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1 Categorical preliminaries

We start with the following well-known

Definition 1.1. Let (E,⊗, 1E) be a symmetric monoidal (∞, 1)-category, and let X ∈ E be a dualizable object

together with a map X
f // Y ⊗X where Y ∈ E is some object. We then define the twisted trace of f as the

point in space HomE(Y, Y ) given by the composite

Y
coevX // X ⊗X∨

f⊗IdX∨ // Y ⊗X ⊗X∨ IdY ⊗Twist
∼

// Y ⊗X∨ ⊗X IdY ⊗ evX // Y.

In the special case Y = 1E, we obtain the well-known notion of trace Tr(f) ∈ HomE(1E, 1E) of an endomorphism
of the dualizable object X.

Now note that if E is a symmetric monoidal (∞, 2)-category, we obtain a whole (∞, 1)-category HomE(1E, 1E).
One might ask how traces can be used to obtain morphisms in this (∞, 1)-category. An answer is provided by the
following:

Proposition 1.2 (Morphism of traces). Let (E,⊗, 1E) be a symmetric monoidal (∞, 2)-category and suppose we
are given a (not necessary commutative) diagram

A

ϕ

��

FA // A

ϕ

��

T

{�
B

ψ

TT

FB

// B

ψ

TT

in E, where A,B ∈ E are dualizable object, the morphism ϕ is left adjoint to ψ and

ϕ ◦ FA
T // FB ◦ ϕ

is a 2-morphism in E. Then there exist a natural morphism

TrE(FA)
Tr(ϕ,T ) // TrE(FB)

in the (∞, 1)-category HomE(1E, 1E) called a morphism of traces induced by T .
Moreover, given a diagram

A

ϕ1

��

FA // A

ϕ1

��

T1

{�
B

ψ1

TT

ϕ2

��

FB

// B

ψ1

TT

T2

{�

ϕ2

��
C

ψ2

TT

FC

// C

ψ2

TT

in E, where ϕ1 is left adjoint to ψ1, ϕ2 is left adjoint to ψ2 and

ϕ1 ◦ FA
T1 // FB ◦ ϕ1

ϕ2 ◦ FB
T2 // FC ◦ ϕ2
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are 2-morphisms, there is an equivalence

Tr(ϕ2 ◦ ϕ1, T2 ◦vert T1) ' Tr(ϕ2, T2) ◦ Tr(ϕ1, T1)

where ◦vert is the vertical composition of 2-morphisms.

Example 1.3 (Categorical Chern character). Consider the case E = 2 Catk is the (∞, 2)-category of k-linear stable
presentable (∞, 1)-categories and continuous functors, whose monoidal unit is given by the (∞, 1)-category Vectk
of unbounded cochain complexes, and let C ∈ 2 Catk be some dualizable object together with an endofunctor

C
F // C . Note that there is a canonical equivalence

Fun2 Catk(Vectk,C)ladj
evk
∼
// Ccomp

where Fun2 Catk(Vectk,C)ladj ⊆ Fun2 Catk(Vectk,C) is the full (∞, 1)-subcategory spanned by those morphisms in
2 Catk which admit a right adjoint, and Ccomp ⊆ C is the full (∞, 1)-subcategory of compact objects.

In particular, given a compact object E ∈ Ccomp together with a morphism E
t // F (E) in C we can apply

the (∞, 2)-categorical trace construction 1.2 to the diagram

Vectk

ϕ

��

IdVectk // Vectk

ϕ

��

T

x�
C

ψ

SS

F
// C

ψ

SS

where ϕ is the functor obtained from the compact object E ∈ Ccomp and T is the 2-morphism obtained from t.
The corresponding element

k ' Tr2 Catk(IdVectk)
Tr(ϕ,T ) // Tr2 Catk(F ) ∈ Hom2 Catk(Vectk,Vectk) ' Vectk

is called the categorical Chern character of E and is denoted by ch(E, t) ∈ Tr2 Catk(F ).

2 2-traces in derived algebraic geometry

Convention. For the rest of the document we assume k is an algebraically closed base field of characteristic 0.

The notion of trace is extremely useful in the setting of derived algebraic geometry. For a prestack X we denote
by QCoh(X) the (∞, 1)-category of unbounded cochain complexes of quasi-coherent sheaves. By [BZFN10, Theorem
1.2] for any perfect derived stacks X,Y (see [BZFN10, Definition 3.2]) there is a canonical equivalence QCoh(X)⊗
QCoh(Y ) ' QCoh(X × Y ) obtained from the bicontinuous functor

QCoh(X)×QCoh(Y ) ∼
// QCoh(X × Y )

(F ,G)
� // (q∗1F)⊗ (q∗2G)

where

X X × Y
q1oo q2 // Y

are the projection maps. In particular, the object QCoh(X) ∈ Catk is self-dual, with the unit and counit maps given
by

Vectk
∆∗OX // QCoh(X ×X) ' QCoh(X)⊗QCoh(X)

QCoh(X)⊗QCoh(X) ' QCoh(X ×X)
Γ(∆∗−) // Vectk
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where X
∆ // X ×X is the diagonal map and QCoh(X)

Γ(−) // Vectk is the (derived) global sections functor.

A convenient way to calculate traces of various endomorphisms of the dualizable object QCoh(X) ∈ Catk is
provided by the formalism of kernels. Namely, by [BZFN10, Theorem 1.2] there is an equivalence

QCoh(X ×X) ∼
// FunCatk

(
QCoh(X),QCoh(Y )

)
K

� // q2∗(K ⊗ (q∗1−))

of (∞, 1)-categories. The sheaf K is frequently called the kernel of the corresponding functor. Unwinding the
constructions, one obtains the following

Lemma 2.1 (Trace via kernel). Let X be a perfect derived stack and F be an endomorphism of QCoh(X). Then
there is an equivalence

TrCatk(F ) ' Γ(X,∆∗K) ∈ Vectk

where K ∈ QCoh(X ×X) is the kernel of F .

It is now straightforward to see that notion of trace allows us to recover derived fixed points schemes in the
setting of derived algebraic geometry:

Proposition 2.2 (Fixed points from traces). Let X Y
goo f // X be a correspondence of perfect stacks. Then

for a sheaf G ∈ QCoh(Y ) there is a canonical equivalence

TrCatk

(
f∗(G ⊗ g∗−)

)
' Γ(Y g=f , j∗G)

in Vectk, where Y g=f is the derived fixed points stack of (g, f) defined as the pullback

Y g=f
j //

i

��

Y

(g,f)

��
X

∆
// X ×X

of derived stacks.

The proposition above combined with Lemma 2.1 also gives a convenient way calculate various categorical Chern
characters (Example 1.3) in the setting of derived algebraic geometry:

Example 2.3 (Categorical Chern character for lax equivariant sheaf). Let X Y
goo f // X be a correspondence

of perfect derived stacks and E ∈ Perf(X) be a perfect sheaf (by [BZFN10, 3.1] equivalently compact/dualizable
object of QCoh(X)) equipped with a map t : E → f∗(G ⊗ g∗E) for some G ∈ QCoh(Y ). Then the categorical Chern
character ch(E, t) (1.3) of E obtained from the diagram

Vectk

ϕ

��

IdVectk // Vectk

ϕ

��

T

v~
QCoh(X)

ψ

SS

f∗(G⊗g∗−)
// QCoh(X)

ψ

SS

is equivalent to the twisted trace (see Definition 1.1) of the induced map

i∗E ' j∗f∗E
j∗(b) // j∗(G ⊗ g∗E) ' j∗G ⊗ j∗g∗E ' j∗G ⊗ i∗E

in QCoh(Y g=f ), where b : f∗E → G ⊗ g∗E is the morphism which corresponds to t ∈ HomQCoh(X)

(
E, f∗(G ⊗ g∗E)

)
via the adjunction f∗ a f∗.
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3 Holomorphic Atiyah–Bott formula for correspondences

As a first application of the above techniques, we prove a version of Holomorphic Atiyah–Bott formula for
correspondences. Let X,Y be a pair of smooth proper k-schemes, and let (g, f) : Y → X ×X be a correspondence
such that:

� The underlying classical scheme Y g=f,cl of the corresponding derived fixed point stack 2.2 is discrete.

� The morphism g is étale at the fixed points (that is, the morphism g is étale at each point y ∈ Y g=f,cl).

� The induced map on tangent spaces 1− dyf ◦ (dyg)−1 is invertible for all y ∈ Y g=f,cl.

For any lax (g, f)-equivariant perfect sheaf (E ∈ Perf(X), b : f∗E → g!E) we obtain the diagram

Vectk

E

��

IdVectk // Vectk

E

��

T1

qy
QCoh(X)

Γ

��

f∗g
!

// QCoh(X)

Γ

��T2qy
Vectk

IdVectk

// Vectk

in 2 Catk, and hence by applying the 2-trace formalism 1.2 a commutative triangle

k
ch(E,t) //

Tr(Γ(X,E),T2◦vertT1)

((

Tr2 Catk(f∗g
!)

Tr(Γ,T2)

��
k

in Vectk, that is, an equality
Tr(Γ, T2) ◦ ch(E, t) ' Tr(Γ(X,E), T2 ◦vert T1) (1)

of two numbers.
Since under our assumptions by Proposition 2.2 we have

Tr2 Catk(f∗g
!) ' Γ(Y g=f , j∗ωg) ' Γ(Y g=f ,OY g=f ) '

⊕
f(y)=g(y)

key

where ey := Γ({y},Oy), and by Example 2.3 we have that

ch(E, t) =
∑
f(y)=g(y) ch(E, t)yey, ch(E, t)y ' TrVectk(Ef(y)

by // Eg(y)),

to get a complete description of the equality 1 it suffices to understand the value of the map∫
Y g=f

:
⊕

f(y)=g(y)

key ' Tr2 Catk(f∗g
!)

Tr(Γ,T2) // k

on ey. By using the functoriality of the construction, it suffices to consider the special case E := x∗k is a skyscraper
sheaf at a fixed point x = f(y) = g(y). By plugging x∗k in 1 and unwinding the construction, this gives

Theorem 3.1 (Holomorphic Atiyah–Bott formula for correspondences). The equality 1 is concretely given by

L(E, b) =
∑

f(y)=g(y)

TrVectk(Ef(y)
by−→ Eg(y))

det(1− dyf ◦ (dyg)−1)
. (2)

where here L(E, b) ∈ k is the Lefschetz number of (E, b), defined as the trace in Vectk of the corresponding
endomorphism

Γ(X,E) // Γ(X, f∗f
∗E) ' Γ(Y, f∗E)

Γ(Y,b) // Γ(Y, g!E) ' Γ(X, g∗g
!E) // Γ(X,E)

on global sections of E.
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4 Ind-coherent sheaves

In order to proceed further we briefly review some basic facts concerning ind-coherent sheaves from [GR17a, Part
II] and [Gai13]. For X ∈ Schaft (see [GR17a, Chapter 4, 1.1.1]) we define the (∞, 1)-category of ind-coherent
sheaves on X denoted by ICoh(X) simply as

ICoh(X) := Ind(Coh(X)),

where we denote by Coh(X) the (∞, 1)-category of coherent sheaves on X.
We will be interested by the following properties of this construction:

Proposition 4.1.
1) ([GR17a, Chapter 4, Proposition 2.1.2, Proposition 2.2.3]) The assignment of ind-coherent sheaves can be lifted
to a functor

Schaft
ICoh∗ // Catk

such that, moreover, for every morphism X
f // Y in Schaft the diagram

ICoh(X)
ΨX //

f∗

��

QCoh(X)

f∗

��
ICoh(Y )

ΨY

// QCoh(Y )

commutes, where ICoh(X)
ΨX // QCoh(X) is obtained by ind-extending the natural inclusion Coh(X) ⊆ QCoh(X)

(and similar for Y ).

2) ([GR17a, Chapter 4, Corollary 5.1.12]) The assignment of ind-coherent sheaves can be lifted to a functor

Schop
aft,proper

ICoh!
// Catk,

such that, moreover, given a proper morphism X
f // Y in Schaft the induced pullback functor f ! := ICoh!(f) is

right adjoint to f∗.

3) ([GR17a, Chapter 4, Proposition 6.3.7; Chapter 5, Theorem 4.2.5]) For every X ∈ Schaft the (∞, 1)-category

ICoh(X) is symmetric monoidal, and for every proper X
f // Y the induced functor f ! is symmetric monoidal.

The monoidal unit is given by ωICoh
X ' p!k, where X

p // ∗ is the projection and k ∈ ICoh(∗) ' Vectk. Moreover,
ICoh(X) is self-dual as an object of Catk.

Example 4.2. Let X be a smooth classical scheme. By [GR17a, Lemma 1.1.3] in this case the canonical functor

ICoh(X)
ΨX // QCoh(X) is an equivalence of (∞, 1)-categories. In particular we can identify ICoh(X) with

QCoh(X) with the twisted monoidal structure

F
!
⊗G ' F ⊗ G ⊗ ω−1

X ,

where here ωX ∈ QCoh(X) is the QCoh-dualizing sheaf.

We now discuss an example of morphism of traces between the categories of ind-coherent sheaves. By [GR17a,
Chapter 5, Theorem 4.1.2] parts 2, 3 of the above proposition can be strengthened: the ind-coherent sheaves functor
can be lifted to a symmetric monoidal functor

Corr(Schaft)
proper // 2 Catk,

where Corr(Schaft) is a symmetric monoidal (∞, 2)-category of correspondences. We refer to [GR17a, Chapter 7,
Chapter 5] for a throughout discussion of the category of correspondences.

Now by calculating the morphism of traces 1.2 in the (∞, 2)-category of correspondences (where it is a pure
diagram chase), we obtain the following
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Proposition 4.3. Let (X, gX)
f // (Y, gY ) be an equivariant proper morphism in Schaft. Then the induced

morphism of traces

Γ(XgX , ωXgX ) ' Tr2 Catk(gX∗)
Tr2Catk

(f∗) // Tr2 Catk(gY ∗) ' Γ(Y gY , ωY gY )

can be obtained by applying the global sections functor Γ(Y gY ,−) to the morphism

(fg)∗ωXgX ' (fg)∗(f
g)!ωY gY

// ωY gY

in ICoh(X) induced by the counit of the adjunction (fg)∗ a (fg)!, where XgX
fg

// Y gY is the induced by f
morphism on derived fixed points.

5 The categorical Chern character as the classical one

In this section we discuss how the categorical Chern character Example 1.3 is related to the classical one.
Let X be a quasi-compact scheme and (E, t) be a pair consisting of a perfect sheaf E ∈ QCoh(X) and an

endomorphism t : E // E . By applying the formalism of 2-traces to the induced diagram

Vectk

ϕ

��

IdVectk // Vectk

ϕ

��

T

v~
QCoh(X)

ψ

SS

IdQCoh(X)

// QCoh(X)

ψ

SS

we obtain the categorical Chern character

ch(E, t) ∈ Γ(XIdX=IdX ,OXIdX=IdX ),

where here
XIdX=IdX := X ×X×X X

is the derived self-intersection of the diagonal. We will further denote this pullback by LX and call it the derived
loop space of X motivated by the equivalence LX ' Map(S1, X) of derived stacks.

By using Example 2.3 we in instantly obtain the following

Proposition 5.1. There is an equivalence

ch(E, t) ' TrQCoh(LX)

(
i∗E

β
' i∗E

i∗(t) // i∗(E)

)
,

where here the equivalence β is obtained from the canonical equivalence IdX ◦i ' i on derived fixed points of the
identity morphism.

Our goal is now to give a concrete description of the equivalence β. The main idea here is that derived loop space

LX i // X

of X is a formal group over X (where the group structure is given by composition of loops). This is relevant due to
the following

Theorem 5.2 ([GR17b, Chapter 7, Theorem 3.6.2, Proposition 5.1.2, and Corollary 3.2.2]).
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1. There is an equivalence of (∞, 1)-categories

Grp(M̂oduli/X)
LieX
∼

// LAlg(ICoh(X)),

between the (∞, 1)-category of formal groups over X and Lie algebras in ICoh(X). Moreover, for a formal

group Ĝ ∈ Grp(M̂oduli/X) the underlying ind-coherent sheaf of LieX(Ĝ) ∈ LAlg(ICoh(X)) is equivalent to

TĜ/X,e := e!TĜ/X , where X
e // Ĝ is the unit section and T denotes tangent sheaf.

2. For Ĝ ∈ Grp(M̂oduli/X) there is an equivalence of (∞, 1)-categories

RepĜ(ICoh(X)) ∼
// ModLieX(Ĝ)(ICoh(X)).

3. Let Ĝ ∈ Grp(M̂oduli/X) be a formal group over X. Then there is a functorial equivalence

V(LieX(Ĝ))
expĜ

∼
// Ĝ

of formal moduli problems over X, where V(LieX(Ĝ)) is the vector prestack of LieX(Ĝ).

Corollary 5.3. [Hochschild-Kostant-Rosenberg] By combining 4.2 and the third part of the above theorem we see
that for a smooth scheme X we have an equivalence

Spec/X Sym(LX [1]) ∼
// LX

of formal moduli problems over X. In particular, we obtain an equivalence

π0Γ(LX,OLX) '
dimX⊕
p=0

Hp(X,ΩpX).

Now note that any E ∈ QCoh(X) admits canonical LX-equivariant structure given by

QCoh(X)
q∗2 // QCoh(X ×X)

c∗ // QCoh(B/XLX) = RepLX(QCoh(X))

where here B/XLX ' ̂(X ×X)∆ ∈ PreStack/X is the delooping of LX over X (as a formal moduli problem), and

B/XLX
c // X ×X is the canonical morphism. Moreover, by diagram chase we obtain the following

Proposition 5.4. The endomorphism i∗E
β
' i∗E is equivalent to the pullback i∗αE , where αE is the action

morphism of LX on E.

Now by combining the second part of Theorem 5.2 and Example 4.2 we see that for smooth X the action
morphism αE can be described in terms of the action of corresponding Lie algebra LieX(LX) ' TX [−1] in QCoh(X).
This action can be described concretely: it is straightforward to see that in the special case X = BGm it is given by
the first Chern class, and hence by using the splitting principle we obtain

Proposition 5.5 (Categorical Chern character explicitly). Let X be a smooth proper scheme and E ∈ QCoh(X) is

a perfect sheaf with an endomorphism E
t // E . Then under the Hochschild-Kostant-Rosenberg identification

5.3 we have an equality

ch(E, t) = TrQCoh(LX)

(
i∗E ∼

exp(At(E)) // i∗E
i∗(t) // i∗E

)
of elements of

⊕
p

Hp(X,ΩpX), where here At(E) is the classical Atiyah class of E.

Corollary 5.6. Let E be a dualizable object of QCoh(X). Then under the Hochschild-Kostant-Rosenberg isomor-
phism the categorical Chern character ch(E, IdE) coincides with the classical one ch(E).
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6 From morphisms of traces to Todd class

Let X be a smooth, proper scheme. Our goal in this section is to understand the morphism of traces

Γ(LX,OLX)
Tr2Catk

(−⊗OX)

∼
// Γ(LX,ωLX)

induced by the diagram

QCoh(X)

−⊗OX

��

IdQCoh(X) // QCoh(X)

−⊗OX

��
ICoh(X)

IdICoh(X)

// ICoh(X).

We start with the following

Definition 6.1. For an almost finite type scheme Z an orientation on Z is a choice of an equivalence OZ ' ωZ in
QCoh(Z).

Remark 6.2. Note that any orientation u : OZ ' ωZ produces an equivalence

Γ(Z,OZ)
u
∼
// Γ(Z, ωZ) ' Γ(Z,OZ)∨.

Example 6.3 (Serre orientation). Let LX i // X be the canonical map. Projection to the top summand

i∗OLX ' SymQCoh(X)(ΩX [1]) // ωX

produces an equivalence

uS : OLX ∼
// i!ωX ' ωLX

called Serre orientation.
The induced equivalence

⊕
p

Γ(X,ΩpX [p]) ' Γ(X,OLX) ' Γ(X,OLX)∨ '

(⊕
p

Γ(X,ΩpX [p])

)∨
is given by the Poincaré duality.

Example 6.4 (Canonical orientation). For any endomorphism X
g // X the derived fixed-point scheme Xg from

Proposition 2.2 admits an orientation given by the series of equivalences

uC : OXg ' i∗ωX ⊗ i∗ω−1
X ' i∗ωX ⊗ i∗ωX/X×X ' i∗ωX ⊗ ωXg/X ' i!ωX ' ωXg .

We call this orientation canonical.

Corollary 6.5. We see that LX = XIdX also admits canonical orientation.

By using a version of the (∞, 2)-category of correspondences, we prove the following

Theorem 6.6. The morphism of traces

⊕
p Γ(X,ΩpX [p]) ' Tr(IdQCoh(X))

Tr(Id(−⊗OX )) // Tr(IdQCoh(X)) '
(⊕

p Γ(X,ΩpX [p])
)∨

induced by QCoh(X)
−⊗OX // ICoh(X) is obtained from the canonical orientation uC on LX.

Corollary 6.7. The morphism of traces

⊕
p Γ(X,ΩpX [p])

Tr(Id(−⊗OX )) //
(⊕

p Γ(X,ΩpX [p])
)∨ Poincaré'

⊕
p Γ(X,ΩpX [p]).

is obtained from the composite u−1
S ◦ uC . To put it differently, it measures the difference between the canonical and

the Serre orientation.
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Finally, we give an explicit description of the composite u−1
S ◦ uC .

Recall that LX i // X is a formal group over X, with the corresponding Lie algebra given by TX [−1]. We
have:

1. Given a trivialization TLX/X ' i∗TX [−1] of TLX/X one can build an orientation of LX.

2. In terms of this construction, the canonical and Serre orientations of LX can be obtained by using the canonical
and the abelian Lie algebra structure on TX [−1].

Now unwinding the constructions, one checks that the composite u−1
S ◦uC in fact measures the difference between

the canonical and the abelian Lie algebra structures on TX [−1]:

Corollary 6.8. The equivalence u−1
S ◦ uC can be obtained by applying the determinant map to the equivalence

d expLX : i∗TX [−1]
can' TLX/X

ab' i∗TX [−1].

Analogous to a similar statement in the world of real Lie groups and corresponding Lie algebras, we prove that
in the world of formal groups we have

Theorem 6.9. Let Ĝ be a formal group over X such that g := LieX(Ĝ) ∈ Coh<0. Then

d expĜ =
1− e− adg

adg
.

By combining Corollary 6.7, Corollary 6.8 and Theorem 6.9, this gives

Theorem 6.10. Let X be a smooth, proper scheme. Then under the Serre orientation and HKR identifications the
morphism of traces

⊕
p

Γ(X,ΩpX [p]) ' π∗ Tr2 Catk(IdQCoh(X))
Tr2Catk

(−⊗OX)
// π∗ Tr2 Catk(IdICoh(X)) '

⊕
p

Γ(X,ΩpX [p])

is given by multiplication with the Todd class tdX .

7 Grothendieck-Riemann-Roch theorem

We now show how one obtains the classical and the equivariant versions of the Grothendieck-Riemann-Roch
theorem by using the formalism of 2-traces.

Let X
f // Y be a morphism of smooth proper k-schemes and let E be a perfect sheaf on X. By applying

functoriality of traces to the diagram

Vectk
E⊗− // QCoh(X)

⊗OX∼
��

f∗ // QCoh(Y )

⊗OY∼
��

ICoh(X)
f∗

// ICoh(Y )

in 2 Catk, we obtain a commutative diagram of traces

k
Tr2Catk

(E⊗−)
//

Tr2Catk
(f∗(E)⊗−)

**
Tr2 Catk(IdQCoh(X))

Tr2Catk
(−⊗OX)

��

// Tr2 Catk(IdQCoh(Y ))

Tr2Catk
(−⊗OY )

��
Tr2 Catk(IdICoh(X))

Tr2Catk
(f∗)

// Tr2 Catk(IdICoh(X))

(3)

in Vectk. Now:

9



� By Corollary 5.6 under the identifications

π0 Tr2 Catk(IdQCoh(X)) '
⊕
p

Hp(X,ΩpX) π0 Tr2 Catk(IdQCoh(Y )) '
⊕
p

Hp(Y,ΩpY ).

the traces Tr2 Catk(E ⊗−) and Tr2 Catk(f∗(E)⊗−) are given by the classical Chern characters of E and f∗E
respectively.

� By Proposition 4.3 under the identifications

π0 Tr2 Catk(IdICoh(X)) '
⊕
p

Hp(X,ΩpX)∨ π0 Tr2 Catk(IdICoh(Y )) '
⊕
p

Hp(Y,ΩpY )∨

the morphism of traces induced by the pushforward functor ICoh(X)
f∗ // ICoh(Y ) coincides with the usual

pushforward in homology (defined as the Poincaré dual of the pullback).

� By Theorem 6.10 under the Poincaré self-duality⊕
p

Hp(X,ΩpX) '
⊕
p

Hp(X,ΩpX)∨

the morphism Tr2 Catk(−⊗OX) is given by the multiplication with the Todd class tdX and analogously for Y .

Summarizing, we obtain

Theorem 7.1 (Grothendieck-Riemann-Roch). Let X
f // Y be a morphism of smooth proper k-schemes and let

E be a perfect sheaf on X. Then the diagram 3 gives an equality

f∗(ch(E) tdX) = ch(f∗(E)) tdY ∈
⊕
p

Hp(Y,ΩpY ).

In fact, the techniques above also prove an equivariant version of Grothendieck-Riemann-Roch theorem. Specifi-
cally, let

XgX
'' f // Y gY

xx

be an equivariant morphism between smooth proper schemes.
Then for a lax gX -equivariant perfect sheaf E on X we can form the diagram

Vectk
E // QCoh(X)

gX∗

��

⊗OX∼
��

f∗ // QCoh(Y )

gY ∗

��

⊗OY∼
��

ICoh(X)

gX∗

WW f∗

// ICoh(Y )

gY ∗

WW

(4)

in Catk and then apply the formalism of 2-traces.
In order to get an explicit description of the result, we need a concrete description of derived fixed point

stack (2.2). Let (W, g) be a smooth scheme with an endomorphism W
g // W such that the reduced classical

scheme W g := H0(W g)red is smooth (but not necessarily connected), and let us denote by W g
j // W the

canonical embedding and by N∨g its conormal bundle. Note that the action of g on Ω1
W in particular restricts to an

endomorphism N∨g
g∗|Ng // N∨g .

By combining [GR17b, Chapter 1, Proposition 8.3.2] with some direct calculations we have the following

Theorem 7.2 (Localization theorem). The following conditions are equivalent:

1. The canonical morphism jg : LW g // W g is an equivalence.
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2. The determinant det(1− g∗|N∨g ) ∈ Γ(W g,OW g ) is an invertible function.

Corollary 7.3. In the assumptions of the above theorem, we obtain a canonical equivalence

Γ(W g,OW g )
(jg)∗

∼
// Γ(LW g,OLW g ) '

⊕
p Γ(W g,Ωp

W g
[p])

By arguing similarly as in non-equivariant case and using Theorem 7.2, we obtain the following

Theorem 7.4 (Equivariant Grothendieck-Riemann-Roch). Let (X, gX)
f // (Y, gY ) be an equivariant morphism

between smooth proper schemes such that

� Reduced fixed loci XgX and Y gY are smooth,

� The induced morphisms on conormal bundles 1− (g∗X)|N∨gX
and 1− (g∗Y )|N∨gY

are invertible.

Then for a perfect lax gX -equivariant sheaf (E, t) on X the morphism of traces applied to the diagram 4 produces
an equality

(fg)∗

(
ch(E, t)

tdXgX

egX

)
= ch

(
f∗(E, t)

) tdY gY

egY

in
⊕

pH
p(Y gY ,Ωp

Y gY
), where here egX is the equivariant Euler class defined as

ch
(

Sym(N∨gX [1]),Sym(gX
∗
|N∨gX [1])

)
∈ π0Γ

(
LXgX ,OLXgX

)
,

and similarly for Y .

8 Approbation

The results of the papers were presented at the talk “Formalism of traces in derived algebraic geometry” on the
seminar “Laboratory of algebraic geometry and its applications”, May 6, 2022.

9 Publications

The main results are published in [KP18], [KP21] and [KP22].
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