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1 Introduction

Topic of the thesis

This work studies the problem of obtaining high-quality deep learning models in the

presence of memory limitations at the inference stage. Such limitations can arise, for

example, when using neural networks in user applications that run on personal computers

or smartphones and should not take up too much memory on the devices.

One of the most popular approaches for the considered problem is sparsification of

neural network weights during training. In the first part of the work, we develop new

sparsification techniques for recurrent neural networks. First, we propose a modification of

the Bayesian sparsification approach, Sparse variational dropout [1], taking into account

the recurrent structure of the model. Then we develop a new method of structured

sparsification for modern gated recurrent architectures, improving compression results

both in the Bayesian framework and in standard pruning.

In the second part of the work, we study an ensembling of neural networks and show

how it can be used to obtain high-quality models which are small in size. We discover

the memory split advantage effect — for a wide range of total model sizes, an ensemble of

several small neural networks shows better results than one large neural network. Thus,

for a given memory budget, instead of training a single neural network of a given size

or a larger neural network with sparsified weights, one can divide the budget and train

an ensemble of several smaller networks, obtaining a better quality. We also show that

in many cases, the quality of an ensemble behaves as a power law with respect to the

number of networks or their size. The discovered power-law behavior allows predicting

the quality of large ensembles without training them and the optimal memory split of a

fixed budget.

Relevance

Modern deep learning models successfully solve a wide range of problems in computer

vision, natural language processing, speech recognition, etc. Latest research [2, 3] shows

that large models and large amounts of training data are the key ingredients to the

deep learning success. Most of the leading models for various tasks [2, 4, 3, 5] have

millions, and sometimes even billions, of parameters, require large amounts of training
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data and significant computational resources for training and inference. However, in

practical scenarios, resources are often limited, especially during the application on the

user side. In this paper, we consider the problem of obtaining high-quality models in the

presence of memory limitations at the inference stage. Such limitations may arise, for

example, when using neural networks in applications that run on personal computers or

smartphones and should not take up too much memory on the devices.

Several classic approaches for this problem are presented in the literature: weight

sparsification [6, 1], weight quantization [6], network distillation [7] and weight matrix

tensorization [8, 9]. In all of them, a neural network is trained in a specialized way to

obtain a model which is small in terms of the number of parameters (or memory size

in case of quantization) but achieves the results of a larger model in terms of quality.

Each approach applies its own restriction on the training process to compress the model.

Weight sparsification introduces a sparsity-inducing regularizer on network weights during

training. Such a regularizer makes some weights or weight groups very close to zero,

therefore, the model size can be reduced by excluding them from the model after training.

Weight quantization constrains the number of possible weight values during training, for

example, int8 is used instead of float32 weights. In distillation, a large teacher network is

first trained, and then a small student network is trained to emulate the responses of the

teacher network. In tensorization, network weight matrices are represented with products

of low-rank tensors. All described approaches are actively researched in the literature and

can be combined to achieve better results [6, 10, 11]. At the same time, their application

to neural network architectures of different structures has its specifics and needs further

investigation.

In the first part of the work, we focus on the weight sparsification approach, which

shows high results on basic architectures, such as fully connected and convolutional net-

works. We develop sparsification methods for more complex architectures — recurrent

neural networks. Recurrence introduces important specifics into the network and needs

to be properly addressed during sparsification. In the forward pass, weights of recurrent

layers affect network predictions multiple times, specifically when processing each token

of an input sequence. That makes it challenging to understand which model weights are

important and which are not, complicating the sparsification procedure. In the first pa-

per, we show how the recurrence can be taken into account and propose an adaptation

of an effective Bayesian sparsification method, Sparse variational dropout [1], for recur-

4



rent neural networks. We then extend the proposed method to additionally sparsify the

model’s input dictionary and further improve the compression. In the second paper, we

propose a structured sparsification method that takes into account the gated structure of

modern recurrent architectures, such as LSTM [12]. This method introduces three spar-

sity levels to the model: it removes some neurons from the network, makes some gates

of the remaining neurons constant, and sets some weights of non-constant gates to zero.

The proposed technique can be implemented in the Bayesian framework and in standard

pruning [13, 14] and improves the sparsification results in both of them. We also conduct

a qualitative analysis of the results of both proposed methods and show that the network

structure obtained after sparsification is interpretable and highly depends on the task.

In the second part of this work, a more non-standard approach to obtaining high-

quality models on a limited memory budget is proposed based on the ensembling of neural

networks [15]. In practice, small neural networks trained without specialized compression

techniques usually work much worse than the large ones [16, 17]. However, the quality

of the neural network may be improved not only by increasing the size of the model but

also by taking an ensemble of several models. In the third paper, we analyze how the

quality of the neural network ensemble behaves if we increase the number of networks in

the ensemble or the size of the networks. The results show that for a wide range of total

model sizes, an ensemble of several small networks can perform better than one large

network. This is true even for sufficiently small total model sizes, which makes it possible

to use an ensembling as an approach to obtain small high-quality models. So, given a fixed

memory budget, instead of training a single network of a given size or a larger model with

compression, one can split the budget and train an ensemble of several smaller networks

and get a quality boost. We also show that ensemble quality behaves as a power law

with respect to the number of networks and the size of the networks in a large number

of cases. Our results are consistent with the results of Kaplan et al. [16], Rosenfeld et al.

[17] on the dependence of the quality of an individual neural network on its size. The

discovered power laws allow accurate predictions of the quality of large ensembles without

their training and the optimal memory split of a fixed memory budget.

In summary, the goal of this work is to develop existing and propose new methods

and approaches for obtaining high-quality deep learning models in the presence of memory

limitations at the inference stage.
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2 Key results and conclusions

Contributions. The main contributions of this work can be summarized as follows:

1. We proposed an adaptation of the Bayesian sparsification method for recurrent neural

networks, which allows sparsification of both the weights of the recurrent layers and

the vocabulary of the model. The obtained method allows compressing models for

language modeling and text classification tasks by tens-hundreds times without a

significant quality drop.

2. We proposed a structured sparsification method for recurrent architectures with

gates, which introduces hierarchical sparsification into the network by sparsifying

weights, gates, and neurons. This method is applicable both in the Bayesian frame-

work and in standard pruning, and improves the level of structural compression (the

number of remaining neurons) for language modeling and text classification tasks

without a significant quality drop.

3. We studied the behavior of the ensemble quality of convolutional neural networks

with respect to the number of networks in the ensemble and the size of the networks.

We discovered that the ensemble quality behaves as a power law in many situations

and also discussed when this is not the case. We then conducted a thorough analysis

of the discovered power laws and their parameters.

4. We revealed the memory split advantage effect: for a wide range of the total model

sizes, an ensemble of several small neural networks shows better results than one

large neural network.

5. Based on the discovered power laws, we proposed a method for predicting the optimal

memory split, i.e. the optimal number of networks in the ensemble, for a fixed

memory budget.

Theoretical and practical significance. This work proposes new methods and

approaches to the compression of neural network models, hence, simplifying the usage of

these models in practical applications on user devices with limited memory resources. The

conducted empirical and theoretical study of the behavior of the ensemble quality with

respect to the number of networks and their sizes not only allows us to look at ensembling

as one of the approaches to obtaining small high-quality models but also generally shows
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that ensembling should be considered as one of the methods for increasing the size of the

model, along with increasing the width or depth of networks.

Key aspects/ideas to be defended:

1. The Bayesian weight sparsification method for recurrent neural networks.

2. The structured sparsification method for gated recurrent neural networks, applicable

in the Bayesian framework and standard pruning.

3. Power-law behavior of the ensemble quality of convolutional neural networks with

respect to the number of networks and their size, and the study of these power laws.

4. The memory split advantage effect for neural network ensembles on a fixed memory

budget.

5. The prediction method for the optimal memory split of a fixed memory budget, based

on the discovered power laws.

Personal contribution. In the first two papers, the methods were developed jointly

with Nadezhda Chirkova. The experimental results on the language modeling task were

obtained by the author of this work, while the results on the text classification task

were obtained by Nadezhda Chirkova. Dmitry Vetrov provided scientific guidance for the

project and helped with the expertise in the subject area. Alexander Markovich provided

technical assistance in the experiments for the second paper.

In the third paper, the author obtained all empirical results on power laws, as well as

on their application to predicting the quality of large ensembles and the optimal mem-

ory splits for a fixed memory budget. Theoretical results on power laws were obtained

jointly with Maxim Kodryan. The results on the memory split advantage effect were

obtained jointly with Nadezhda Chirkova. Dmitry Vetrov provided scientific guidance for

the project and helped with expertise in the subject area.

Publications and probation of the work

First-tier publications

1. Nadezhda Chirkova*, Ekaterina Lobacheva*, Dmitry Vetrov. Bayesian Compres-

sion for Natural Language Processing. In Proceedings of Conference on Empirical

Methods in Natural Language Processing, 2018 (EMNLP 2018). Pages 2910-2915.

CORE A conference.
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2. Ekaterina Lobacheva*, Nadezhda Chirkova*, Alexander Markovich, Dmitry

Vetrov. Structured Sparsification of Gated Recurrent Neural Networks. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence, 2020 (AAAI 2020). Vol.

34, No. 04, pages 4989-4996. CORE A* conference.

3. Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan, Dmitry Vetrov. On

Power Laws in Deep Ensembles. In Advances in Neural Information Processing

Systems, 2020 (NeurIPS 2020). Vol. 33, pages 2375-2385. CORE A* conference.

* — authors with equal contribution.

Reports at conferences, workshops and seminars

1. Workshop on Learning to Generate Natural Language at ICML, 10 August 2017.

Topic: “Bayesian Sparsification of Recurrent Neural Networks”.

2. Conference on Empirical Methods in Natural Language Processing, 3 November 2018.

Topic: “Bayesian Compression for Natural Language Processing”.

3. Workshop on Compact Deep Neural Networks with industrial applications at

NeurIPS, 7 December 2018. Topic: “Bayesian Sparsification of Gated Recurrent

Neural Networks”.

4. Workshop on Context and Compositionality in Biological and Artificial Neural Sys-

tems at NeurIPS, 14 December 2019. Topic: “Structured Sparsification of Gated

Recurrent Neural Networks”.

5. AAAI Conference on Artificial Intelligence, 11 February 2020. Topic: “Structured

Sparsification of Gated Recurrent Neural Networks”.

6. Workshop on Uncertainty and Robustness in Deep Learning at ICML, 17 July 2020.

Topic: “On Power Laws in Deep Ensembles”.

7. Seminar of the Bayesian methods research group, 16 October 2020. Topic: “On

Power Laws in Deep Ensembles”.

8. Seminar of the Faculty of Computer Science in Voronovo, 18 November 2020. Topic:

“On Power Laws in Deep Ensembles”.

9. Conference on Neural Information Processing Systems, 10 December 2020. Topic:

“On Power Laws in Deep Ensembles”.
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Volume and structure of the work. The thesis contains an introduction, contents

of publications and a conclusion. The full volume of the thesis is 64 pages.

3 Sparsification of recurrent neural networks

Recurrent neural networks are usually used for the processing of sequential data, such

as text, time series, etc. A recurrent architecture receives a sequence of tokens x =

[x0, . . . , xT ] as an input, processes them sequentially, and outputs a prediction ŷ, which

can be either a scalar in the case of a sequence classification task or a vector in the case of

the sequence generation task. For example, in the case of a sequence classification task,

a forward pass for a simple recurrent neural network would look as follows:

embedding layer : x̃t = we
xt
,

recurrent layer : ht+1 = σ(W hht +W xx̃t+1 + br),

fully connected last layer : ŷ = softmax(W dhT + bd),

where W and b denote trainable weight matrices and bias vectors respectively, and ht

denotes a vector of hidden neurons after processing the input token xt.

Because of the recurrence, the network weights affect the predictions for an object

not once but multiple times, specifically during the processing of each token of the input

sequence. That makes it difficult to understand which model weights are important and

which are not, complicating the sparsification procedure.

3.1 Bayesian sparsification of recurrent neural networks

Most of the previously existing methods for recurrent neural networks sparsification are

heuristic and require careful selection of hyperparameters [13, 14] or a network com-

pression structure [18, 19]. In this section, we propose an adaptation of a theoretically-

grounded sparsification method, Sparse variational dropout (SparseVD) [1], to the recur-

rent neural networks, taking into account the specifics of recurrent structure. We also

show how to extend the proposed method to sparsification of the model’s vocabulary.

In this section, we denote all the weights of the recurrent neural network, except for

the bias vectors, as ω, while one weight from this set as wij. The bias vectors are denoted

by a separate variable B since they are not sparsified in the proposed method.
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Weight sparsification

To sparsify a neural network in a Bayesian framework, one should treat it as a Bayesian

neural network and obtain a posterior distribution for weights during training instead of

a point estimate. Following [20, 1], we use a fully factorized log-uniform prior distribution

for the weights p(ω) =
∏

wij∈ω p(wij), p(wij) ∝ 1/|wij| and approximate the posterior

distribution with a fully factorized normal distribution q(w|θ, σ) =
∏

wij∈ω N
(
wij|θij, σ2

ij

)
.

To obtain the approximation to the posterior distribution, we optimize the variational

lower bound [1]:

−
N∑
i=1

∫
q(ω|θ, σ) log p(yi|xi

0, . . . , x
i
T , ω, B)dω+

+
∑
wij∈ω

KL(q(wij|θij, σij)||p(wij)) → min
θ,σ,B

. (1)

Here the first term corresponds to the task-specific loss and is approximated with one

sample from q(ω|θ, σ). The second term is a regularizer that induces sparsity. It can be

closely approximated analytically with a function depending on θ and σ [1].

To obtain an unbiased estimate of the gradient of the optimized functional, we use the

reparametrization trick [21]:

wij = θij + σijϵij, ϵij ∼ N (ϵij|0, 1) (2)

Recurrent neural networks share the weights between different time steps. Hence, for

the correct implementation of the described approach, the same sample of weights should

be used for all time steps t when calculating the likelihood p(yi|xi
0, . . . , x

i
T , ω, B) [22, 23].

Moreover, in the case of recurrent neural networks, the local reparametrization trick [20,

1] is not applicable for some weights. In local reparametrization, neuron pre-activations

are sampled instead of individual weights, for example:

(W xxt)i =
∑
j

θxijxtj + ϵi

√∑
j

(σx
ij)

2x2
tj. (3)

Local reparametrization is not applicable to shared weight matrices that are used in

more than one time step because of the tied sampling of such matrices at different time

steps.

For the hidden-to-hidden matrix W h, the linear combination (W hht) is not normally

distributed, since ht depends on W h from the previous step. As a result, the rule about
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the sum of independent normal distributions with constant coefficients is not applicable.

In practice, recurrent networks with local reparametrization for (W hht) cannot be trained

properly.

For the input-to-hidden matrix W x, the linear combination (W xxt) is normally dis-

tributed, but sampling the same matrix W x for all time steps and sampling the same

noise ϵi for all time steps are not equivalent. In practice, recurrent networks with lo-

cal reparametrization for (W xxt) can perform just as well as the ones without local

reparametrization, and their training even converges faster in some cases.

As a result, the training looks as follows. On the forward pass through the network, the

weights ω are sampled using the formula (2), and then the recurrent network is applied in

a standard way. On the backward pass, the gradients of the loss with respect to θ, log σ,B

are calculated, and then they are used for optimization.

At the inference stage, we use a deterministic network with the mean θ as the weights.

Because of the regularizer (the second term in (1)), many elements of θ converge to low

absolute values. As a result, we can sparsify the network by zeroing out the weights with

the signal-to-noise ratio below a certain threshold: θ2ij/σ
2
ij < τ (the same is done in [1]).

Vocabulary sparsification

One of the advantages of Bayesian sparsification methods is that they can be easily gen-

eralized to sparsify any group of weights without significantly complicating the learning

procedure. To do so, new stochastic multiplicative weights for such groups are usually

introduced [24]. In this work, we propose to additionally sparsify the model input vocab-

ulary and, as a result, the matrix of weights of the input layer. This matrix is a significant

part of the model in terms of the occupied memory for many tasks.

To sparsify the input vocabulary, we introduce multiplicative stochastic weights z ∈ RV

for the words in the vocabulary (here, V denotes the size of the vocabulary). The forward

path through the network then looks as follows:

1. sample vector zi from the current approximation of the posterior distribution for

each input sequence xi in the mini-batch;

2. for each token xi
t from the sequence xi multiply its one-hot encoding vector by zi;

3. continue the forward pass in the standard regime.
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Table 1: Results of Bayesian sparsification of weights and input vocabulary. Compression is equal to

|w|/|w ̸= 0|. The penultimate column shows the number of elements left in the model’s vocabulary,

and the last column shows the number of remaining neurons in the embedding and recurrent layers

(the embedding layer is used only in the case of a text classification problem). In the case of language

modeling, the quality on the validation and test sets is given.

Task Method Quality Compression Vocabulary Neurons

Original 84.1 1x 20000 300− 128

IMDb SparseVD 85.1 1135x 4611 16− 17

Accuracy % SparseVD-Voc 83.6 18792x 292 1− 8

Original 90.6 1x 20000 300− 512

AGNews SparseVD 88.8 322x 5727 179− 56

Accuracy % SparseVD-Voc 89.2 469x 2444 127− 32

Original 1.499− 1.454 1x 50 1000

Char PTB SparseVD 1.472− 1.429 7.9x 50 431

Bits-per-char SparseVD-Voc 1.458− 1.417 6.0x 46 510

Original 135.6− 129.3 1x 10000 256

Word PTB SparseVD 115.0− 109.2 22.1x 9990 156

Perplexity SparseVD-Voc 126.0− 120.2 19.3x 3164 209

During the training, we work with the weights z in the same way as with the weights

W . We use a fully-factorized log-uniform prior and approximate the posterior distribution

in a family of fully-factorized normal distributions with trainable means and variances.

After training, we set elements of z with a low signal-to-noise ratio to zero and remove

the corresponding vocabulary elements and input layer matrix columns from the model.

Empirical evaluation

We perform experiments with LSTM recurrent architecture [12] on the problems of

character-level and word-level language modeling (dataset — Penn Treebank [25]) and

text classification (datasets — IMDb [26] and AGNews [27]). Table 1 shows a comparison

of three approaches in terms of quality and compression: baseline training without sparsifi-

cation (Original), training with the proposed weight sparsification technique (SparseVD),

and training with both weight and vocabulary sparsification (SparseVD-Voc).

The results show that the proposed weight sparsification technique leads to a high com-

pression rate without a significant quality drop. Vocabulary sparsification substantially
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improves the compression rate in the case of classification problems since, usually, only a

small subset of relevant words is needed for the correct classification of texts. For example,

the model, trained to classify the film reviews from the IMDb dataset into positive and

negative, has only 292 words in the vocabulary, many of which have a pronounced posi-

tive or negative connotation (great, hilarious, terrible, horrible, etc.). When considering

character-level language modeling, vocabulary sparsification does not improve the results

as all letters are important in this task. With word-level language modeling, more than

half of the words are excluded from the model. However, the quality of the model suffers

significantly from this. Thus, the proposed weight sparsification technique is applicable

to all the considered tasks, while vocabulary sparsification has a positive effect only in

cases with a text classification problem.

3.2 Structured sparsification of gated recurrent neural networks

Previously existing sparsification methods for recurrent neural networks aim at sparsi-

fication either at the level of individual weights Narang et al. [13], See et al. [28] or at

the level of hidden neurons [14]. However, most modern recurrent neural networks used

in practice have gated architecture. For example, during the forward pass through the

LSTM layer [12] for the input token xt, one first computes the values of three gates, the

input gate i, the output gate o, and the forget gate f , as well as the information flow

g (which we will also call a gate for generality), and only after that uses their values to

compute the output of the layer h:

it = sigm(W x
i xt +W h

i ht−1 + bi) ft = sigm(W x
f xt +W h

f ht−1 + bf )

gt = tanh(W x
g xt +W h

g ht−1 + bg) ot = sigm(W x
o xt +W h

o ht−1 + bo) (4)

ct = ft ⊙ ct−1 + it ⊙ gt ht = ot ⊙ tanh(ct)

In this section, we propose a structured sparsification method that takes into account

the gate structure of networks and is applicable both in the Bayesian framework and in

standard pruning.

Structured sparsification method

The main idea of the method is to sparsify intermediate elements, gates, in addition to

sparsification of individual weights and entire neurons. On the one hand, this approach

13



i
f
g

o

Gates NeuronsWeights

xt+1 ht
ht+1

W b

weights        (LSTM)
the next layer 
weight matrix

W x
i Wh

i

Wh
fW x

f

W x
g Wh

g

Wh
oW x

o

W

Wnl

Figure 1: Structured sparsification method for gated recurrent neural networks. Left: proposed three

levels of sparsity — weights, gates and neurons (highlighted in blue). Right: proposed weight groups for

the LSTM architecture. Different groups are shown using different line types — horizontal dotted lines

correspond to groups of four gates, and two vertical solid lines correspond to a group of a neuron.

allows turning off gates, simplifying the structure of some neurons. On the other hand, the

hierarchical structure of sparsification, weights-gates-neurons (see Figure 1, left), improves

the sparsity level of neurons, which is the most important in practice: sparsification of

individual weights helps to sparsify gate pre-activations, i.e. making the gates constant,

and this, in turn, helps to sparsify the neurons.

The described idea can be applied to any gated architecture. We consider applying it

to the LSTM architecture as an example. The procedure for computing gate values in

this architecture can be represented as a fully-connected neural network layer that takes

the vector [xt, ht−1] as input and transforms it by multiplying by the combined weight

matrix W and adding the combined bias vector b = [bi, bf , bg, bo]. The structure of the

weight matrix W is shown in Figure 1, right.

Sparsification of structured elements, such as gates or neurons, implies removing or

zeroing out the weight groups associated with them. We sparsify only elements of weight

matrices and not the bias vectors as the latter do not take up much memory. For each

gate element, there is an associated row of the weight matrix W . Zeroing out the weights

in this row leads to zeroing the input information of the gate, making it constant. For

example, zeroing the weights of the k-th row of the W x
f and W h

f matrices causes the forget

gate of the k-th neuron to become constant, independent of the input vector [xt, ht−1] and

equal to sigm(bf,k). There is no need to compute the values of constant gates after reading

each input token on the forward pass through the network, therefore, constant gates can

significantly speed up computation. Removing an entire hidden neuron from the model is
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equivalent to zeroing out all the weights, by which the output of this neuron is multiplied

when passing through the network. For the m-th hidden neuron, such weights are the

m-th column of the matrix W and the m-th column of the weight matrix of the next

layer. The former reflects the influence of the neuron on the hidden state of the recurrent

layer h at the next time step, while the latter reflects the influence of the neuron on the

neurons of the next layer (fully connected or recurrent).

To sum up, Figure 1, right, shows the selected groups of weights corresponding to

individual gates and entire neurons. These groups can be sparsified both in the Bayesian

framework and in the standard pruning. As a result of such sparsification: 1) some

neurons are removed from the model; 2) in the remaining neurons, some of the gates

become constant, which simplifies the structure of these neurons; and 3) for non-constant

gates, some of the individual weights are set to zero.

Consider the implementation of the proposed structured sparsification method in stan-

dard pruning. For each neuron η, we denote the introduced (intersecting) weight groups

as wη,i, wη,f , wη,g, wη,o, wη,h — the first four correspond to gates, and the last one to an

entire neuron. During training, we apply an L1-regularizer on all individual weights and

a group Lasso regularizer [29] to each of the introduced weight groups:

λ1∥w∥1 + λ2

∑
η∈H

(∥wη,i∥2 + ∥wη,f∥2 + ∥wη,g∥2 + ∥wη,o∥2 + ∥wη,h∥2) (5)

After the training, we set to zero all the weights with values below the threshold. As a

result, because of the group Lasso, the entire weight groups are set to zero, making some

gates constant and turning off some neurons.

The implementation of the proposed structured sparsification method in the Bayesian

framework is based on the same principles that were described in the previous section. To

sparsify individual weights, we use the Sparse variational dropout technique, which takes

into account the recurrent structure of the network. To sparsify neurons, we introduce a

vector of stochastic weights zh, by which we multiply the output of the layer, similarly

to [24]. To sparsify gates, we also introduce vectors of stochastic weights zi, zf , zg, zo, by

which we multiply gate pre-activations. As a result, the forward pass through the LSTM

recurrent layer looks as follows:

ft = σ

((
W x

f xt +W h
f ht−1

)
⊙ zf + bf

)
{similarly for it, ot and gt} (6)

ct = ft ⊙ ct−1 + it ⊙ gt ht = ot ⊙ tanh(ct)⊙ zh
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Table 2: Results of structured sparsification. W — weights, G — gates, N — neurons. Compression

is equal to |w|/|w ̸= 0|. In the case of language modeling, the quality on the validation and test sets

is given. The last two columns show the number of remaining neurons and non-constant gates in the

recurrent layers. In the case of pruning, only the recurrent layers of the model are sparsified, while in the

case of Bayesian sparsification, all layers are sparsified.

Task Method Quality Compr. Neurons Gates

Original 84.1 1x 128 512

IMDb Bayes W (SparseVD-Voc) 83.62 18567 8 17

Accuracy % Bayes W+N 83.98 17874x 5 12

Bayes W+G+N 83.98 19747x 4 6

Original 90.6 1x 512 2048

AGNews Bayes W (SparseVD-Voc) 89.14 561x 34 76

Accuracy % Bayes W+N 88.55 645x 17 62

Bayes W+G+N 88.41 647x 14 39

Word PTB Original 120.28 – 114.41 1x 200− 200 800 – 800

(small) Pruning W+N [14] 110.34 – 106.25 1.44x 72 – 123 288 – 492

Perplexity Pruning W+G+N 110.04 – 105.64 1.49x 64 – 115 193 – 442

Word PTB Original 82.57 – 78.57 1x 1500− 1500 6000− 6000

(large) Pruning W+N [14] 81.25 – 77.62 2.97x 324 – 394 1296 – 1576

Perplexity Pruning W+G+N 81.24 – 77.82 3.22x 252 – 394 881 – 1418

Zeroing the components of zh leads to removing the corresponding neurons from the

model, while zeroing the components zi, zf , zg or zo makes the corresponding gates

constant and independent of the input data xt and ht. We work with the introduced

variables z in the same way as with the rest of the weights W and the variables z for

vocabulary sparsification. We use a fully-factorized log-uniform prior distribution and

approximate the posterior distribution in a family of fully-factorized normal distributions.

Empirical evaluation

In Table 2 we present the results of the proposed method in the Bayesian implementation

on text classification problems (data — IMDb [26] and AGNews [27]) and in the standard

pruning implementation on word-level language modeling (data — Penn Treebank [25]).

The proposed method improves the level of structured sparsity of the model at the level

of neurons and gates without a significant quality drop. The resulting gate structures of

the remaining neurons highly depend on the task (see Figure 2). For example, the last
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Figure 2: Gate structures for the remaining neurons obtained with the proposed structured Bayesian

sparsification (Bayes W+G+N). Constant gates are shown in white with corresponding activation values.

For the language modeling task, only 15 randomly chosen remaining neurons are shown.

layer of the model for the language modeling task needs to output a prediction at each

time step, therefore, the output gates are important and active in all neurons. On the

contrary, predictions in the classification task are made only once at the end of the input

sequence, so the output gates become constant for many neurons. Moreover, we obtain

similar gate structures even sparsifying only individual weights (Bayes W), although the

resulting level of structured sparsity is much lower. This suggests that gate structure

intrinsically exists in LSTM, and during training, neurons specialize in terms of their

style of using gates. The proposed method effectively identifies and utilizes this structure

to achieve better compression.

4 Neural network ensembles on a limited memory budget

The standard ensembling method for neural networks, deep ensemble [15], consists in

training of n independent neural networks of the same structure from different random

initializations and then averaging their predictions at the inference stage:

p̄obj,n =
1

n

n∑
i=1

pobj,i, (7)

where pobj,i ∈ [0, 1]K is the distribution over K classes predicted by neural network i for

object obj. Ensembling several neural networks [30], as well as increasing the size of one

neural network [31, 32], improves the quality of the model. Hence, if we have a limited

memory budget, the question arises: on which of these two approaches should we spend

the resources?
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4.1 Power laws in deep ensembles

Figure 3: The behavior of ensemble CNLL

with an increasing number of neural net-

works in the ensemble n and the size of

the networks s. VGG-16 architecture on

the CIFAR-100 dataset. We indicate the

directions along which we study the be-

havior of the metrics by arrows.

Previous research shows, that a quality of an in-

dividual neural network in practice behaves as a

power law with respect to the network size [16, 17].

Similar behavior has also been shown for the test

error of ensembles of simple neural networks with

respect to the number of networks in the en-

semble [33]. In this section, we study how the

test quality of an ensemble of practical convolu-

tional neural networks behaves when we change

the number of neural networks in it n, the size

of these networks s, as well as the total number

of parameters (see Figure 3). We name the num-

ber of networks in the ensemble as ensemble size and change the size of the networks by

changing their width. As quality metrics, we consider the standard negative log-likelihood

(NLL) and its calibrated version, calibrated negative log-likelihood (CNLL). The latter

is more stable, better correlates with the generalization of the model, and avoids the

majority of pitfalls of NLL quotepitfalls.

We show that these metrics, in many cases, behave as power laws. By power laws

we mean a family of functions PLm = c + bma, m = 1, 2, 3, . . . , with parameters a < 0,

b ∈ R, c ∈ R. Parameter c = limm→∞ PLm
def
= PL∞ reflects an asymptote to which the

power law converges, and the parameters a and b specify the rate of convergence to this

asymptote and the difference between the initial value and the asymptote, respectively.

In experiments, we approximate the empirical ensemble quality metrics with power laws

and obtain the parameters a, b, c by solving the regression problem.

Theoretical results

From a theoretical point of view, we show that NLL and the close approximation of

CNLL asymptotically behave as power laws as functions of the ensemble size n. We

denote a model-averaged NLL of an ensemble of n networks for a given object obj by

NLLobj
n = −E log p̄∗obj,i. Here, the expectation is taken over all possible models that may
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constitute the ensemble (e. g. random initializations). The operator ∗ denotes retrieving

the element of the probability vector corresponding to the correct class of the object.

Proposition 1. Consider an ensemble of n models, each producing independent and

identically distributed probabilities of the correct class for a given object: p∗obj,i ∈ [ϵobj, 1],

ϵobj > 0, i = 1, . . . , n. Let µobj = Ep∗obj,i and σ2
obj = Dp∗obj,i are, respectively, the mean and

variance of the distribution of probabilities. Then the model-average NLL of the ensemble

for a single object can be decomposed as follows:

NLLobj
n = NLLobj

∞ +
1

n

σ2
obj

2µ2
obj

+O
(

1

n2

)
. (8)

where NLLobj
∞ = − log (µobj) is the “infinite” ensemble NLL for the given object.

Summing NLLobj
n over objects results in the same metric for the entire dataset, NLLn,

which, by construction, also behaves as c+ bn−1 as n → ∞, where c, b > 0 are constants

with respect to n.

Similarly, we denote a model-averaged calibrated NLL of an ensemble of n networks

for dataset D:

CNLLn = Emin
τ>0

{
−

∑
obj∈D

log p̄∗obj,n(τ)

}
. (9)

Calibration here implies the optimal choice of the temperature τ for the softmax function

in the last layer of neural networks. When calibrating, we apply the same temperature to

each neural network before the ensembling: p̄obj,n(τ) =
1
n

∑n
i=1 softmax{log(pobj,i)/τ}. If

we apply the same temperature τ > 0 for ensembles of all sizes n, we obtain the negative

log-likelihood with a fixed temperature NLLn(τ). This metric functionally behaves in the

same way as NLLn by definition, therefore, according to Proposition 1, it also asymptoti-

cally behaves as a power law as n → ∞. Optimizing NLLn(τ) with respect to temperature

τ results in a lower envelope of the (asymptotic) power laws LE-NLLn = minτ>0NLLn(τ),

which also behaves as a power law as n → ∞. At the same time, LE-NLLn differs from

CNLLn only in the order of taking the expectation and minimizing with respect to τ , and

in practice, these two metrics are almost identical.

Empirical results

From the theoretical analysis, we can only make conclusions about the asymptotic be-

havior of ensemble quality while, in practice, finite-sized ensembles are used. In the
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Figure 4: The behavior of NLL and CNLL of the ensemble of VGG-16 neural networks on the CIFAR-100

dataset with increasing ensemble size n and network size s.

empirical part of this section, we study how the quality of the ensemble of convolutional

networks behaves in the case of finite ensemble sizes n and network sizes s. We conduct

experiments with WideResNet [34] and VGG-16 [35] architectures on CIFAR-10 [36] and

CIFAR-100 [37] image classification datasets. For networks of each considered size we

choose the optimal hyperparameters (weight decay, learning rate and dropout rate).

The quality of the ensemble in terms of all considered metrics, NLLn,NLLn(τ) and

CNLLn, behaves as a power law with respect to the ensemble size n (see Figure 4, left).

However, parameters a of the resulting power laws are slightly higher than the theoretical

value −1 for the asymptotic behavior. An analysis of the obtained power laws allows us

to draw several practically important conclusions. Firstly, the optimal temperature is not

equal to 1 even for large ensembles, hence, calibration is important for large ensembles

too. Secondly, large neural networks gain less from the ensembling than small ones. As a

result, an ensemble of n networks of small size can be more effective than an ensemble of

the same number of larger neural networks.

If we increase the size s of an individual neural network, the double descent behav-

ior [32, 31] is observed for the NLLs. Calibration eliminates this effect, and as a result,

CNLLs behaves as a power law with respect to the network size s. Moreover, parame-

ter a of this power law is close to −0.5, which agrees with the results for the test error

of Geiger et al. [33]. In the case of the ensemble of more than one network, increasing

the network size s of an individual neural network does not lead to a power-law behavior

of the quality metrics. NLLs again experiences the double descent behavior and CNLLs

starts increasing at some network size s. The latter verifies that ensembling may be less

effective for large networks than for small ones.
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In addition to analyzing the behavior of the ensemble quality with respect to the

number of networks n and the size of networks s separately, we study the behavior of

CNLL with respect to the total number of parameters in the model. To do so, we choose

the optimal ratio of n and s in terms of the resulting ensemble quality for each considered

memory budget. Figure 5, left, shows that the resulting CNLL behaves as a power law

when the total memory budget increases.

4.2 Memory split advantage effect

From the results on the behavior of ensemble quality with respect to the total number of

parameters, we discover that for a wide range of memory budgets, the optimal ensemble

consists of more than one network. We illustrate this more clearly in Figure 5, middle.

For all the considered memory budgets, the optimal quality is achieved with an ensemble

of at least two neural networks. This is true even for such small budgets as 1/8 of the

size of one standard VGG-16 network. We observe this effect not only for CNLL but also

for the classification accuracy.

We call the discovered effect a memory split advantage effect, or MSA-effect. It can be

used to obtain high-quality models of small size: given a fixed memory budget, instead

of training a single network, one should split the budget and train an ensemble of several

smaller networks. However, the question arises: how to choose the number of networks

into which a specific budget should be split? Further, we propose a method for predicting

the optimal memory split based on the power laws described in the previous section.

Power laws for predictions

In the previous section, we have shown that the behavior of CNLLn of an ensemble, with

respect to the number of neural networks n, can be closely interpolated with a power law.

In practice, power laws also allow extrapolating CNLLn with high accuracy. For example,

one can train ensembles of small sizes n = 1 . . . 4, approximate their CNLLn with a power

law, and then use this power law to predict the quality of larger ensembles of the same

size networks without training them.

To predict the optimal memory split for a fixed memory budget, we propose to first

predict the values for all considered splitting options, i.e. all the values on the diagonal

in Figure 3 corresponding to a given budget. To do so, we train a small number of
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Figure 5: The behavior of CNLL of an ensemble of VGG-16 networks on the CIFAR-100 dataset when

increasing the total number of parameters in the model (left), the memory split advantage effect (middle),

and the prediction of optimal memory split (right). Left: the colored lines show the behavior of CNLL of

an ensemble with variable ensemble size n and a fixed network size s. Center: each line corresponds to a

fixed memory budget, with the optimal memory split indicated by a star. Right: predictions are shown

with standard deviation obtained with 10 independent experiments.

models of each of the considered sizes, approximate the resulting CNLLn with power

laws, and then predict the diagonal values that we need. Based on the obtained diagonal

values, we choose the optimal memory split and output the corresponding number of

networks and their size as a prediction. Figure 5, right, shows that the described method

produces accurate predictions. In practice, to reduce computations, instead of processing

the networks of each considered size, we start with large ones and decrease the network

size until the quality starts to deteriorate. As a result, the proposed method speeds up

the choice of the optimal memory split if the optimal number of neural networks in the

ensemble is n∗ ≥ 4.

5 Conclusion

In the final section, we summarize the main contributions of the work.

1. We proposed an adaptation of the Bayesian sparsification method, Sparse varia-

tional dropout [1], for recurrent neural networks. We took into account that weights

in recurrent networks are used multiple times during the forward pass through the

network. The obtained method allows achieving a high level of weight sparsity with-

out a significant quality drop. We also extended this method to the sparsification

of the model’s vocabulary by introducing multiplicative stochastic weights, which

further improves the compression results.
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2. We proposed a structured sparsification method for recurrent architectures with gates

based on the idea of the hierarchical sparsification of weights, gates, and neurons of

the network. This method improves the level of structured sparsity of the model

both when used in the Bayesian framework and in standard pruning. The analysis

of the gate structures of the remaining neurons obtained using the proposed method

showed that these structures are interpretable and highly depend on the task.

3. We conducted a study of the behavior of the ensemble quality of convolutional neural

networks with respect to the number of networks in the ensemble and their size. We

discovered that NLL and CNLL of an ensemble behave as power laws with respect

to the number of networks both asymptotically and for the finite ensemble sizes in

practice. We also showed that CNLL of one neural network with respect to its size

and CNLL of the ensemble with respect to the total number of parameters behave

as power laws. We analyzed the discovered power laws and discussed the cases when

power laws were not observed.

4. We discovered the memory split advantage effect: for a fixed total number of pa-

rameters, an ensemble of several small neural networks shows better results than

one large neural network. This effect appears for a wide range of memory budgets,

including small budgets, such as the standard size of a single neural network used

in the literature. This effect also appears both for CNLL and for the classification

accuracy.

5. Based on the discovered power laws, we proposed a method for predicting the optimal

memory split, i.e. the optimal number of networks in an ensemble, for a fixed memory

budget. Based on a small number of trained neural networks, this method predicts

the quality of larger ensembles using power-law approximations and then chooses the

optimal memory split.
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