
National Research University Higher School of Economics

as a manuscript

Julio Cesar Carrasquel Gamez

Formal Modeling and Validation of
Stock Trading Systems Behavior: A Petri Net Approach

PhD Dissertation Summary

for the purpose of obtaining the academic degree
Doctor of Philosophy in Computer Science

Moscow — 2022

The PhD Dissertation was prepared at National Research University Higher School of
Economics.

Academic Supervisor: Irina A. Lomazova, Doctor of Science, Professor, National Research
University Higher School of Economics.

2

Abstract

Trading systems are software platforms used in financial markets to support the exchange of financial
instruments between participants. Particularly, this thesis considers trading systems operating in stock
exchanges, where participants submit orders to buy and sell securities (e.g., shares of companies). Given
the pivotal role of stock trading systems in global finances, it becomes a task of utmost importance to
guarantee the correct execution of their processes. This is why experts in this domain constantly look
for novel ways to validate such systems, including approaches that can detect differences between a real
platform and its specification.

In this thesis, Petri nets and process mining have been chosen for modeling and validating the behavior
of trading systems in stock exchanges. Petri nets are a well-known formalism for modeling concurrent
distributed systems. Also, there exist different extensions of Petri nets which allow to describe multiple
aspects such as data, resources, interaction of agents, etc. Process mining is a data science discipline that
focuses on the analysis of processes in information systems on the basis of event logs, which record the
real behavior of such processes. Notably, conformance checking is family of process mining techniques
used to compare the real behavior of processes (as observed in event logs) with their expected behavior
modeled by Petri nets. Experts have acknowledged the potential of Petri nets and process mining
methods on trading systems: one can build a Petri net specifying the expected behavior of a process in
a trading system, and use conformance checking to compare the model with an event log from such a
system in order to detect errors. This approach may support engineers on tasks such as maintenance
and improvement of a trading platform. Yet, the usage of Petri nets and process mining in this domain
had not been considered before, and thus this thesis aims to solve the question on how to properly model
and analyze crucial behavioral aspects of trading systems using these techniques.

As the main research contributions, this thesis first provides a study on how extensions of Petri nets
can be used to describe and analyze processes in trading systems. Rather than providing a universal
model, we present how each of the chosen extensions can be used to build a model of a certain process,
while focusing on a precise aspect to validate for such a process (for example, the management of data
or the interaction between agents). Also, novel conformance checking methods that make use of Petri
net extensions were developed to validate whether real processes in trading systems comply with their
specification models. As output, these methods indicate “deviations”, that is, concrete differences where
a real system (as observed in an event log) violates its specification. To showcase the practical value of
this research, the proposed methods were implemented as a software tool and we report their usage for
validating a real trading platform. Experimental evaluations with artificial data are also reported.

3

4

Dissertation Summary

The thesis presents a study on the formal modeling of processes in trading systems using different exten-
sions of Petri nets — a well-known formalism for modeling and analysis of concurrent distributed systems
[33]. Novel methods to validate the real behavior of trading systems by comparing models of Petri net
extensions using event data from these systems are also presented. In this dissertation summary, we first
introduce what are trading systems and how process mining, a data science discipline that focuses on
the analysis of processes [3], can be used to validate these systems. Also, we introduce and motivate our
choice to employ Petri nets and conformance checking, a kind of process mining techniques [7], as the
specific approaches for modeling and validation of processes in trading systems. Afterwards, we define
the research problem, the main research contributions, and finally we outline the structure of this thesis.

Research Background

Trading Systems

Trading systems are software platforms used in financial markets to support the exchange of financial
instruments [19]. The kind of such instruments depends on the market type that a trading system works
with [36]. For instance, in commodity markets participants trade primary goods ranging from cocoa to
gold and oil. In foreign exchange markets, people trade currencies. In this thesis, we consider trading
systems in stock exchanges, where participants submit orders to buy and sell securities. A security is
an asset that gives to its holder an ownership right over a share of a company. The size of a share is
measured by the number of stocks associated to the company’s security. Orders submitted by partici-
pants indicate what security they want to buy or sell, how many stocks of such security, and what price
per stock. Trading systems benefit buyers and sellers. Companies sell their shares to raise capital for
business development. Investors seek to buy securities from companies with promising growth in such
a way their investment may give favorable returns. These are some of the benefits that have turned
trading systems into a vital component of global finances [25].

5

Modern stock exchanges rely their operability on software platforms, but their roots can be traced back
as early as 1602, when the Amsterdam Stock Exchange was created by the Dutch East India Company
[39]. The New York Stock Exchange founded in 1792 and the London Stock Exchange founded in 1801
are yet another cases of long-established trading venues. Elements such as securities, orders, and order
books that are used to store orders, emerged in those venues and nowadays compose the core of trading
systems. The migration from manual transactions to the use of electronic trading systems began in the
1970s. A long renowned case is the National Association of Securities Dealers Automated Quotations
(NASDAQ), created in 1971 and known as the world’s first electronic trading platform [34]. In the
last decades, the use of modern software technologies in trading systems has enabled an automated
control over transactions, providing reliable services to participants. Also, the digital transformation of
trading systems has diversified the kinds of participants and services in trading systems. For example,
trading robots or algorithmic trading software can be configured to analyze real-time market data and
to automatically buy/sell securities based on their analysis [4, 35].

Given the pivotal role of trading systems in global finances, it becomes crucial the assurance of their
correctness; this means that software processes in trading systems must behave as intended. Generally,
the expected behavior of software processes is documented in system specifications, which serve as a
guide for engineers when developing trading systems. However, the increase of the number and the
variety of participants, as well as the growing complexity of services turns the specification-driven
development of trading systems a complex and error-prone task. Errors during a system’s development
may provoke the real behavior of software processes to differ from the expected behavior described in
the system’s specification. Such a gap between a real system and its specification may provoke failures
with disastrous consequences for stock exchanges and their participants [26]. In 2012, a software error
of the trading company Knight Capital led to an uncontrolled submission of orders, accumulating a loss
position of $440 million within 45 minutes [37]. In the same year, NASDAQ was fined $10 million due
to technical malfunctions during the initial public offering of Facebook’s shares [38]. To avoid errors of
such magnitude, experts constantly seek for novel ways to validate trading systems, that is, approaches
that can opportunely uncover differences between a system and its specification [6, 22, 41].

When evaluating new approaches for validating trading systems, experts also consider the compu-
tational overhead they may cause. Instrumentation placed in a system for monitoring its behavior may
affect the system’s overall performance. The time for serving user requests may increase. This is why
approaches that diagnose a system from the outside are preferred. In this regard, passive analysis (also
known as passive testing) has gained the attention of experts [23]. Instead of interacting directly with
a system, passive analysis tools read system outputs such as logs or network messages. This output
is processed by data science methods such as machine learning or data mining to get insights about
the system’s behavior. For example, in [22] logs produced by settlement and clearing components of a
trading system are diagnosed by text analysis and clustering techniques. Thus, experts aim that passive
analysis grounded on data science can support engineers to detect errors in processes of trading systems.

6

Process Mining

A promising data science approach for validating trading systems is process mining. Process mining
is a data science discipline that focuses on the analysis of processes in information systems [3]. When
analyzing a process in an information system, process mining makes use of event logs and process models.
An event log records real behavior of a process, and it consists of cases, each of them associated to a
particular run of the process (also known as a “process instance”). Figure 1 presents the main types of
methods in process mining: conformance checking, process discovery, and enhancement. Conformance
checking seeks to compare models describing expected behavior of processes (for example, based on a
system’s specification) against event logs. The latter allows to validate if real processes (as observed in
the logs) behave as the models specify. Conversely, process discovery uses event logs as input in order
to automatically build models that describe real processes. Enhancement techniques allow to enrich
process models, either hand-made or discovered a priori, by using information available in event logs.

system specificationinformation system

Conformance
Checking

Process modelsEvent logs

Process
Discovery

Enhancement

Figure 1: Methods in process mining: discovery, conformance, and enhancement.

Process mining methods particularly focus on the control-flow perspective of processes, i.e., activities
that a process executes and their causal dependence. For example, “the execution of an activity trade
must be preceded by an activity order submission”. Process models allow to capture different control-
flow patterns such as sequences, choices, parallel executions, and loops. Nowadays, a plethora of process
modeling notations are available: Petri nets [33], UML Activity Diagrams [14], Business Process Mod-
eling Notation (BPMN) [47] and Event-driven Process Chains (EPCs) [31], among many others.
A traditional application domain for process mining has been Business Process Management (BPM)
[2]. Various organizations such as Siemens, Uber and BMW have used process mining to improve their
business processes in areas ranging from finances and customer support to manufacture [43]. Nonetheless,
process mining have been also applied in innovative case studies outside the sphere of BPM, such as
human habits in smart spaces [27], delays in railway networks [29], and gaming user behavior [42].

7

Notably, the use of process mining to analyze software processes in computer systems is an area which
has gained attention by researchers and practitioners [45, 46]. In [45], process mining techniques are
applied to logs extracted from software systems supporting the touristic domain in order to get insights
regarding software usage by users and to suggest improvements. Conversely, in [46], process mining is
used on event logs from a booking system to discover violations on the system’s architectural guidelines.

Process mining can be seen as a suitable passive analysis approach to validate the behavior of pro-
cesses in trading systems. The management of orders inside a trading platform, or the communication
management between agents and the platform are examples of processes that can be analyzed with
this approach. Albeit there are no research works that have studied before the use of process mining
for validating trading systems, its potential has been acknowledged by domain experts [21]. Figure 2
illustrates how process mining can be used to validate a process in a trading system. A process model
(e.g., a Petri net) can be designed based on the specification of the process to diagnose. The model
describes the expected behavior that the process under evaluation should comply. Conversely, an event
log recording real behavior of the process can be obtained by pre-processing data sources of the trading
system. The data can be extracted from network messages exchanged between agents and a trading
platform. Network messages indicate the activities executed by agents or a platform, as well as they
inform the status of buy and sell orders. Then, a conformance checking method can be used to search
for differences between the process’s real behavior recorded in the event log and the process model. As
output, a list of deviations can be obtained, revealing concrete points where the real process did not
comply with the specification. Deviations may reveal that some orders where not correctly handled by a
platform, or that some agents did not interact with the platform according to the specification. Finally,
this output can be leveraged by engineers to opportunely fix the process under evaluation.

network messages

Petri net model

conformance
checking

...

pre-processing/
filtering

trading system

Event Log

trading system
specification

deviations
process’s real behavior

process’s expected behavior

specification-based
process modeling

agents

trading platform

Figure 2: An approach to validate real processes in trading systems via process mining.

8

As illustrated in Figure 2, Petri nets are chosen as the formalism to model the expected behavior of
processes in trading systems, whereas conformance checking is used to validate the real behavior of such
processes, by comparing event logs with Petri nets. In what follows, we briefly introduce Petri nets and
conformance checking, motivating our choice of using both for modeling and analysis of trading systems.

Petri Nets: Modeling Expected Behavior

Petri nets are one of the best investigated formalisms for modeling concurrent distributed systems [33].
The formalism was introduced by Carl Adam Petri in 1962, although their graphical representation was
introduced later. Petri nets have proved to be useful in tasks such as system design, simulation and
verification [17]. The majority of methods in process mining are grounded on the use of Petri nets,
which can be seamlessly mapped to other process modeling notations.

a

b

c
e

d

source sinklogin

obtain
access

create
buy order

create
sell order send

order

p0

p1

p2 p4

p3

p5

Figure 3: A Petri net describing the process of a “one-time trader”: a trader that connects to a trading
system to exchange only one order.

A Petri net is a bipartite graph that consists of two kinds of nodes: places and transitions. Places
(drawn as circles) may represent buffers of resources, virtual or physical locations, logical conditions,
etc. Transitions (drawn as boxes) may denote tasks, jobs, activities of a process, etc. Places may store
tokens (drawn as black dots), where tokens may abstractly represent signals, control threads, resources,
individual objects, etc. A distribution of tokens across the places of a Petri net is called a marking,
abstractly representing a current state of a system. For instance, the Petri net in Figure 3 models a
“one-time trader” process. This process corresponds to a class of participants that logins in a trading
system, submits exactly one order (either a buy order or a sell order), and finally he logouts from
the system once the order is placed. In particular, the model in Figure 3 is a workflow net (WF-net)
[1], a class of Petri nets widely used in process mining to model processes. A WF-net consists of two
distinguished places, a source and a sink, such that all nodes are in a path from the source to the sink.
A token in the source place models the initial state of a process, whereas a marking where only the sink
place has a token corresponds to the process’s final state.

9

Similar to other modeling notations used in process mining, Petri nets allow to model the control-flow
perspective of processes, that is, activities of a process and their causal dependence. In Figure 3, the
Petri net specifies an expected ordering between activities. This ordering must be complied in every
run of the real process: the activity login must be executed first; then, the trader choices to create a
new buy order or a new sell order, while in parallel he may obtain access to the trading system;
finally, after obtaining access to the system, the participant sends his order for trading.

a

b

c
e

d

source sinklogin

obtain
access

create
buy order

create
sell order send

order

p0

p1

p2 p4

p3

p5

Figure 4: The Petri net of Figure 3 in a new marking after the firing of transition a (activity login)

Petri nets are “executable”: the firing of a transition t consumes a token from each input place of t, and
produces a token in each output place of t; as a result, the marking of the Petri net is updated. The
firing of a transition abstractly represents the execution of an activity in a system, which consequently
changes the current system’s state. In Figure 3, the firing of transition a (activity login) consumes a
token from the source (place p0) and produces a token in place p1 and another token in place p2. The
new marking resulting after the firing of transition a is depicted in Figure 4. In this new marking ,
transition d (activity obtain access) may fire as there is a token to be consumed from input place p1.
Similarly, either transition b or c may fire as a token is ready to be consumed from place p2. The marking
depicted in Figure 4 relates to the state of a trader that, after sending a login request, he can create an
order, while in parallel he waits to obtain an access approval from the trading platform.

Petri net extensions can be used when it becomes crucial to model and validate other aspects beyond the
process’s control-flow. For instance, when analyzing the management of orders inside a trading system,
it may be required to check the correct transformation of orders’ data attributes such as their price,
quantity of stocks, etc. Conversely, when analyzing the communication of traders with a platform, a
model should be able to properly represent the concurrent interaction of multiple agents. Extensions
of Petri nets provide means to properly model specific aspects of these processes, by enriching ordinary
Petri nets with concepts of data types, hierarchy and modules. Petri nets with identifiers [20], Colored
Petri nets [24], Nested Petri nets [28], and DB-nets [32] are some examples of Petri net extensions.
Thus, one may choose a certain extension of Petri nets depending on the application-specific aspects
that must be analyzed in a process.

10

Conformance Checking: Validating Real Behavior

We consider conformance checking to compare real behavior of processes in trading systems against their
specification. Conformance checking is a family of process mining methods that search for differences
between real behavior of processes, as observed in event logs, and expected behavior described in models
[7]. Event logs consists of cases, where each case is associated to a particular run of the process. Each
case has an ordered sequence of events which is called a trace. Events indicate activities that were
executed by the system. Then, to validate a specific case, conformance checking methods seek to relate
its trace with a process model. There exist two well-known types of conformance checking methods:
replay and alignments. Replay comprises the execution of a process model (e.g., a Petri net) according
to the information available in events of a trace [44]. A deviation, that is, a precise difference between
a real process and its model, is detected when the model cannot be executed as an event indicates.
Conversely, alignments seek to directly match a trace with a valid execution sequence specified in the
model (e.g., a sequence of transition firings in a Petri net) [5]. In alignments deviations are detected
when a trace only partially matches with a valid execution sequence in the model.

Petri net
Expected behavior

eventcase

bob

sam

a

b

c
e

d

source sinklogin

create
buy order

create
sell order send

order

p0

p1

p2 p4

p3

p5

system specificationinformation system

Event log
Real behavior

login

create buy order

obtain
access

obtain access

send order

create sell order

send order

Figure 5: Example of replay-based conformance checking between a Petri net and an event log.

Figure 5 illustrates the use of replay-based conformance checking for comparing an event log and a Petri
net. The event log records two cases related to individual runs of traders, bob and sam. The trace
of each case is depicted. In this example, events only contain the activities executed by each trader.
However, events in real-life event logs can be equipped with additional attributes. For each trace, the
method executes the Petri net according to each event: a transition labeled with the event’s activity
is selected for firing. If the transition is not enabled for firing (i.e., there is not a token in each input
place of the transition) then a deviation is detected, implying that the real process violated the causal
ordering described by the model.

11

For instance, in Figure 5, for bob’s trace, transition a (labeled with activity login) is enabled, so it can
fire, mimicking the execution of activity a in the real system by bob. It is easy to see that the Petri net
can be executed according to each of the following events in bob’s trace, implying that the behavior of
this trader complies with the model.
Conversely, if we replay sam’s trace, two deviations can be detected: the trader executed activity create
buy order without executing before executing activity login. Also, he executed activity send order
before the execution of activity (obtain access) which grants him approval to send the order. These
are examples of deviations that can be systematically detected when executing the Petri net as indicated
by every event in the trace.
Finally, note that the given example considers only to validate the process’s control-flow as it makes use
of ordinary Petri nets. In this sense, for evaluating other aspects such as data one needs to consider
extensions of Petri nets.

Research Problem and Aim

The research problem that this thesis addresses is about how to properly model trading systems using
Petri nets and how to use Petri net models on process mining, in particular conformance checking, for
validating the real behavior of such systems. Petri nets and process mining have been employed in a
plethora of application domains. Yet, their usage on trading systems has not been addressed before. In
trading systems, there are application-specific aspects that modeling and validation techniques must be
aware of, in such way to properly assess the correct behavior of these systems and for detecting errors.
In particular, two important aspects must be considered:

• Interaction of distinguishable objects such as orders and agents. Trading systems are characterized
by a high degree of interaction between distinguishable objects such as orders or traders. On the
one hand, it is required to check whether multiple agents are interacting with a trading platform
according to the communication protocol established in the system’s specification. On the other
hand, once traders submit buy orders and sell orders to a trading platform, it is needed to check
whether orders are being handled according to the system’s specification.

• Transformation of data attributes of objects in trading systems. In trading systems, it becomes neces-
sary not only to validate the control-flow of processes, but also to check whether data attributes are
transformed as intended. For example, for an order submitted in a platform, it is required not only
to check a correct ordering between the activities related to such an order, but also if attributes of
the order such as its stock quantity, its price, and other attributes are being transformed according
to the system’s specification.

12

The research aim of this thesis is to define proper models based on extensions of Petri nets that can
describe application-specific aspects of processes in trading systems. Rather than seeking to develop a
universal model that can be used to analyze all aspects of a process, we shall consider how different
models, built with different Petri net extensions, can be used to evaluate individual aspects of a trading
system. For example, a certain model may be used for analyzing the transformation of data attributes
in orders, whereas another model can be used to describe the interaction of traders with a trading
platform. Then, this work aims to develop process mining methods that can validate the behavior of
real trading systems, including the detection of errors in these systems, by comparing their event logs
with the proposed models of Petri net extensions.

Main Results of This Thesis

The main research contributions of this thesis are summarized as follows:

I. Models based on Petri net extensions have been defined for modeling application-specific aspects
of trading systems. Petri net with identifiers and Colored Petri nets are used for modeling the
interaction of buy/sell orders. In particular, the latter extension allows to describe the transformation
of data attributes of orders. Also, Nested Petri nets are used for modeling individual behavior of
traders and their interaction with a trading platform. Syntactical restrictions are defined for these
models in such a way that the models can faithfully describe specific characteristics of these systems.

II. New conformance checking methods have been developed to validate trading systems. The methods
seek for concrete deviations in a system by comparing the proposed models with event logs from
the system. Different types of deviations can be detected depending on the system’s aspect that is
being validated: control-flow deviations, priority rule violations, data corruptions, and non-proper
termination are examples of deviations that can be detected.

III. Prototypical implementations of the conformance methods were developed, and their use for validat-
ing a real trading platform is reported in this thesis. Experimental evaluations with artificial data
are also reported.

Research Publications and Conference Presentations

Research Publications

The results of this thesis have been prepared in the following scientific articles, which have been published
in international conference proceedings and peer-reviewed journals.
According to the rules of the HSE Dissertation Council in Computer Science∗, articles are classified in
two types. First-tier publications include papers indexed in the Web of Science or Scopus databases

∗https://www.hse.ru/en/science/disscoun/council_computerscience/

13

(quartile Q1), as well as in peer-reviewed collections of conferences that appear in CORE rankings (ranks
A and A*). Other publications are papers published in journals included in HSE’s list of recommended
journals†, or indexed in the Web of Science or Scopus databases (quartile ≥ Q2 or without quartile),
as well as in peer-reviewed collections of conferences appearing in CORE rankings (rank B). For each
article, we provide its status and the proportion of the author’s personal contribution measured in
editor’s sheets‡

Other Publications

• Carrasquel, J.C., Mecheraoui, K., Lomazova, I.A. Checking Conformance Between Colored Petri
Nets and Event Logs. Analysis of Images, Social Networks and Text (AIST 2020), Lecture Notes in
Computer Science, vol. 12602, Springer, 2021, pp.435-452 [13]. (Scopus, Q2; author contribution:
0.84).

• Carrasquel, J.C., Chuburov, S.A., Lomazova. Pre-processing Network Messages of Trading Systems
into Event Logs for Process Mining. Tools and Methods of Program Analysis (TMPA 2019), Com-
munications in Computer and Information Science, vol. 1288, Springer, 2021, pp.88-100 [8]. (Scopus,
Q4; author contribution: 0.67).

• Carrasquel, J.C., Mecheraoui, K. Object-Centric Replay-Based Conformance Checking: Unveiling
Desire Lines and Local Deviations. Modeling and Analysis of Information Systems, vol. 28, 2021,
pp.146-168 [12]. (HSE’s list of recommended journals; author contribution: 1.18).

• Mecheraoui, K., Carrasquel, J.C., Lomazova, I.A. Compositional Conformance Checking of Nested
Petri Nets and Event Logs of Multi-Agent Systems. Modeling and Analysis of Complex Systems and
Processes (MACSPro 2020), CEUR, vol. 2795, 2020 [30]. (Scopus; author contribution: 0.3).

• Carrasquel, J.C., Lomazova, I.A, Rivkin A., Modeling Trading Systems using Petri Net Extensions.
International Workshop on Petri Nets and Software Engineering (PNSE 2020), CEUR, vol. 2651,
2020 [11]. (Scopus; author contribution: 0.75).

• Carrasquel, J.C., Lomazova, I.A. Modeling and Validation of Trading and Multi-Agent Systems: An
Approach Based on Process Mining and Petri Nets. Proceedings of the ICPM Doctoral Consortium,
CEUR, vol. 2432, 2019 [9]. (Scopus; author contribution: 0.56).

• Carrasquel, J.C., Lomazova, I.A., Itkin, I.L. Towards a Formal Modeling of Order-driven Trading
Systems using Petri Nets: A Multi-Agent Approach. Modeling and Analysis of Complex Systems and
Processes (MACSPro 2019), CEUR, vol. 2478, 2019 [10]. (Scopus; author contribution: 0.67).

†https://scientometrics.hse.ru/goodjournals
‡1 editor’s sheet is equal to 16 pages (or 40000 characters).

14

Conference Presentations

The results of this thesis have been presented and discussed at the following conferences and workshops:

• 6th International Conference on Software Testing, Machine Learning and Complex Process Analysis
(TMPA 2021). Online. 25-27 November 2021. Talk: Searching for Deviations in Trading Systems:
Combining Control-Flow and Data Perspectives.

• 12th Workshop on Program Semantics, Specification and Verification (PSSV 2021). Online. 4-5
November 2021. Talk: Validating Real Behavior of Agents in Trading Systems using Nested Petri
Nets.

• 2nd Conference on Modeling and Analysis of Complex Systems and Processes
(MACSPro 2020). Online. 20-24 October 2020. Talk: Compositional Conformance Checking of
Nested Petri Nets and Event Logs of Multi-Agent Systems.

• 9th International Conference on Analysis of Images, Social Networks and Texts
(AIST 2020). Online. 15-16 October 2020. Talk: Checking Conformance Between Colored Petri
Nets and Event Logs.

• International Workshop on Petri Nets and Software Engineering (PNSE 2020) co-located with the
41stInternational Conference on Application and Theory of Petri Nets and Concurrency (Petri Nets
2020). Online. 24 June 2020. Talk: Modeling Trading Systems using Petri Net Extensions.

• 5th International Conference on Software Testing, Machine Learning and Complex Process Analysis
(TMPA 2019). Tbilisi, Georgia. 7-9 November 2019. Talk: Pre-processing Network Messages of
Trading Systems into Event Logs for Process Mining.

• Doctoral Consortium at the 1st International Conference on Process Mining (ICPM 2019). Aachen,
Germany. 23 June 2019. Talk: Modelling and Validation of Trading and Multi-Agent Systems: An
Approach Based on Process Mining and Petri Nets.

• 1st Conference on Modeling and Analysis of Complex Systems and Processes
(MACSPro 2019). Vienna, Austria. 21-23 March 2019. Talk: Towards a Formal Modelling of
Order-driven Trading Systems using Petri Nets: A Multi-Agent Approach.

15

Thesis Outline
The thesis consists of eight chapters. Chapter 1 corresponds to the Introduction. A brief introduction
on trading systems and process mining is presented. Petri nets and conformance checking are introduced
as the techniques that have been chosen in the thesis for modeling and validation of processes in trading
systems. The chapter introduced the research problem, the main research contributions and finally the
structure of the thesis.

Chapter 2 describes the core elements of trading systems, on which we focus on this thesis: orders,
order books and the Financial Information Exchange (FIX) protocol.
Orders are records submitted by agents into a trading platform in order to buy or sell securities; orders
are equipped with different attributes that are configured according to the intentions of traders, e.g.,
how many stocks of a security to buy or sell, at which price per stock, etc.
Order Books are two-sided lists inside a trading platform where orders trading the same security are
placed and trade according to certain priority rules [19]. Each order book has a buy side and a sell
side, where buy orders and sell orders are respectively placed. Buy orders with highest prices and sell
orders with lowest prices have highest priority in their sides and trade first. If two orders have the same
price, then the order submitted earlier trades first. Table 1 shows how orders are prioritized in an order
book. In the example, Bif’s buy order and Sol’s sell order have highest priority in their sides. A trade is
executed iff the price of the buy order with highest priority is greater or equal than the price of the sell
order with highest priority; the latter means that the best buyer is willing to pay at least as much as
what the seller demands. In the current state of the order book in Table 1, a trade of 1 stock is executed
between Sol’s sell order and with Bif’s order that buys 4. Sol’s order is filled (traded all stocks), and
Bif’s order is partially filled (the order traded only some stocks) with a remainder of 3.

Table 1: Buy orders (a) and sell orders (b) are submitted into a trading platform; the platform places
and ranks these orders into the corresponding order book according to a price-time policy (c).

(a) submitted buy orders

time trader size price
10:01 Bea 3 20
10:08 Ben 2 20
10:15 Bif 4 market
10:18 Bob 2 20.1
10:29 Bud 7 19.8

(b) submitted sell orders

time trader size price
10:05 Sam 2 20.1
10:08 Sol 1 19.8
10:10 Stu 5 20.2
10:20 Sue 6 20.0

(c) order book

buyer size price size seller
Bif 4 market

20.1 5 Stu
Bob 2 20.1 2 Sam
Bea 3 20.0
Ben 2 20.0

20.0 6 Sue
Bud 7 19.8 1 Sol

16

The Financial Information Exchange (FIX) protocol is a communication standard widely used in modern
trading platforms for the exchange of messages between agents and a trading platform [15]. Using FIX
channels, agents can submit orders to a platform, and they can receive periodical reports about the
status of their submitted orders. Hence, by parsing FIX messages exchanged between agents and a
platform is possible to extract the real behavior of their associated processes.

FIX messages exchanged by agents and the platform consists of ASCII-encoded tag-value pairs, where
every pair is separated by the ASCII control character 0x01. Tags are integers that are associated to
the different attributes that can be sent in a FIX message. Figure 6 exemplifies a FIX message sent
from an agent to a trading platform. The message corresponds to an agent who is submitting a day
limit order configured to buy 40 stocks (tag 38) of the security VTB24 (tag 55) at a price per stock of
100 (tag 44). Thus, it can be seen how FIX messages inform the activities that agents may execute in
a trading system. The complete set of FIX messages and all possible tag-value pairs can be found in [16].

8=FIXT1.1 | 9=90 | 35=D | 49=User1 | 56=FGW |
version message length message type sender receiver

34=2 | 55=VTB24 | 54=1 | 40=2 |
seq. number instrument side (buy,sell) order type (market,limit,...)

38=40 | 59=0 | 44=100 | 11=ORD1 | 10=197 |
order size time in force price order id checksum

Figure 6: Example of a FIX message: tag-value pairs inform the activity that is executed in a system,
as well as the data attributes related to the order. Tag 35 with value D indicates that the agent sending
this message submits an order in the platform.

The next part of the thesis addresses the problem about how to properly model and validate processes
in trading systems that manage the mentioned core elements of trading systems.
Two processes in trading systems are considered:

(1) The management of multiple orders in order books inside a trading platform. Multiple orders are
submitted in different order books of a trading platform. Orders have different attributes that may
change according to the execution of certain activities in a platform. The execution of these activities
must comply a certain ordering. A trading platform must correctly implement priority rules in such
a way to establish which orders should trade first, as well as it must execute as expected the trades
between orders with highest priority.

(2) The management of the connections between multiple agents and a trading platform. Agents inter-
acting with a trading platform must comply with the specification established by the FIX protocol.

17

Depending on the process to model and the specific aspects that must be analyzed, a certain Petri net
extension model and a validation method can be chosen. Table 2 shows the models and methods that
are proposed for modeling and validating each of these processes, including the chapters and sections
where they are addressed.

Table 2: Models and methods presented in the thesis for analysis of processes in trading systems.

process aspects to
model & validate

Petri net extension
(Chapter 4)

Event log
(Chapter 5)

Conformance checking
methods

(Chapter 6)

(1)
management of

orders

interaction of
multiple orders
(control-flow)

Petri nets
with identifiers

(PNIs)
(Section 4.1)

Event logs with
object identifiers

(Section 5.1)

Trace replay of
an event log

with object identifiers
on a PNI model

(Section 6.1)
interaction of

multiple orders
(control-flow)

and
transformation of

orders data attributes

Colored Petri nets
(CPNs)

(Section 4.2)

Event logs with
object data attributes

(Section 5.2)

Trace replay of
an event log with

object data attributes
on a CPN model

(Section 6.2)

(2)
management of

agents

interaction of
multiple agents

and
their autonomous

behavior

Nested Petri nets
(NP-nets)

(Section 4.3)

Event logs of
multi-agent systems

(Section 5.3)

Trace replay of
an event log of a

multi-agent system
on a NP-net model

(Section 6.3)

Chapter 3 introduces basic concepts about Petri nets and conformance checking which are the basis
for the models and methods presented in this work.

Chapter 4 presents a study on modeling trading systems using Petri net extensions. These
extensions come to enrich the base formalism of Petri nets with notions that resemble those of high-
level programming languages such as data types, functions, modules and hierarchy. Depending on the
process to model and the concrete aspects to evaluate, a certain Petri net extension may be chosen. In
particular, the extensions of Petri nets considered on the thesis are: Petri nets with identifiers, colored
Petri nets, and nested Petri nets.
Petri nets with identifiers (PNIs) are defined in Section 4.1 for modeling the management of orders
in a trading platform. In this class of Petri nets, tokens carry distinct values, so buy orders and sell
orders can be abstractly represented as tokens. Hence, this class particularly focuses on modeling
the interaction of distinguishable objects, and omits other aspects such as the transformation of data
attributes. Figure 7 exemplifies a PNI model describing the management of orders in a simple order
book, where individual orders (represented as tokens) either trade once or they are canceled.

18

p2

y y y y

p4 p6

p1

x x x x

p3 p5

y

x x

y

OS OS OS

OBOB OB

a

b

d
e

a

b

e

d

c

new buy order

new sell order

c cancel buy order

cancel sell order

trade

sink
place
sell
orders

source
place

sell orders

source
place

buy orders

sell side

buy side

sink
place
buy
orders

s1

s2

b1

b2

Figure 7: Petri net with identifiers (PNI) modeling the management of orders in a simple order book.

Colored Petri nets (CPNs) are presented in Section 4.2. CPNs are an extension of Petri nets where
tokens carry values that belong to certain domains [24]. These values can be n-ary tuples. Tokens in
CPNs can represent individual objects, which carry identifiers and also data attributes. In Figure 8,
token (b1, 1, 22.0, 5) represents an order with identifier b1, submitted in time 1, to buy 5 stocks at price
22.0 per stock. Arcs in CPNs are labeled with expressions that may modify data attributes attached to
tokens. Thus, CPNs allow us to describe the process of managing orders in order books of a platform,
and how attributes of orders can be transformed upon the execution of certain activities.

t1
submit
buy order

(o,ts,pr,q)

OB
source place
buy orders

(o,ts,pr,q)

submitted
buy orders

t3 new
buy order

(o,ts,pr,q)

(o,ts,pr,q)

p3
OB

order book
buy side

t 2
 submit
sell order

(o2,ts2,pr2,q2)

source place
sell orders

(o2,ts2,pr2,q2)

submitted
sell orders

t 4 new
sell order

p4
OS

(o2,ts2,pr2,q2)

(o2,ts2,pr2,q2)

OSOB
p5

t 6

t5
trade1

t7

(o2,ts2,pr2,q2)(o,ts,pr,q)

(o2,ts2,pr2,q2-q)

(o,ts,pr,q-q2) (o,ts,pr,q) (o2,ts2,pr2,q2)

(o,ts,pr,q)(o2,ts2,pr2,q2)

trade3trade2

t 8 discard
buy order

t 9discard
sell order

OS

sink place
buy orders

(o2,ts2,pr2,0)

OB

p7

OS

(o,ts,pr,0)

(o,ts,pr,q) (o2,ts2,pr2,q2)

(o,ts,pr,0) p8
sink place
sell orders

p6
order book
sell side

(o2,ts2,pr2,0)

(o2,ts2,pr2,0)

(o,ts,pr,0)

p1

p1(b1,1,22.0$,5)

(s1,2,21.0$,2)

(s2,3,19.0$,1)

Figure 8: Colored Petri net modeling the management of orders in an order book.

19

Figure 8 shows a CPN modeling the management of orders in an order book. The CPN can be seen as a
refinement of the PNI shown in Figure 7. The source places p1 and p2 are locations for incoming orders;
places p3 and p4 are buffers for submitted orders; places p5 and p6 model the buy side and the sell side of
the order book, whereas p7 and p8 are the sink places for filled or canceled orders. Transitions t1 and t2

model submission of orders by agents; transitions t3 and t4 model insertion of orders in the order book.
Transitions t5, t6 and t7 model variants of a trade: transition t5 (activity trade1) models a trade where
both orders are filled (all stocks were bought/sold); t6 and t7 (activities trade2 and trade3) model
the cases where only one order is filled, whereas the other is partially filled (returning with its stock
remainder to a side of the order book). Finally, transitions t8 and t9 represent cancellation of orders.

t 1
logon

t 2x
logon error

E

E

t 3

t 5

t 4

test request E

logout E

t 6
heartbeatnew order

t 7
timeout

x

x

x

x

x

x

x

x

x

x x x

x

α1

α2

α3

α4

α5

online
users

source
 users

idle
users

sink
users

ben:

u1

SN:

source waiting

u2
logon

request
α1

logon

u3
α2

logon error
session
thread

application
thread

u8

logout

u4
send order

heartbeat

waiting

exception

u5

u6

u7
new
order

sink

α3

α5

α4

Figure 9: Nested Petri net describing agents autonomous behavior and their interaction in a platform.

Nested Petri nets (NP-nets) are presented in Section 4.3. NP-nets are an extension of Petri nets where
tokens can be Petri net themselves (referred to as “net tokens”) [28]. Every net token in a nested Petri
net model will account for an individual agent whose autonomous behavior is defined by the inner Petri
net of the token. Figure 9 depicts a NP-net model describing the expected behavior of multiple agents in
a trading platform. In particular, the model focuses on the management of connections between agents
and the platform, as well as the activities that each agent can execute depending on his connection
state. The model abstractly describes the interaction between agents and a trading platform using the
FIX protocol, as described in Chapter 2 of the thesis.
The system net SN of the NP-net in Figure 9 represents the trading platform. Places in the SN represent
agents’ connection states (also referred to as “locations”). Net tokens (drawn as white dots) stand for
individual agents, which can be located in any of these places. Transitions in the SN represent activities
that a platform executes to handle connection states of agents. For example, transition t1 (activity

20

logon) transfers agents from the source place p1 to place p2 meaning that the platform approved the
logon request of an agent. Conversely, each net token is associated with a different Petri net which
allows to describe his autonomous behavior. For an inner Petri net of a net token, places represent local
states of an agent, whereas transitions abstractly denote the activities that the agent may execute.
Synchronization labels labeled to some transitions allow the simultaneous firing of transitions on a
system net and in net tokens. For trading systems, synchronization labels provide a way for modeling
interaction and responses between the trading platform and agents. Execution steps in NP-nets are
as follows: (i) An element-autonomous step which corresponds to the firing of a transition t without
synchronization label in a net token, according to the usual rules for Petri nets; (ii) a system-autonomous
step is the firing of a transition t in the system net according to the firing rule described above; and
(iii) a synchronization step which is the simultaneous firing of a transition t in the system net with a
synchronization label α, and the firing of enabled transitions (also labeled with α) in net tokens residing
in input places of t.
For each of the presented classes of Petri net extensions, syntactical restrictions are formally defined
in the thesis. These restrictions guarantee that the models that are constructed with these classes will
comply with elemental characteristics of trading systems. For example, objects such as orders and agents
should be unique, so all tokens should be distinguished. On the other hand, models should have the
structure of workflows with distinguished sources and sinks. We defined the models that comply with
these restrictions as conservative-workflow nets.

Chapter 5 presents definitions of different classes of event logs for describing real behavior of processes
in trading systems. The following classes of event logs are defined: (1) event logs with object identifiers
which record the interaction of individual objects (e.g., orders); (2) event logs with object data attributes
which record how data attributes of different objects (e.g., orders) are transformed when activities are
executed; and (3) event logs of multi-agent systems which record activities executed by a given trading
platform and by multiple agents that concurrently interact with such a platform.

In what follows, the definitions of events logs stated in Chapter 5 are presented, as well as their corre-
sponding examples in Tables 3-5.

Definition (Event Log with Object Identifiers). Let D be a finite set of types, and let A be a finite
set of activities. An event log with object identifiers is a multiset of traces L. For every trace σ in L,
each event in σ is a tuple of the form e = (a,R(e)), where a ∈ A is an activity, and R(e) is a finite set
of elements. For each r ∈ R(e), we say that rj is the identifier of an object of type D, involved in the
execution of activity a, such that r ∈ D ∧ D ∈ D.

21

Table 3: Event log with object identifiers with two traces related to different runs in a trading platform.

trace event (e) activity (a) objects (R(e))
σ1 e1 new buy order b1

e2 new sell order s1
e3 new sell order s2
e4 trade b1 , s1
e5 cancel sell order s2

σ2 e1 new buy order b1
e2 trade b1 , s1
e3 trade b2 , s1
e4 new sell order s2

Definition (Event Log with Object Data Attributes). Let D be a finite set of types, let Σ be a set
of colors defined over D, and let A be a finite set of activities. An event log with object data attributes is
a multiset of traces L where: for every trace σ in L, each event in σ is a tuple of the form e = (a,R(e))

s.t. a ∈ A and R(e) is a set where ∀r ∈ R(e), r ∈ C and C ∈ Σ.
For each element r in the set R(e) of an event e, r is a tuple representing an object involved in the
execution of activity a in event e.

Table 4: Example of one trace σ in an event log L with object data attributes.

event (e) activity (a) objects (R(e))
e1 submit buy order (b1, 1, 22.0, 5)
e2 new buy order (b1, 1, 22.0, 5)
e3 submit sell order (s1, 2, 21.0, 2)
e4 new sell order (s1, 2, 21.0, 2)
e5 new sell order (s2, 3, 19.0, 1)
e6 trade2 (b1, 1, 22.0, 4), (s1, 2, 21.0, 0)

Definition (Event Log of a Multi-Agent System). Let O be a finite set of agent identifiers, and
let A be a finite set of activities. An event log of a multi-agent system L is a multiset of traces where,
for every trace σ in L, each event e in σ can be either:

(1) a system-autonomous event, where e = (a, {r1, ..., rn}) such that {r1, ..., rn} ⊆ O are identifiers of
agents involved in the execution of system activity a ∈ A;

(2) an element-autonomous event, where e = (a, r) such that a ∈ A and r ∈ O, corresponding to the
autonomous execution of activity a by agent r;

(3) a synchronous event, where e = (a, {(r1, b1), ..., (rn, bn)}), corresponding to the simultaneous ex-
ecution of activity a ∈ A in the system, and activities b1, ..., bn by agents r1, ..., rn; for each
(r, b) ∈ {(r1, b1), ..., (rn, bn)} we have that r ∈ O ∧ b ∈ A.

22

Table 5: Example of an event log of a multi-agent system L with two traces, corresponding to runs in
a trading system.

trace event trace event
σ1 e1 (logon request, sam) σ2 e1 (send order, ben)

e2 (logon request, bob) e2 (new order, {(new order, ben)})
e3 (logon, {(logon, sam)}) e3 (test request, {ben})
e4 (logon, {(logon, bob)}) e4 (heartbeat, {(heartbeat, ben)})
e5 (logout, {(logout, sam)})
e6 (logout, {(logout, bob)})

Finally, criteria of syntactical correctness are presented in the chapter in order to properly map events
and objects in each of these event logs with activities and markings in models of Petri net extensions.

Chapter 6 presents conformance checking methods for validating the real behavior of processes
in trading systems. The methods are based on the replay of traces of the event logs defined in Chapter
5 on top of the models of Petri net extensions presented in Chapter 4. Each of the methods return a
list of deviations, indicating the precise differences between a real system (as observed in traces) and a
model. Depending on the process and aspect to validate a certain method can be chosen.
In Section 6.1, a method is presented for validating the interaction of orders in order books by
replaying a trace of an event log with object identifiers on a Petri net with identifiers. Also, this method
allow to compute local conformance diagnostics, which allow to identify deviations in concrete parts of
a system.
In Section 6.2, a method is presented for validating the transformation of data attributes of
orders by replaying a trace of an event log with object data attributes on a colored Petri net model.
By leveraging semantics of CPNs, different data-related deviations can be detected such as violation of
priority rules or resource corruption (i.e., attributes that were not correctly updated).
In Section 6.3, a method was presented for validating the interaction of agents in a trading
platform. The method replays a trace of an event log of a multi-agent system on top of a nested Petri
net model. Then, deviations can relate to errors that occur in a specific agent or in the trading platform.

Chapter 7 presents experimental evaluations. A software tool is presented, which implements the
conformance checking methods proposed for validating trading systems. The tool was developed in
Python programming language, and with the support of SNAKES [40] — a library that facilitates the
construction and simulation of Petri net extensions. Using SNAKES, models of Petri net extensions
presented in Section 5 are built as Python scripts. The tool is freely available at [18]. In addition,
an independent routine to generate artificial event logs was also developed and it can be found in the
project repository.
Experimental evaluations with artificial event logs are reported in Section 7.2. Particularly, we demon-
strate how the replay method using Petri net with identifiers presented in Section 6.1 can be used for

23

detecting and visualizing deviations in precise parts of a process. Three event logs with object identifiers
were artificially generated from different trading system models S1 , S2, and S3. Each event log was
replayed on the PNI of Figure 7. These models represent replicas of a trading system, according to the
specification, but each of them with undesired behavior increasingly added. For instance, system S2 is
a variation of S1, but with a subtle modification to slightly increase its difference with the specification
model. Table 6 describes each replica and its event log generated. Each event log consists of 100 traces
and 20 resources (i.e., 10 buys orders and 10 sell orders). The aim of this experiment is two-fold: to
showcase the use of local conformance measures presented in Section 6.1., computed with all traces of an
event log, and to study the stability of the proposed measures, e.g., how much the metrics are affected
by subtle increases of undesired behavior.

Table 6: Experimental settings with artificial event logs

event
log

system
source

number of events
(total, avg. per trace)

system description (undesired behavior)

L1 S1 (Fig. 10(a)) (2610, 26) sell orders and buy orders skip activity b and a.
L2 S2 (Fig. 10(b)) (2726, 27) S1 + activity e may return sell orders to place p4.
L3 S3 (Fig. 10(c)) (2575, 26) S2 + activity b may take sell orders to a deadlock place p7.

Figure 10 presents the model of Figure 7 extended with local conformance diagnostics (defined in Section
6.1), that are computed when checking conformance in each variant, and which are associated to model
components. Input arcs and dotted lines representing jumps indicate the rounded average number
of transferred/jumped tokens that flowed through them, considering all traces of a log variant. The
introduction of certain undesired behavior in each variant is unveiled by our method as a jump, showing
how such undesired behavior induces more deviations in a precise component. The latter impacts on
the conformance-related measures, used to paint the model to clearly identify where deviations occurred
more.

24

p2

b d
p4

e

0 | 5

5

5

0.5 2 | 4

p1

a
0 | 5

p3

0.50.5

c

p6

p5

1.00

0

conf.

p2

b d
p4

e

p1

a
p3

c
p5

𝜏

𝜏 5

j = 0
k = 5
j = 0
k = 5

5

j = 5
k = 10
j = 5
k = 10

0.5

j = 0
k = 5
j = 0
k = 5

j = 5
k = 10
j = 5
k = 10

3 | 6

0.5
0.5

0.50.5
0.50.5

2
|
40.

50.
5

0.50.5 6

6

4

4

j = 0
k = 10
j = 0
k = 10

j = 0
k = 10
j = 0
k = 10

x x x x

x x

y y y y

y y

x x

y y

OB

p6
OS

0.50.5
3 | 6

OBOB

OS

OS

(a) system S1 (d) conformance diagnostic with L1

p2

b d
p4

e

0 | 5

5

5

0.38 4 | 6

p1

a
0 | 5

p3

c

p6

p5

1.00

0

conf.

p2

b d
p4

e

p1

a
p3

c

p6

p5

𝜏

𝜏 5

j = 0
k = 5
j = 0
k = 5

5

j = 5
k = 10
j = 5
k = 10

0.5

j = 0
k = 5
j = 0
k = 5

j = 8
k = 13
j = 8
k = 13

4 | 7
0.420.42

3
|
6

4

6

6

j = 0
k = 10
j = 0
k = 10

j = 0
k = 10
j = 0
k = 10

x x x x

x

y y y y

y y

x x

y y

e

x x

OB OB OB

OS

OS

OS

y

x

y

3

70.420.42

0.420.42

0.50.5

0.33
0.33

2 | 4
0.50.5

0.
50.
5

(b) system S 2 (e) conformance diagnostic with L2

p2

b d
p4

e

0 | 7

3

7

0.33 3 | 5

p1

a
0 | 5

p3

c

p6

p5

1.00

0

conf.

p2

b d
p4

e

p1

a
p3

c

p6

p5

𝜏

𝜏 5

j = 0
k = 5
j = 0
k = 5

5

j = 5
k = 10
j = 5
k = 10

0.5

j = 0
k = 5
j = 0
k = 5

j = 6
k = 9
j = 6
k = 9

3 | 4
0.250.25

2
|
5

5

5

5

j = 0
k = 10
j = 0
k = 10

j = 3
k = 10
j = 3
k = 10

x x x x

x

y y y y

y y

x x

y y

e

x x

OB OB OB

OS

OS

OS

y

x

y

2

40.250.25

0.490.49

0.40.4

0.4
0.4

3 | 5
0.40.4

0.
60.
6

y y
b

3p7
OS

0.7

(c) system S 3 (f) conformance diagnostic with L3

Figure 10: Unveiling deviations in concrete parts of a real system via conformance checking.

25

An experimental evaluation with a real event log is reported in Section 7.4. Using a real event log, we
aimed at detecting deviations within a subset of order books in a real trading system. We considered
order books with only day limit orders, orders that trade stocks at a fixed price, and that must trade
or cancel by the end of a day. The orders considered are not amended after their submission. On the
one hand, the system’s expected behavior is described by the CPN of Figure 8. On the other hand,
the event log consists of 73 traces (each trace is associated to a different order book) and 2259 events,
with a mean of 30.94 events per trace. Figure 11 shows a fragment of this event log. The event log
was obtained by pre-processing a set of FIX messages that were exchange between agents and a trading
platform. The pre-processing methods is described in Section 7.3. Note that we only extracted traces
that correspond to order books whose expected behavior is described by the CPN of Figure 8.

Figure 11: Fragment of an event log extracted from a real-life set of FIX messages.

A fragment of the deviations file computed by the method is shown in Figure 12. The file lists deviations
detected in events of different traces of the input log. Each line describes precise information of a
deviation in the real system: the trace (order book), event number, timestamp, and activity where
the error occurred, the object affected, the kind of deviation detected, and an automatically generated
description. In this experiment, most of the deviations relate to corruption of orders when executing
trades: the prices of some orders changed upon the execution of trades, e.g., in event 1781 the price
of the order with id. bSovX changed from 105 to 100 after trading, and such transformation is not
described in the CPN. Thus, this information about deviations can be used by experts to confirm if this
is a failure in the system, or instead the model should be slightly refined.

26

deviations

Page 1

TRACE EVENT TIMESTAMP ACTIVITY OBJECT DEV. DEVIATION DESCRIPTION

1488058 1781 05:52:58.18 trade2 bSovX RC

1488058 1782 05:52:58.18 trade1 bSovX RC

1488061 1792 05:53:23.38 trade1 sSowK RV

1488061 1792 05:53:23.38 trade1 sSowK RC

1488061 1792 05:53:23.38 trade1 bSowJ RC
1488061 1793 05:53:23.38 trade2 bSowJ CF resource with id: b00d0PhqYSowJ was not in location p5 but in p7

1488061 1793 05:53:23.38 trade2 bSowJ RC

1488061 1793 05:53:23.38 trade2 sSowL RC
1488061 end - - bSowJ NT resource with id: b00d0PhqYSowJ was not in final location p7 but in p5

1488062 1803 05:53:31.38 trade2 bSowN RC

1488062 1804 05:53:31.38 trade1 bSowN RC
9088012 end - - bmkq9 NT resource with id: b00d0PiS3mkq9 was not in final location p7 but in p5
9088012 end - - smkqA NT resource with id: s00d0PiS3mkqA was not in final location p8 but in p6
9088015 end - - sSSZd NT resource with id: s00d0Pi88SSZd was not in final location p8 but in p6

 resource has event-state: ('b00d0PhqYSovX' 1550491266 100.0 100)
,but model-state is: ('b00d0PhqYSovX' 1550491266 105.0 100)
 resource has event-state: ('b00d0PhqYSovX' 1550491266 101.0 0)
,but model-state is: ('b00d0PhqYSovX' 1550491266 100.0 0)
 resource with id: s00d0PhqYSowK did not have priority
,over other resources in the same place.
 resource has event-state: ('s00d0PhqYSowK' 1550490938 101.0 0)
,but model-state is: ('s00d0PhqYSowK' 1550490938 101.0 -100)
 resource has event-state: ('b00d0PhqYSowJ' 1550490919 101.0 0)
,but model-state is: ('b00d0PhqYSowJ' 1550490919 105.0 100)

 resource has event-state: ('b00d0PhqYSowJ' 1550490919 105.0 100)
,but model-state is: ('b00d0PhqYSowJ' 1550490919 101.0 -100)
 resource has event-state: ('s00d0PhqYSowL' 1550490947 105.0 0)
,but model-state is: ('s00d0PhqYSowL' 1550490947 100.0 0)

 resource has event-state: ('b00d0PhqYSowN' 1550490899 100.0 100)
,but model-state is: ('b00d0PhqYSowN' 1550490899 105.0 100)
 resource has event-state: ('b00d0PhqYSowN' 1550490899 101.0 0)
,but model-state is: ('b00d0PhqYSowN' 1550490899 100.0 0)

Figure 12: Fragment of deviations detected (DEV): resource corruptions (RC), priority rule violations
(RV), control-flow deviations (CF), non-proper termination (NT)

.
Finally, the last chapter presents the conclusions of the thesis. The main contributions are summarized
in the chapter. Also, it discusses directions for future research on the subject of this thesis.

27

Bibliography

[1] van der Aalst, W.: The Application of Petri Nets to Workflow Management. Journal of Circuits,
Systems, and Computers 8(01), 21–66 (1998)

[2] van der Aalst, W.: Using Process Mining to Bridge the Gap between BI and BPM. Computer
44(12), 77–80 (2011)

[3] van der Aalst, W.: Process Mining: Data Science in Action. Springer, 2nd edn. (2016)

[4] Abouloula, K., Krit, S.: Using a Robot Trader for Automatic Trading. In: International Conference
on Engineering & MIS. pp. 1–9. ACM (2018)

[5] Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis, Eindhoven University of
Technology (2014)

[6] Averina, A., Itkin, I., Antonov, N.: Special Features of Testing Tools Applicable for Use in Trading
Systems Production. In: Tools and Methods of Program Analysis (TMPA 2013). pp. 39–43. IEEE
(2013)

[7] Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance Checking: Relating Processes
and Models. Springer (2018)

[8] Carrasquel, J.C., Chuburov, S., Lomazova, I.A.: Pre-processing network messages of trading sys-
tems into event logs for process mining. In: Tools and Methods of Program Analysis. CCIS,
vol. 1288, pp. 88–100. Springer (2021)

[9] Carrasquel, J.C., Lomazova, I.A.: Modelling and Validation of Trading and Multi-Agent Systems:
An Approach Based on Process Mining and Petri Nets. In: van Dongen, B., Claes, J. (eds.) Proc.
of the ICPM Doctoral Consortium. CEUR, vol. 2432 (2019)

[10] Carrasquel, J.C., Lomazova, I.A., Itkin, I.L.: Towards a Formal Modelling of Order-driven Trading
Systems using Petri Nets: A Multi-Agent Approach. In: Lomazova, I.A., Kalenkova, A., Yavorsky,
R. (eds.) Modeling and Analysis of Complex Systems and Processes (MACSPro). CEUR, vol. 2478
(2019)

28

[11] Carrasquel, J.C., Lomazova, I.A., Rivkin, A.: Modeling Trading Systems using Petri Net Exten-
sions. In: Köhler-Bussmeier, M., Kindler, E., Rölke, H. (eds.) Int. Workshop on Petri Nets and
Software Engineering (PNSE). CEUR, vol. 2651 (2020)

[12] Carrasquel, J.C., Mecheraoui, K.: Object-centric replay-based conformance checking: Unveiling
desire lines and local deviations. Modeling and Analysis of Information Systems 28(2), 146–168
(2021)

[13] Carrasquel, J.C., Mecheraoui, K., Lomazova, I.A.: Checking conformance between colored petri
nets and event logs. In: Analysis of Images, Social Networks and Texts. LNCS, vol. 12602, pp.
435–452. Springer (2021)

[14] Dumas, M., ter Hofstede, A.: UML Activity Diagrams as a Workflow Specification Language. In:
�UML� 2001 — The Unified Modeling Language. Modeling Languages, Concepts, and Tools. LNCS,
vol. 2185, pp. 76–90. Springer (2001)

[15] FIX Community - Standards: https://www.fixtrading.org/standards/

[16] FIX Dictionary Reference - All Message Types: Onix: https://www.onixs.biz/fix-dictionary.
html

[17] Girault, C., Valk, R.: Petri Nets for Systems Engineering: a Guide to Modeling, Verification, and
Applications. Springer (2013)

[18] Github: Conformance Checking using Petri net extensions - Project Repository. https://github.
com/jcarrasquel/hse-uamc-conformance-checking

[19] Harris, L.: Trading and Exchanges: Market Microstructure for Practitioners. Oxford University
Press (2003)

[20] Hee, K., Sidorova, N., Voorhoeve, M., van der Werf, J.: Generation of Database Transactions with
Petri Nets. Fundamenta Informaticae 93, 171–184 (2009)

[21] Itkin, I.: Mind the Gap Between Testing and Production: Applying Process Mining to Test The
Resilence of Exchange Platforms [Accessed: January 24, 2022]. https://tinyurl.com/y55sndcv
(2019)

[22] Itkin, I., Gromova, A., Sitnikov, A., Legchikov, D., Tsymbalov, E., Yavorskiy, R., Novikov, A.,
Rudakov, K.: User-Assisted Log Analysis for Quality Control of Distributed Fintech Applications.
In: IEEE International Conference On Artificial Intelligence Testing (AITest). pp. 45–51. IEEE
(2019)

29

[23] Itkin, I., Yavorskiy, R.: Overview of Applications of Passive Testing Techniques. In: Lomazova,
I., Kalenkova, A., Yavorsky, R. (eds.) Modeling and Analysis of Complex Systems and Processes
(MACSPro 2019). CEUR Workshop Proceedings, vol. 2478, pp. 104–115 (2019)

[24] Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of Concurrent Sys-
tems. Springer, 1st edn. (2009)

[25] Johannes, P.: From National Marketplaces to Global Providers of Financial Infrastructures: Ex-
changes, Infrastructures and Structural Power in Global Finance. New Political Economy 26(4),
574–597 (2021)

[26] Kriger, A.M., Pochukalina, A., Isaev, V.: Reconciliation Testing Aspects of Trading Systems Soft-
ware Failures. In: Spring/Summer Young Researchers Colloquium on Software Engineering. pp.
125–129 (2014)

[27] Leotta, F., Mecella, M., Mendling, J.: Applying Process Mining to Smart Spaces: Perspectives and
Research Challenges. In: International Conference on Advanced Information Systems Engineering.
LNBIP, vol. 215, pp. 298–304. Springer (2015)

[28] Lomazova, I.A.: Nested Petri Nets - a Formalism for Specification and Verification of Multi-Agent
Distributed Systems. Fundamenta Informaticae 43, 195–214 (2000)

[29] Mannhardt, F., Arnesen, P., Landmark, A.: Estimating The Impact of Incidents on Process Delay.
In: International Conference on Process Mining (ICPM 2019). pp. 49–56. IEEE (2019)

[30] Mecheraoui, K., Carrasquel, J., Lomazova, I.: Compositional conformance checking of nested petri
nets and event logs of multi-agent systems. In: Shapoval, A., Popov, V., Kakarov, I. (eds.) Con-
ference on Modeling and Analysis of Complex Systems and Processes (MACSPro 2020). pp. 34–45.
CEUR Workshop Proceedings, CEUR-WS.org (2020)

[31] Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. Ph.D. thesis,
Vienna University of Economics and Business Administration (2011)

[32] Montali, M., Rivkin, A.: DB-Nets: On the Marriage of Colored Petri Nets and Relational
Databases”. In: Koutny, M., Kleijn, J., Penczek, W. (eds.) Transactions on Petri Nets and Other
Models of Concurrency XII. LNCS, vol. 10470, pp. 91–118. Springer (2017)

[33] Murata, T.: Petri nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4),
541–580 (1989)

[34] NASDAQ — Business Solutions for Public and Private Companies: https://www.nasdaq.com/
solutions

30

[35] Nuti, G., Mirghaemi, M., Treleaven, P., Yingsaeree, C.: Algorithmic Trading. Computer 44(11),
61–69 (2011)

[36] Parameswaran, S.: Fundamentals of Financial Instruments: An Introduction to Stocks, Bonds,
Foreign Exchange, and Derivatives. John Wiley & Sons (2011)

[37] Patrick Eha, B.: Is Knight’s $440 Million Glitch The Costliest Computer Bug
Ever? [Accessed: January 24, 2022]. https://money.cnn.com/2012/08/09/technology/
knight-expensive-computer-bug/ (August 9, 2012)

[38] Pepitone, J.: Facebook: IPO Debacle Was NASDAQ’s Fault [Accessed: January 24, 2022]. https:
//money.cnn.com/2012/06/15/technology/facebook-ipo-lawsuit/ (June 15, 2012)

[39] Petram, L.: The World’s First Stock Exchange: How the Amsterdam Market for Dutch East
India Company Shares Became a Modern Securities Market, 1602-1700. Ph.D. thesis, University of
Amsterdam (2011)

[40] Pommereau, F.: SNAKES: A flexible high-level petri nets library. In: Devillers, R., Valmari, A.
(eds.) Application and Theory of Petri Nets and Concurrency. LNCS, vol. 9115, pp. 254–265.
Springer (2015)

[41] Protsenko, P., Khristenok, A., Lukina, A., Alexeenko, A., Pavlyuk, T., Itkin, I.: Trading Day
Logs Replay Limitations and Test Tools Applicability. In: Tools and Methods of Program Analysis
(TMPA 2014). pp. 46–56 (2014)

[42] Ramadan, S., Baqapuri, H.I., Roecher, E., Mathiak, K.: Process Mining of Logged Gaming Behav-
ior. In: International Conference on Process Mining (ICPM 2019). pp. 57–64. IEEE (2019)

[43] Reinkemeyer, L.: Process Mining in Action: Principles, Use Cases and Outlook. Springer (2020)

[44] Rozinat, A., Aalst, van der, W.: Conformance Checking of Processes Based on Monitoring Real
Behavior. Information Systems 33(1), 64–95 (2008)

[45] Rubin, V., Mitsyuk, A., Lomazova, I., van der Aalst, W.: Process Mining Can Be Applied to
Software Too! In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. ACM (2014)

[46] Shershakov, S., Rubin, V.: System Runs Analysis with Process Mining. Modeling and Analysis of
Information Systems 22, 818–833 (2015)

[47] Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A., Russell, N.: On the Suitability of BPMN
for Business Process Modelling. In: International Conference on Business Process Management
(BPM 2006). LNCS, vol. 4102, pp. 161–176. Springer (2006)

