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1 Introduction

Topic of the thesis

Neural networks have been successfully used in a wide range of applied tasks with struc-
tured data, including image, text, or video processing. One of the key properties of neural
networks that distinguishes them from other machine learning models is the possibility
to adapt architecture to different kinds of data. This work focuses on adapting neural
network-based models to source code processing. Neural networks have been shown to
substantially improve quality in such tasks as code completion [I], bug fixing [2], trans-
lating code from one programming language to another [3], or code documentation [4],
providing help for programmers and simplifying software development process. The bet-
ter adaptation of neural network-based models to source code should improve the quality
of solving listed tasks even further.

Source code as a data domain resembles some properties of natural text, e. g. discrete
sequential nature. As a result, code is often processed with architectures borrowed from
natural language processing (NLP), for example, Transformers [5] or recurrent neural
networks (RNNs). However, source code features a set of specific properties, taking which
into account may improve the model quality. First, source code is strictly structured, as it
follows the rules of the programming language. Second, most programming languages rely
on the notion of variables, which store the results of intermediate operations and allow
for the reuse of these results. Third, in contrast to natural language, source code may
contain user-defined identifiers of arbitrary length or complexity, as it is usually allowed
by the programming language.

This thesis is devoted to utilizing the specified properties in neural network-based
models for improving performance in three applied tasks. The first task is code completion
in which a neural network predicts next code tokens based on already written code.
Neural network-based code completion modules are plugged in the majority of modern
integrated development environments (IDEs) such as Visual Studio or PyCharm. The
second task is variable misuse detection and repair, later referred to as the variable misuse
task. In this task, a neural network predicts the location of the bug in the program
snippet (if there is any) and the location from which the variable could be copied to fix
the bug. Automatically detecting and fixing bugs is a long-standing problem, solving
which will substantially simplify the software development process [6]. The third task is



function naming, in which a neural network predicts the name of the function given the
function body. Assistance in function naming makes code more readable and simplifies

code maintenance.

Relevance

Neural networks have been widely adopted in source code processing, see elaborate review
in [7]. Earlier works processed code applying neural network architectures used in NLP.
A line of recent works considered adapting neural networks to the specific properties of
source code described above. First, in order to utilize the syntactic tree parsed from a
code snippet, Wenhan et al. [§] propose to use recursive neural networks while Li et al.
[9] and Kim et al. [I] propose passing the depth-first traversal of the tree to sequential
models, RNNs and Transformers correspondingly. Shiv and Quirk [10] and Kim et al.
[M] further propose to adjust the Transformer’s architecture to take the tree structure
into account. The drawback of these works is that the proposed approaches were tested
on different applied tasks and datasets, making it hard to establish the best-performing
approach. Second, in order to utilize the notion of variables, the dominating approach
is to apply Graph Neural Networks (GNNs) and their variants to the graph constructed
by treating code tokens as vertices and drawing edges based on data- or control-flow
in the program [I1]. The drawbacks of this approach is that it is relatively hard to
implement and that the forward pass through GNNs is relatively slow because of the
time-consuming message passing procedure. Third, in order to process rare and complex
identifiers, Karampatsis and Sutton [I2] propose using byte-pair encoding which splits
them into smaller, more frequent pieces. The drawback of this approach is that splitting
makes sequences much longer, slowing down neural networks’ prediction.

This thesis provides further advancement in utilizing the specifics of source code in
neural networks, particularly in RNNs and Transformers, as these are two most widely
used architectures for code and natural text. The first work of this thesis focuses on
processing variables in RNNs and introduces the RNN-based dynamic embeddings mech-
anism. The dynamic embedding of each variable in the program is firstly initialized based
on the variable’s name and then updated each time the variable occurs in the program. In
contrast to conventionally used static embeddings that are based only on variable names,

the proposed dynamic embeddings capture the role of a variable in the program through



the update mechanism. The experimental part of the work shows that the proposed
dynamic embeddings significantly outperform standard RNNs in code completion and
variable misuse tasks, for Python and JavaScript.

The second work is devoted to utilizing the syntactic structure of code in Transformers.
In recent years, several modifications have been proposed to utilize the syntactic structure
of code in Transformers [10, 1, 2]. However, these modifications were tested on different
tasks and datasets, and as result, it remains unclear, which approach for utilizing code
structure in Transformers performs better. This work compares the modifications in
a unified framework on three tasks and two programming languages and provides the
recommendations for the future use of Transformers for processing syntactic structure of
code, e. g. using the Sequential relative attention method. Moreover, this work explores
the capabilities of Transformer to process anonymized code, in which all identifiers were
replaced with placeholders Varil, Var2, Var3 etc. In this case, no textual information
on the code snippet is available and the only source of information that the model can
rely on is the code syntactic structure. The work shows that Transformer can make
meaningful predictions for such an anonymized code and thus is capable of capturing
syntactic information. Finally, the work analyses the effect of different components of
processing syntax.

The third work tackles the problem of processing rare identifiers in source code and
proposes an easy-to-implement preprocessing technique based on anonymization. Partic-
ularly, all rare identifiers, e.g. those with the frequency less than a threshold, are replaced
with unique placeholders Var1, Var2, Var3 etc. The experimental part of the work shows
that for Transformer architecture, the proposed technique improves the accuracy of vari-
able misuse detection and repair by 5-6% and of code completion — by 7-10%.

The goal of this work is to improve the performance of RNNs and Transformers in
applied source code processing tasks by developing and investigating methods that take

into account the specifics of source code as data domain.

2 Key results and conclusions

Contributions. The main contributions of this work are threefold:

1. We proposed an RNN-based dynamic embeddings mechanism for processing variables

in source code, which capture the roles of variables in a program through the update



mechanism. The model with the proposed dynamic embeddings outperforms the
conventional RNN model in code completion and variable misuse tasks by 0.5-18%,

depending on the task and programming language (Python or JavaScript).

2. We conducted an empirical study of the capabilities of Transformers to utilize the
syntactic structure of source code, including the comparison of five syntax-based
Transformer modifications on variable misuse, function naming, and code completion
tasks on two programming languages (Python or JavaScript), testing the general
capability of Transformers to capture syntactic information, and analysing the effect
of different components of processing syntax. The results of the study underline
Sequential relative attention as the most effective and efficient approach for capturing

syntactic information.

3. We proposed an easy-to-implement preprocessing technique for source code, namely
the anonymization of rare identifiers, which improves the quality of Transformer in

variable misuse and code completion tasks by 5-10%, for Python and JavaScript.

Theoretical and practical significance. The proposed models and conducted em-
pirical studies pave the way towards further advancement in deep learning for source code.
Through the use of the proposed dynamic embeddings, the proposed anonymization of
rare identifiers, and Transformer with relative attention highlighted in the empirical study
of Transformers, one can substantially improve the quality of code completion, variable
misuse detection and repair, function naming, or other tasks. Providing high-performing
solutions for specified tasks improves programmers’ experience, simplifies software devel-
opment, and improves the readability of code.

Key aspects/ideas to be defended:

1. An RNN-based dynamic embeddings mechanism for processing variables in source

code and capturing the roles of variables in programs;

2. An empirical study of five modifications of the Transformer architecture for cap-
turing the syntactic structure of source code and of the general capabilities of the
Transformer architecture to capture code syntax, and its main conclusion about the

effectiveness and efficiency of the Sequential relative attention approach;

3. An easy-to-implement approach for processing rare identifiers in source code based

on their anonymization.



Personal contribution. The first work is conducted solely by the thesis” author. In

the second and third works, the author proposed the key scientific ideas, implemented

methods, conducted all experiments on variable misuse and function naming tasks, and

wrote text. The contribution of the second author to this research was conducting ex-

periments on the code completion task, discussing the obtained results with the thesis’

author, and help with writing and editing text.
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3 Content of the work

3.1 On the Embeddings of Variables in Recurrent Neural Networks for

Source Code

One of the easiest and widely used ways to process source code with neural networks is
to treat source code as a sequence of tokens and use classical NLP architectures, such as
RNNs or Transformers. In order to utilize the syntactic structure of code, a widely used
approach is to traverse the abstract syntax tree (AST) parsed from the code snippet in
the depth-first order and pass the resulting sequence to the RNN [9] or Transformer [I],
see Figure (c, d). However, in both of these scenarios, the variables are processed in
the same way as words in natural text, i. e. using the standard embedding layer, while
the concept of variables is more complex. This work focuses on tackling this problem for
RNNs.

A variable is a named area of data storage. A variable’s name is used to match all the
occurrences of the same variable in the program. Although names are often connected
to the roles of variables, such a connection is not required by programming languages.
Moreover, names rarely reflect the variable’s role fully. For example, the variable that
stores the sum of the salaries of the company’s employees may be called sum_salaries,
simply sum or even broadly used x, and names x or sum may be used in a lot of other
contexts or programs. When a standard embedding layer is used to obtain the vector
representations of variables, the latter are based only on variables’ names. The goal
of this work is to develop an approach in which the vector representations of variables
are based on both variables’ names and variables’ roles in the programs, determined by
contexts in which variables occur.

We propose the dynamic embeddings mechanism for processing variables in source
code, which replaces conventionally used static embeddings in RNNs. At the beginning of
program processing, the embeddings of all variables are initialized with standard (static)
embeddings, see Figure|l| (e¢). When the RNN processes the program token by token, each
time the token is a variable, this variable’s embedding is updated based on its previous
state and on the current hidden state of the RNN, see Figure [1] (g). The hidden state
of the RNN is used in the dynamic embeddings update procedure in order to reflect the

contexts in which variables occur.
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Figure 1: The overview of the proposed dynamic embeddings. (a) and (b): two variants of the input
code snippet, variant (a) is used in other illustration blocks; (c) abstract syntax tree (AST); (d) AST
converted to a sequence that will be passed to the RNN; (e) the static-embedding-based initialization of
dynamic embeddings; (f) the constant initialization of dynamic embeddings; (h) the scheme of updating
dynamic embeddings and hidden states; (g) the scheme of one timestep processing. SE: static embedding,

DE: dynamic embedding.

More formally, consider an RNN applied over the depth-first traversal of the program
snippet. Each node in the AST stores type representing the syntactic unit of the pro-
gramming language, e. g. Assign or NameLoad in Figure [l| (¢), and some nodes also store
values representing user-defined variable names, function names, or constants, e. g. x and
y in Figure|l| (¢). By traversing the AST, we obtain a sequence I = [(t1,v1), ..., (tr,vL)].
Here L denotes the length of the sequence, t; € T denotes the type and v; € V' denotes the
value, T"and V' are vocabularies of types and values respectively. In this work, we consider
two tasks: code completion and variable misuse detection and repair. In code completion,
the task is to predict the next type and value at each step ¢ =1, ..., L; we consider only
value prediction as it is a harder task. In variable misuse, we use a bidirectional RNN
which outputs L representations of program tokens. The task is to point to the location
of the bug and to the location which could be used to repair the bug. In case there is no

bug, the task is to point at a specific no-bug location.



As a recurrent cell, we use Long Short-Term Memory Network (LSTM) [13]. The
proposed model employs two LSTMs: the main LSTM which updates hidden state h; €
Réidden j = (0. 1,...,T and the dynamic LSTM which updates the dynamic embeddings of
the values, as they store variables. The dynamic embedding of value v at step 7 is denoted
€y € R, For example, e,, ,; denotes the embedding of a value located at position
¢ — 1, at step ¢, and e,, ,;—1 denotes its state at the previous step. The main LSTM
updates the hidden state h; based on the previous hidden state h;_; and the embeddings
of type t; and value v; of the current AST node:

h; = LSTMmain (€v;,i—1, €t,5 hi1). (1)

The dynamic LSTM updates the dynamic embedding of the current value based on its

previous state, the type of the current AST node and current hidden state:
Cvsi = LSTMayn (hi-1, €45 €0,,i-1) (2)

€vi = €yi-1, U 7£ (% (3)

Equation means that at step 7, only the dynamic embedding of value v; is updated,
while the dynamic embeddings of all other values stay unchanged. The whole process is
illustrated in Figure [1| (h). In practice, there are several special values, <EMPTY>, <UNK>
and <EQOF>, for which we use static embeddings. Dynamic embeddings can be initialized
with static embeddings, in order to utilize value names, or with a constant embedding,
same for all values.

We test the proposed approach in code completion and variable misuse tasks, on
Python150k [I4] and JavaScript150k [I5] datasets. Both datasets contain 150K code
files and their parsed ASTs. In code completion, we measure quality using accuracy (the
percent of correctly predicted values), while in variable misuse we use joint localization
and repair accuracy (the percent of correctly located and fixed bugs). We compare the
proposed dynamic embeddings with the standard model incorporating static embeddings.
In all our models, node type embeddings have 300 units, node value embeddings have 1200
units (for static embeddings), and the one-layer LSTM’s hidden state has 1500 units, fol-
lowing Li et al. [9]. The proposed dynamic embeddings of values have 500 units in all
experiments, to show that their superioriry is achieved with a much smaller dimension

than the static embeddings dimension. In the code completion task, we equip all models
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Model Code completion | Variable misuse

PY JS PY JS

Full data setting
Static embeddings 64.69 65.05 54.78 35.06
Dynamic embeddings | 68.61 65.67 68.59 53.74

Anonymized setting
Static embeddings 60.28 57.67 25.17 13.16
Dynamic embeddings | 66.90 62.85 63.64 53.53

Table 1: Performance of the proposed dynamic embeddings compared to the baseline static embeddings
for two tasks on Python150k (Py) and JavaScript150k (JS) datasets. Accuracy (%) of LSTM with pointer
(code completion), joint accuracy (%) of BILSTM (variable misuse). All standard deviations are less than

0.05% for code completion and 0.1% for the variable misuse task.

with attention and pointer mechanisms, and in the variable misuse task, all models use
bidirectional LSTMs (BiLSTMs).

The main results for both tasks are presented in Table [1] (full data setting) and show
that the dynamic embeddings model outperforms the static embedding model in both
tasks and on both datasets. We note that the number of parameters in the dynamic
LSTM, 2.6M, is two orders smaller than those in the embedding layer, 134M, and also
much smaller than the number of parameters in the main LSTM module, 13.8M.

Table [1] also presents the results for the anonymized setting, in which all values are
replaced with unique placeholders Var1, Var2, Var3 etc. As value names are not used in
this setting, dynamic embeddings are initialized with a constant embedding. We observe
that the proposed dynamic embeddings again substantially outperform static embeddings.
Moreover, in this scenario, the predictions of the proposed model do not depend on the
particular value naming, i. e. predictions do not change if all values are renamed. At
the same time, the static embeddings model does not satisfy this conceptually reasonable
property.

The proposed dynamic embeddings resemble the general idea proposed in [16] for pro-
cessing rare named entities in natural text. In contrast to their work, we apply dynamic
embeddings to the whole vocabulary of variable names, and incorporate dynamic em-
beddings into the model that utilizes the syntactic structure of code, providing a more

meaningful context for updating dynamic embeddings.
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3.2 Empirical Study of Transformers for Source Code

Initially proposed for the problem of machine translation, Transformers [5] became the
state-of-the-art model in a range of other NLP tasks as well as in the tasks from other data
domains, e. g. source code [T}, 2, 4]. In order to utilize the syntactic structure of source
code represented, for example, via the AST, a line of recent works propose Transformer
modifications that incorporate AST processing into Transformer. Example modifications
include tree-based positional encoding [10] or tree-based relative attention mechanism [IJ.
However, due to the lack of established benchmarks in source code processing, different
modifications were tested on different applied tasks and datasets, complicating the estab-
lishment of the best-performing approach. The goal of this work is to compare different
approaches for processing AST structure in Transformer in a unified framework on several
applied tasks and to test the general capabilities of Transformer to capture code syntactic
information.

The core of the Transformer architecture is a self-attention mechanism which updates
the vector representations of a set of elements: [z1,...x1] — [21,...,21], 25, z; € Rmodet
1 =1,..., L. First, self-attention computes key, query, and value vectors from each input

vector: x¥ = x;WH, 21

;= z;W? and T = x;WV. Then each output z; is computed as a

weighted combination of inputs:

_exp(ai;) _ T
o ZOJU Ly 042] Z eXp(aZ]) Qij = (4>

Here we omit other detalls such as multi-head attention or layer normalization for brevity.

Self-attention itself is invariant to the order or structure of the input elements, hence
additional mechanisms are usually used to take the structure or order into account. This

work considers five Transformer modification for processing the syntactic structure of

source code defined by AST:

1. Sequential positional embeddings. Classic Transformer architecture [5] incorporates
positional encoding, i. e. vector representations p; € R%modet of positionsi = 1,2,3,. ..

which are summed up with the embeddings x; € R%medel of tokens:
T; =z + p; (5)
Vector representations p; could be learnable or computed based on sine and cosine

functions. We apply the described approach over the depth-first traversal of the
AST.
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2. Sequential relative attention. Shaw et al. [17] propose to incorporate information
about sequential structure directly into the self-attention mechanism:

exp(ai;) o wf(zf +eb ;)"

%= ;dz‘j(l’? +ei ;) Gij = S, explag)’ “9 = N (6)

where ef_j,ef_j € Rimodel are learned embeddings for each relative position i — 7,
e. g. one token is located two tokens to the left from another token. We apply the

described approach over the depth-first traversal of the AST.

3. Tree positional encoding. Shiv and Quirk [I0] propose AST-based positional encod-
ing. The position of each node in the tree is defined as a path from the root to this
node and is encoded using stacked one-hot representations. The obtained positional

encoding [p1, ..., pr] is substituted into ([5]).

4. Tree sequential attention. Kim et al. [I] propose to modify the relative attention
mechanism in order to utilize relations in AST:

. exp(a;j - 145)
Q5 = 7
T Yn explai; - i) ")
where relation embeddings r;; € R encode paths in AST, e. g. “Up Up Down Down

Down”. Scalar relations are used due to memory constraints, other formulas of self

attention are same as in ({4]).

5. GGNN Sandwich. Hellendoorn et al. [2] propose to combine Transformer and Gated
Graph Neural Networks (GGNN) models by alternating Transformer blocks and
GGNN layers. We utilize this model for trees, though it is capable of processing
arbitrary graphs.

As in Section [3.1] we represent each node in an AST with a type and an optional value,
and the nodes without values store auxiliary EMPTY values.

We compare the described Transformer modifications for processing ASTs on three
tasks, namely variable misuse localization and repair (VM), function naming (FN), and
code completion (CC). We chose the tasks so that both encoder-based and decoder-based
models are covered and that various aspects of code understanding are tested. We use the
following metrics widely used in relevant works: joint localization and repair accuracy in
VM, F-measure in FN, and mean reciprocal rank (MRR) in CC.

We consider Python150k and JavaScript150k datasets. While working with data we
noted that the train / test data splits provided by the dataset authors do not follow

13



Python: Variable Misuse Function Naming Code Completion (values) Code Completion (types)

Seq. pos. emb.
Seq. rel. attn.
Tree pos. enc.
Tree rel. attn.

GGNN Sandwich

60 70 80 32 33 34 35 36 0.50 0.52 0.54 0.80 0.85 0.90
Joint accuracy F1 MRR MRR

JavaScript: Variable Misuse Function Naming Code Completion (values) Code Completion (types)

Seq. pos. emb.
Seq. rel. attn.
Tree pos. enc.

Tree rel. attn.

GGNN Sandwich

40 50 60 70 80 22 23 24 25 0.60 0.62 0.64 0.80 0.85 0.90
Joint accuracy F1 MRR MRR

Figure 2: A comparison of different Transformer modifications for processing AST structure in Trans-

former
Train time Preprocess Add. train
Model (h/epoch)  time (ms/func.) data (GB)
Seq. pos. emb. 2.3 0 0
Seq. rel. att. 2.7 0 0
Tree pos. enc. 2.5 0.4 0.3
Tree rel. attn. 3.9 16.7 18
GGNN Sandwich 7.2 0.3 0.35

Table 2: Time- and storage-consumption of different structure-capturing Transformer modifications for

the variable misuse task on the Python dataset.

conventional practice of splitting by repository and conducting deduplication, which may
bias the results. Thus we release new splits following the recommendations of Allamanis
[18] and Alon et al. [19].

We re-implement the described Transformer modifications for a fixed base model with
6 layers and the model size d,, 40 = 512, to avoid the influence of differences in baseline
implementations. We tune hyperparameters of all modifications using the validation set,
while training hyperparameters are chosen for the base model and fixed across modifica-
tions. All models have approximately the same number of learnable parameters.

Figure [2] reports the comparison of five Transformer modifications for processing ASTs
for three tasks and two datasets. In VM, we observe that GGNN-Sandwich and Sequential
Relative Attention perform best, and the former model was specifically developed for this

task. In FN, almost all models (except sequential positional encoding) perform similarly.
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Figure 3: Comparison of syntax-based Transformer models with text-only and constant baselines.

In CC, we report the quality of value and type prediction separately. In value prediction,
Sequential relative attention outperforms other models. In type prediction, Tree relative
attention, the model which was developed specifically for the CC task, outperforms other
models. To sum up, we observe that Sequential relative attention achieves best results
in almost all tasks. Interestingly, this mechanism was not considered as a baseline in the
works on Tree relative attention [I] and GGNN-Sandwich [2] which develop approaches
inspired by this technique.

Table [2] reports efficiency metrics for five considered Transformer modifications and
shows that Sequential relative attention is not only the most effective but also substantially
more time- and memory-efficient than more complicated modifications. In the paper, we
also show that combining Sequential Relative Attention with GGNN-Sandwich or Tree
relative attention may lead to further performance improvement.

We also conduct an experiment testing the general capability of Transformers to cap-
ture information from ASTs. We consider two settings. In the first setting, we compare
configurations Syntaz+ Text and Text. The first one corresponds to the conventional model
and the latter approach corresponds to passing a sequence of AST values to the Trans-
former (textual information only), with types and structural information being removed.
If the former model outperforms the latter one, then performance improvement should
come from processing the AST. In the second setting, we compare configurations Syntaz
and Constant. The Syntax configuration corresponds to removing textual information

(values) from an AST by anonymizing values, i. e. by replacing values with unique
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Full data Anonymized data

VM FN CcC VM FN CcC
Full AST 81.59% 35.73% 54.59% | 81.71% 25.26% 58.76%
Python AST w/o struct. | 26.81%  34.80% 53.1% 12.41%  23.29%  57.75%
AST w/o types | 71.55%  33.60%  42.01% | 58.55 % 12.50%  41.26%
AST w/o values | 32.44%  25.25% N/A 32.44% 25.25%  N/A
Full AST 75.60% 24.62% 64.2 78.47% 13.66% 60.82%
JavaScript | AST w/o struct. | 17.25%  23.40%  61.53% 5.37% 11.25%  58.59%
AST w/o types | 60.33%  23.09% 53.4% 43.53% 8.10% 42.91%
AST w/o values | 42.56%  13.64% N/A 42.56% 13.64%  N/A

Table 3: Ablation study of processing different AST components in Transformer. Bold emphasises best
models and ablations that do not hurt performance. Standard deviations: VM — 0.5%, FN - 0.4%, CC —
0.1%. AST w/o struct.: Transformer treats input as a bag without structure; AST w/o types: only values
or anonymized values are passed to Transformer; AST w/o values: only types are passed to Transformer.

N/A — not applicable. CC: value prediction.

placeholders Varl, Var2, Var3 and so on. With such code representation, the only way
Transformer can make meaningful predictions is to capture information from the AST.
We compare the described Syntazr configuration with a constant baseline, e. g. predicting
the most frequent function name, the most frequent next value in CC, or predicting the
absence of bugs in VM. All models use Sequential relative attention. Figure |3| reports
the results for three tasks and two datasets and shows that the Syntaz+ Text model al-
ways outperforms the Tezt model, and the Syntaz model always outperforms the constant
baseline. Based on these results, we conclude that Transformers are indeed capable of
capturing syntactic information from ASTs.

Finally, we conduct an ablation study of what AST components influence Transform-
ers predictions in three tasks. We ablate the following components, one component at a
time: types (passing a sequence of values to the Transformer, identical to the Tezt model
described above), structure (passing an unordered bag of (type, value) pairs to the Trans-
former), and values (passing a sequence of types to the Transformer). Ablation study is
conducted for the Syntaz+ Text and Syntaxr models described in the previous experiment.
Table [3| reports the results. We find that in VM and CC, ablating any of the considered
AST components hurts performance, for both considered models. In FN, performance of

the Syntax+Text model is slightly affected by ablating types or structure and substan-
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tially affected by ablating values (textual information). At the same time, performance
of the Syntar model is slightly affected by ablating structure, substantially — by ablating
types and, importantly, not affected by ablating anonymized values. The latter result
means that in FN Transformer sees the anonymized code as a sequence of types, and such
a representation loses much information about the algorithm implemented by the code
snippet. We conclude that in contrast to VM and CC tasks, in FN Transformer utilizes

information from AST only partially.

3.3 A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep

Learning for Source Code

In contrast to natural text, source code data comprises much larger vocabularies, because
developers are allowed to use identifiers (variable and function names) of arbitrary com-
plexity, e. g. students_with_high_marks or foldforfiles. Since such ad-hoc identifiers
only occur several times in the dataset, their learnable embeddings do not step far from
the random initialization and thus are meaningless. As a result, the common practice for
processing rare identifiers in source code is to collect a vocabulary of frequent identifiers
and to replace all other identifiers with an UNK token [I, ©]. In this work, we propose
a simple alternative preprocessing technique based on anonymization, which results in
substantial performance improvement in variable misuse and code completion tasks, and
could potentially be used in other tasks as well.

A widely used approach for processing rare tokens in NLP is to split them into subto-
kens, e. g. by using byte-pair encoding (BPE). The first drawback of this approach is
sequences elongation which substantially slows down the prediction. The second draw-
back is that existing AST-processing techniques imply that each AST node stores a single
value, and combining these techniques with BPE requires additional investigation.

We propose a simple anonymization-based technique to tackle out-of-vocabulary iden-
tifiers in source code. The approach is inspired by the property of variables: renaming a
variable in the code snippet does not change the algorithm which is implemented by the
snippet. Based on the results reported in Section [3.2] we use Transformer with sequential
relative attention applied over the AST depth-first traversal, as a base model. Our ap-
proach selects a vocabulary of top-K most frequent AST values, and all out-of-vocabulary

values are anonymized, i. e. replaced with placeholders Varl, Var2, Var3 etc. For ex-
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Figure 4: The performance of the proposed anonymization of rare identifiers, compared to the standard
model in which rare identifiers are replaced with an UNK token. Results for Transformer in variable
misuse and code completion tasks. Mean value + standard deviation (over 3 runs) is reported. In the

code completion task, the pointer mechanism is considered as an additional baseline.

ample, if we have a vocabulary which includes values print and fnames, then the code

snippet

for incldir in fnames[lib_folder]:

print (incldir)
with out-of-vocabulary values incldir and 1ib_folder will be transformed into

for Varl in fnames[Var2]:

print(Varl)

All occurrences of the same value in a code snippet are replaced with one placeholder,
but a placeholder may replace different values in different code snippets. We consider two
strategies for choosing placeholders: a random anonymization and an ordered anonymiza-
tion. In the random strategy, the placeholder for each out-of-vocabulary value is chosen

randomly from Var1...Var500. In the ordered strategy, the first out-of-vocabulary value
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in the code snippet is replaced with Varl, the second value — with Var2, the third one —
with Var3 and so on. In the experiments, the ordered anonymization performs slightly
better than the random anonymization.

We test the proposed anonymization-based approach on the variable misuse and code
completion tasks. The experimental setup is the same as in Section [3.2] including metrics
and implementation. Figure [4] reports the results. In the variable misuse task, the pro-
posed approach outperforms the standard approach of replacing rare identifiers with the
UNK token, by 5-6%. In the code completion task, the proposed approach again substan-
tially outperforms the standard approach (by 6-10%). In this task, we also compare to
the pointer mechanism which can copy values from the previously seen context and thus
also tackles the out-of-vocabulary problem. We observe that the proposed anonymization-
based approach outperforms the pointer mechanism baseline for the majority of vocabu-
lary sizes and performs worse only in one case. However, the proposed approach is much

easier to implement than the pointer mechanism.
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4 Conclusion

In the final section, we summarize the main contributions of the work. The results of
the work provide a set of practical recommendations regarding the use of RNNs and

Transformers for source code processing.

1. We proposed RNN-based dynamic embeddings for computing the embeddings of
variables in source code during forward pass through the network. After initializing
embeddings with standard (static) embeddings at the beginning of the program pro-
cessing, the dynamic embedding of each variable is updated each time the variable
occurs in the program. Compared to the standard model with static embeddings,
the proposed model substantially improves performance in code completion and vari-
able misuse detection and repair, on two datasets, in both full-data and anonymized

settings.

2. We studied performance of five Transformer modifications which process the AST
parsed from the program and found that Sequential relative attention is the most
effective and efficient method, not considered as a baseline in previous works. This
approach performs best in three tasks out of four, on two datasets, and could be
combined with other methods, Tree relative attention and GGNN-Sandwich, for fur-
ther performance improvement. We also found that in code completion and variable
misuse detection and repair, Transformer’s performance drops substantially if any
component of the AST is omitted in the network input, while in function naming,
Transformer mostly relies on textual input and uses AST mostly for node type in-

formation.

3. We proposed a simple anonymization-based preprocessing approach for handling out-
of-vocabulary identifiers. The proposed approach replaces rare identifiers with unique
placeholders Varl, Var2, Var3 ... which occur in many code snippets and thus have
relatively high frequencies. The proposed approach was tested for Transformers and
shown to substantially improve performance in variable misuse detection and repair
and code completion, compared to the commonly used approach of replacing rare
identifiers with the UNK token. In addition, the proposed approach in almost all
cases outperforms the pointer mechanism baseline in code completion, being much

easier to implement.
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