Bir(X) is necessarily abelian, its rank is at most 3 and this
bound is sharp. In the work by J. Xu [Xu20] this result was generalized to all prime numbers p > 5.
Moreover, Prokhorov in [Prol4] gave a sharp bound on the number of generators of any 2-subgroup
in Bir(X) for a rationally connected threefold X. Thus, we have a sharp bound on the number of
generators of a p-subgroup in Bir(X) for a rationally connected threefold X and all prime numbers
except p = 3.

In our work we study the last remaining case of 3-subgroups in the group Bir(X) for a rationally
connected threefold X. Prokhorov in [Proll] proved that any abelian 3-subgroup can be generated
by at most 5 elements. We extend this result to not necessarily abelian groups and prove the
following theorem:

Theorem 1.4. Let X be a projective rationally connected complex threefold and let G be a 3-sub-
group in Bir(X). Then the following is true:

1. The group G can be generated by at most 5 elements.



2. If G cannot be generated by 4 elements, then G C Aut(Xy) where X, satisfies one of the
following properties:

(a) Xo is a Fano threefold with terminal singularities, the number of its non-Gorenstein
singular points is 9 and all these points are cyclic quotient singularities of type %(17 1,1).

(b) Xo is a Fano threefold with terminal Gorenstein singularities with Pic(Xo) = Z Kx, of
genus 7 or 10 and the number of singular points of Xg is 9 or 18.

The second assertion of Theorem relies heavily on the G-equivariant version of MMP. Recall
that the G-equivariant MMP which starts with a variety X with a faithful regular action of a finite
group GG and its result is another variety X with a regular action of G which is G-birational to X.
Moreover, X is either a minimal model or it is a G-Mori fiber space i.e. an equivariant analogue
of a Mori fiber space. Note that a rationally connected threefold cannot have a minimal model by
[KMM92].

If X is a rationally connected threefold and G is a finite subgroup in Bir(X), then one can
construct a birational model X of X such that G C Aut()? ). Then we apply G-equivariant MMP
to X with the action of G and obtain a G-Mori fiber space Xy. Thus, Theorem is a consequence
of the following proposition.

Proposition 1.5. Let G be a 3-group and let X be a G-Mori fiber space of dimension 3. Then G
can be generated by at most 4 elements unless X is a Fano threefold which satisfies properties (a)

or (b) in Theorem [L.4]

The equivariant MMP works in the class of complex threefolds with terminal singularities en-
dowed with an action of a finite group. Mori fiber spaces with terminal singularities are very well
studied. Moreover, by [Isk79], [MM82] and other works there exists a complete classification of
smooth Fano threefolds. In the proof of Proposition we use also many results on the geometry
of distinct types of Fano threefolds and on the properties of terminal singularities.

Recently Loginov in [Log2I] has studied in more details Fano varieties which satisfy proper-
ties (a) and (b) in Theorem |1.4] He was able to prove that in both cases the group G can be
generated by at most 4 elements. This leads us to the following corollary.

Corollary 1.6. Let G be a 3-subgroup in a group Bir(X) where X is a complex rationally connected
threefold. Then G can be generated by at most 4 elements and this bound is sharp.

2. Regularization of birational automorphisms

In the second chapter of this thesis we shall focus our attention on birational automorphisms of
infinite order. The set-up will be as follows. Let X be a normal projective variety defined over an
algebraically closed field k of characteristic 0. We say that a birational automorphism f: X --» X
is regularizable on Y if there exists a birational map «a: X --+ Y to a projective variety Y and
g € Aut(Y) such that the following diagram commutes:

x-Lox
| |
al o
\ g \
Y —Y



The question whether one can regularize an given birational automorphism f: X --» X becomes
increasingly difficult when dimension of X grows. In the curve case the question is trivial: any
birational automorphism is obviously regularizable. In order to recall the known results in higher
dimensions we need the following definitions.

Recall that N'(X) is the R-vector space generated by classes of irreducible subvarieties of
codimension i in X modulo numerical equivalence. Let H € N*(X) be an ample divisor class on X
and let dim(X) = d. One can define the class f*(H®) € N‘(X) by taking the class of the proper
preimage under f~! for a general subvariety in the class of H € N*(X). Then the i-th degree of f
for 0 <7 < d is defined as the following number:

deg;(f) = (f)*(H') - H*™".

By [DS05] the growth rate of the sequence (deg;(f™)),>0 is a birational invariant of the pair (X, f).
In particular, it does not depend on the choice of the ample divisor H, see also [Tru20]. Moreover,
the sequence (deg;(f™))n>0 is submultiplicative in n; thus, we can define the i-th dynamical degree
of f as:
. oy L
Ai(f) = nlgr;o (deg; (f™))™ .

By [DN11] and [Tru20] the numbers A;(f) are real, satisfy A;(f) > 1 and they are birational
invariants of the pair (X, f) for 0 < 7 < d. In particular, they do not depend on the choice of the
ample divisor H. Moreover, A1(f) = Aq(f) = 1 and dynamical degrees are log-concave i.e. one has
the following inequality for all 1 < i< d—1:

Xi—1(f) - X (F) < X))

Using the terminology coined in [BV99] we say that a birational automorphism f is of positive
entropy if for some 0 < ¢ < d one has A\;(f) > 1. This terminology is justified by the fact that
the topological entropy of f equals log (maxogi<a(Ai(f))) when f is a regular automorphism of a
compact projective complex variety by theorems of Gromov and Yomdin [Gro03] and [Yom&T], see
also [DS05]. Note that by the log-concavity of dynamical degrees one has f is a positive entropy
automorphism if and only if A\ (f) > 1.

By [Weib5] (see also [Dés21l, Section 3.5]) if the sequence (deg;(f™))n>o is bounded, then there
exists a birational model X, of X such that f is regularizable on Xy. Otherwise, one has an
additional structure associated with the automorphism f which allows us to understand better its
properties.

If dim(X) = 2 and the sequence (deg;(f™))n>0 is not bounded then by [BC16] the dynamical
degree A1(f) is an algebraic number with special properties, i.e. it is either a Salem or a Pisot
number. Moreover, by [DFQ1] if the sequence (deg;(f™))n>0 is not bounded and A;(f) = 1, then
(deg; (f™))n>0 grows as n or as n?. The birational types of complex surfaces which admit a positive
entropy birational automorphism are described in [Can99]; moreover, there exists many examples
of surface positive entropy automorphisms, see for instance [McMO07], [Bla08] and [BK(09]. The first
dynamical degree is proved to be lower semi-continuous in families of birational automorphisms of
surfaces by [Xield].

If dim(X) = 2 the growth rate of the sequence (deg;(f™))n>0 in many situations determines
whether f is regularizable or not. By [DF0I] if A;(f) = 1 then f is regularizable if and only if
the sequence (deg;(f™))n>0 is bounded or grows as n?. By [BCI6] if A\;(f) is a Salem number
then f is regularizable. Moreover, there is a more complicated criterion by [DF01]. It claims that



if A\1(f) > 1 and there exists a divisor class § on X such that f*0 = A;(f)6 and 6% = 0, then f is a
regularizable automorphism.

Positive entropy automorphisms in higher dimensions are much more complicated. Unlike the
case of surfaces a positive entropy automorphism f: X --+ X of a smooth projective variety X such
that dim(X) > 3 can preserve a fibration i.e. there can exist a dominant map 7: X --+» B to some
variety B and ¢ € Bir(B) such that 1 < dim(B) < dim(X) —1 and 7o f = gom. If f preserves a
fibration we say that it is imprimitive. By J. Lesieutre [Les18| we get that if X is a smooth complex
threefold and f: X --+ X is a positive entropy birational non-regular automorphism which can be
regularized on a variety constructed by an iterated blow-up of X in smooth subvarieties, then f is
imprimitive.

Note that for any regular automorphism f: X — X the canonical class Kx is f*-invariant.
If Kx is an ample or an anti-ample divisor, then one can use it in order to compute the dynamical
degree of f. Therefore, if X is a Fano threefold then there is no positive entropy automorphism
of X. Moreover, by Lesieutre’s result any iterated blow-up of a smooth complex Fano threefold
in smooth subvarieties admits no regular primitive positive entropy automorphism. Thus, it is
very complicated to construct an example of a primitive positive entropy regular automorphism
on a rational threefold. At the moment there is known only one example of such automorphism
described in [OT15].

Attempts to generalize regular positive entropy automorphisms of rational surfaces resulted in
constructions of birational automorphisms [BK14], [PZ14], [Blal3] which turn out to be pseudo-
automorphisms. Recall that a birational map f: X --» X of a smooth variety X is called a
pseudo-automorphism if neither f nor f~! contract any divisor in X. Note that in the case of
surfaces any pseudo-automorphism is a regular automorphism. Thus, pseudo-automorphisms form
a class of birational automorphisms which are very close to being regular. One might expect that
any pseudo-automorphism can be regularized and under appropriate assumptions this indeed is
true. however, it may be false. Here we list some known constructions of positive entropy pseudo-
automorphisms of rationally connected threefolds:

Example 2.1 ([BK14]). This example is obtained as a generalization of a surface automorphism
construction from [BK(09]. Fix a € C\{0} and a primitive third root of unity ¢ and consider the
birational automorphism of P3:

fac: P3 --» P3; fac(xo oz xs) = (021 122t 123 a:r% + Cxoxa + ToT3).

Then A1 (fa,c) = A2(fac) > 1 and f, ¢ induces a pseudo-automorphism on a blow-up of P? in several
points and curves. Moreover, f, ¢ is imprimitive and if @ # 1 then f, ¢ is non-regularizable.

Example 2.2 ([BCK14]). Let a,c be complex numbers and let f,.: P> --» P? be a birational
automorphism defined as f, . = Lq,c 0 J where

Loc(xo: @y 2o @3) = (23 : o + axz : o1 : T2 + cx3);
J(zo:xy twg:ws) = (xgt ray iyt agt).
Thus, f,.. is the composition of a regular automorphism L, . of P* and the Cremona involution J.
If @ and c satisfy a certain quadratic equation then A\i(fsc) = A2(fae) > 1 and f, . induces a
pseudo-automorphism on a blow-up of P3 in several points. Moreover, f, . is primitive and non-
regularizable.



Example 2.3 ([PZ14], [BDK], [DOS8S]). This example is obtained as a generalization of a sur-
face automorphism construction from [McMO7]. There exists a blow-up §: X — P3 of several
points p1,...,pr in P and a bilinear form (,) on the lattice H?(X,Z) which induces the structure
of the root lattice. Thus, there is a Weyl group W with a natural representation in H?(X,Z).
Moreover, for any element w € W there is a pseudo-automorphism

fw: X -+ X

such that f acts on H?(X,Z) as w. We denote by wq the Coxeter element in W. If W is an
infinite group we get that A1(fu,) = A2(fwo,) > 1 and f,, is imprimitive.

Example 2.4 ([BL15]). Let Y C P* be a smooth cubic threefold and let C; be a smooth curve of
genus 2 and degree 6 on Y. The base locus of a general pencil of hyperquadric sections containing C4
is the union C; U Cy, where (5 is a smooth curve of genus 2 and degree 6 on Y. Then there is a

birational automorphism:
Ivie, Y - Y,

such that A1 (fy,c,) = Aa(fyv,c,) > 1 and f induces a pseudo-automorphism on the subsequent
blow-up of curves C7 and C5. Moreover, f preserves the pencil of quadrics passing through C; UCy;
thus, f is imprimitive.

Example 2.5 ([Blal3]). This example is obtained as a generalization of a surface automorphism
construction from [Bla08]. Let S C P? be a smooth cubic surface. With each point p € S one
can associate a birational involution o,: P3 — P2. For any collection py,...,px of k points on S
consider the following birational automorphism:

_ .3 o3
fpl ~~~~~ Pk_oplo"'oopk']P) » P2

If the points p1,...,pr are general and k > 3 then A (fp, .. p.) = Ao(fpr,...pp) > 1 and fp, e
induces a pseudo-automorphism on a blow-up of P? in several points and curves.

Examples and are proved to be non-regularizable. Examples and are non-
primitive. Thus, we concentrate on the last example and prove that it is non-regularizable under
appropriate assumptions. Here is the main result of the second chapter of this thesis.

Theorem 2.6. Let S C P2 be a very general smooth complex cubic surface and let pi1,po,p3 be
general points on S. Then the birational automorphism fy, py ps: P2 --+ P3 described in Example
s non-regularizable and does not preserve a fibration over a surface.

There are several criteria which allow us to prove that a birational automorphism of a threefold is
non-regularizable. By [CDX21] if deg; (f™) grows as n¥ where k is odd, then f is non-regularizable;
also if A1(f) > 1 is an integer then then f is non-regularizable. By [LBI19] if X is a threefold
and if the sequence (deg(f™))n>0 grows as n* where k > 4 then f is non-regularizable. Also if
the number A;(f) does not satisfy several conditions given in [LBI9l Proposition 4.6.7, 4.7.2, 5.0.1]
then f is non-regularizable. Another criterion which does not use dynamical properties of the bi-
rational automorphism f was used to prove that Examples [2.I] and [2.2] are non-regularizable. It
is based on [BK14, Corollary 1.6] which says that if f: X --» X is a birational automorphism of
a smooth threefold X and if Y is an f-invariant surface in X such that the birational automor-
phism f|y: Y --+ Y is non-regularizable then f is non-regularizable. In both Examples and



one can find an f-invariant surface Y such that A\;(f|y) is a Pisot non-quadratic number; thus, by
[BC16] we get that f|y is non-regularizable.

All these arguments do not work in Example Thus, in order to prove Theorem [2.6] we
establish a new criterion. In order to formulate it recall that if f: X — X is a pseudo-automorphism
such that one has an inequality A1(f)? > Mo(f), then by [Trul4] there exists a unique up to
proportionality pseudo-effective divisor class 61 (f) such that:

JR01(f) = M (f)0.(f). (2.7)

Such class was successfully used in [DF01] for the necessary condition on the existence of a regu-
larization of a surface birational automorphism. Now we can formulate our criterion:

Theorem 2.8. Let f: X --+ X be a pseudo-automorphism of a smooth projective threefold X such
that

(1) Mi(f)? > Xa(f); thus, there exists a class 01(f) as in ;

(2) there exists a curve C such that 01(f) - [C] < 0;

(3) there exist infinitely many integers m > 0 such that C ¢ Ind(f~™).
Then f is non-reqularizable and it does not preserve a fibration over a surface.

Some comments are in order. By log-concavity of dynamical degrees one has A\i(f)? > Aa(f).
Thus, the condition (1) is always true either for f or for f=! since Aa(f) = A1(f~!). Condition (2)
implies that the class 61(f) is not nef and the last condition is required to avoid some situations
which we describe in the second chapter of the thesis. _

To prove Theorem we show that the pseudo-automorphism model fp, pyps: X --+ X
of fp, pa.ps constructed in [Blal3] satisfies the condition of Theorem [2.8l The first condition is
obviously true. To show the second condition we consider a curve of indeterminacy of f;,hm’m
and prove that it intersects Gl(ﬁ,lw ps) negatively. This curve is the proper transform of a line L
from P3 to X. The verification of the third condition is quite difficult; we prove that the line L
does not lie in the indeterminacy locus of f; " . using explicit formulas for the involutions oy, .
Most of our computations were done in Sage. Dealing with three involutions already makes our
proof tricky. We expect that our theorem is valid for any composition of at least three involutions
associated to general points on S.

3. Automorphisms of Bogomolov—Guan manifolds

In the third chapter of this thesis we shall explore the properties of a special class of non-Ké&hler
complex compact manifolds. These manifolds are particularly interesting in view of their similarity
with hyperkéhler manifolds. Recall that a hyperkdahler manifold is a Riemannian manifold (M, g)
equipped with three Kéhler complex structures I, J, K : TM — TM, satisfying the quaternionic
relation:

P=r=K=I1JK=-id.

Any hyperkéahler manifold is holomorphically symplectic i.e. admits a non-degenerate (2,0)-form.
Conversely, a compact holomorphically symplectic manifold is hyperkéhler, provided that it is



Kéhler. This follows from the Calabi-Yau theorem [Yau7g|, see also [Bea83]. A hyperkdhler mani-
fold M is called irreducible holomorphic symplectic (IHS) if it is compact, complex, simply connected
and the group H*%(M) is 1-dimensional.

An example of non-Kéhler manifolds which are very close to IHS manifolds was constructed in
several papers by D. Guan [Gua94], [Gua95al and [Gua95b]. Later F. Bogomolov in [Bog96] gave a
more geometric construction for these manifolds. We recall here the main steps of the Bogomolov’s
construction.

Let S be a primary Kodaira surface, i.e. a smooth complex compact holomorphic symplectic
surface which admits a structure of an isotrivial elliptic fiber space:

S —=E,

over an elliptic curve E such that any algebraic subvariety in S is either a point or a fiber of . All
fibers of 7 are isomorphic to an elliptic curve F. The map 7 induces a structure of F-torsor on S.
Denote by #l™: §"l — B the induced map beetween Douady spaces of length n of S and E
respectively. Denote by Alb: E[" — E the Albanese morphism of the algebraic variety E!" which
is isomorphic to the symmetric power Sym"(E). The following variety

W = (x") (A H(0))

is a complex manifold with an action of F induced from the diagonal action of F' on S[™. Then
by [Bog96l Corollary 4.10] under appropriate conditions on the Kodaira surface S there exists a
smooth, compact, complex, simply connected manifold @ such that the group H*°(Q) is generated
by a non-degenerate holomorphic symplectic form and which is a finite cover of W/F":

p: Q — W/F.

If n = 2 then @ is a K3-surface; if n > 3 then @ is a non-Kéhler (2n — 2)-dimensional manifold.
The manifold @ constructed as described above for n > 3 is the main object of study in the
third chapter of this thesis, we call it the BG-manifold (for Bogomolov—Guan). Since the fiber
Albfl(()) is isomorphic to the (n — 1)-dimensional projective space then the map 7" induces the
map I1: W/F — P"~!. Thus, the BG-manifold @ admits a surjective map to a projective space:

d=Top: Q —P" L. (3.1)

Since many properties of BG-manifols are similar to those of IHS manifolds we expect that many
results about hyperkahler manifolds can be extended to the case of BG-manifolds. Recall here
several significant results about hyperkahler manifolds. First, if M is a hyperkédhler manifold then
by [Fuj87] there exists an important non-degenerate symmetric quadratic form on the cohomology
group H?(M,Z). This form is called the Beauville-Bogomolov—Fugjiki form or BBF-form and it is
very useful in the study of the geometry of hyperkahler manifolds and their moduli spaces. Another
important result which later led to the proof of the Torelli theorem for hyperkahler manifolds
is the Bogomolov—Tian—Todorov theorem [Bog78|, which says that the deformation theory of a
Kéhler manifold with trivial canonical class is unobstructed. Groups of biholomorphic Aut(M) and
bimeromorphic Bim(M) automorphisms of a hyperkahler manifold M were studied by N. Kurnosov
and E. Yasinsky in [KY19] and by A. Cattaneo and L. Fu in [CF19]. They proved in particular that
the order of finite subgroups in the groups Aut(M) and Bim(M) are bounded. Moreover, there are
only finitely many conjugacy classes of finite subgroups in Aut(M) and Bim(M).
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There are some partial extensions of these results to BG-manifolds. In [KVI9] N. Kurnosov and
M. Verbitsky proved the existence of a symmetric quadratic form on the cohomology group H?(Q, Z)
on a BG-manifold @ analogues to the BBF-form. They conjectured that this form is non-degenerate
and that it satisfies all properties of a BBF-form. Moreover, the study of holomorphic symplectic
defiormations and this symmetric form led them to the generalization of the Bogomolov—Tian—
Todorov theorem to the class of BG-manifolds.

In this thesis we are going to explore the groups of biholomorphic and bimeromorphic auto-
morphisms of BG-manifolds. In order to do this we find several structures on a BG-manifold @
which should be preserved under automorphisms. Since a BG-manifold @ is non-algebraic one can
consider algebraic submanifolds in ). The image of an algebraic submanifold under an automor-
phism is necessarily an algebraic submanifold. One can consider an algebraic reduction of @ i.e. a
meromorphic map f: @ --+ X to an algebraic variety X such that any meromorphic map from @
to an algebraic variety factors through f. A map f with this property is unique up to birational
conjugations. Our first result is the following description of the algebraic reduction of Q:

Theorem 3.2. Let n > 3 be an integer and let @ be a BG-manifold of dimension 2n — 2. Then
the map ®: Q — P~ described in (3.1) is an algebraic reduction of Q.

Then we study subvarieties of BG-manifolds. Recall that a manifold X is called Moishezon if
its algebraic reduction is a generically finite map. In particular, any algebraic variety is Moishezon.
We prove the following result:

Theorem 3.3. Let Q be a BG-manifold of dimension 2n —2 and let ®: Q — P"~! be its algebraic
reduction as in (3.1). There exists a divisor D C P"~1 of degree 2n such that for any point x € P*—1
one has:

(1) If x € P"=1\ D, then the fiber ®~1(x) is an abelian variety.
(2) If x € D, then the fiber ®~1(x) is a uniruled Moishezon manifold.
Moreover, if X C Q is a submanifold such that dim(®(X)) > 2 then X is not Moishezon.

By this theorem if X C @ is a submanifold of a BG-manifold and ®(X) is a point then X is
Moishezon; in the case where dim(®(X)) > 2 one has X is not Moishezon. We also consider the
case where dim(®(X)) = 1 and obtain that X may or may not be a Moishezon manifold depending
on the curve ®(X).

By definition of an algebraic reduction any bimeromorphic or biholomorphic automorphism
of a complex manifold is compatible with algebraic reduction. Therefore, we conclude that the
group Aut(Q) fits into the following exact sequence:

1—=G"— Aut(Q) - G — 1, (3.4)

where G’ is a subgroup of Aut(P"~!) and G” is a subgroup of Aut(A) where A is an abelian
variety ®~1(x) and 2 is a point in P»~1 \ D. To get a more clear understanding of the group
Aut(Q) we use a description of the fibers of the map ®.

Theorem implies that a biholomorphic automorphism of @ induces a regular automorphism
of the projective space P"~! which preserves the divisor D. Thus, we study the geometry of D in
details and prove that the group Aut(Q) satisfies the Jordan property, see Definition Here is
the main result of the third chapter of this thesis:
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Theorem 3.5. Let Q be a BG-manifold of dimension 2n —2 and let ®: Q — P"~! be its algebraic
reduction as in . Then the group Aut(Q) fits into the exact sequence where G’ is a finite
group, G C Aut(A) where A is an (n — 1)-dimensional abelian variety. In particular, Aut(Q) is a
Jordan group.

This result follows from a description of the divisor D and its singular locus. We prove that D
contains a finite set Z of n? points of multiplicity » — 1 and that Z does not lie in a hyperplane
in P*~1. Thus, the group of automorphisms of P*~! fixing D should fix also Z; therefore, it is
finite.

It would be extremely interesting to prove a similar result for the group of bimeromorphic auto-
morphisms of a BG-manifold @). By the same reasons as in the case of biholomorphic automorphisms
the group Bim(Q) fits into the following exact sequence:

1— H" - Bim(Q) - H' — 1,

where H” C Aut(A) and A is an (n — 1)-dimensional abelian variety isomorphic to a general fiber
of ® and H' is a subgroup in the group Cr,,_;(C) of birational automorphisms g of P*~! such that
either D lies in Exc(g) or D is g-invariant.

In the simplest case when n = 3 and dim(Q) = 4 we managed to establish the Jordan property
for the group Bim(Q). However, in higher dimensions it is still unclear whether the group Bim(Q)
is Jordan or not.

4. Publications reflecting the main scientific results of the
thesis

(1) Finite 3-subgroups in Cremona group of rank 3, Math. Notes, 108:5 (2020), 697-715.

(2) Automorphisms of quasi-projective surfaces over fields of finite characteristic, J. Algebra 595
(2022), 271-278.

(3) Geometry and automorphisms of non-Kdhler holomorphic symplectic manifolds, joint work
with F. Bogomolov, N. Kurnosov and E. Yasinsky, published online in International Mathe-
matics Research Notices, https://doi.org/10.1093/imrn/rnab043.
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