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Introduction.

The relationship between the geometry of polyhedra and the numbers of
roots of systems of polynomial equations was established by A.G. Kush-
nirenko and speci�ed by D. N. Bernstein; see [Ko, B]. Let f1, . . . , fn be
Laurent polynomials in n variables and let ∆i be a Newton polytope of
fi. It turns out that the number of common zeroes of a generic collection
of polynomials f1, . . . , fn is n!vol(∆1, . . . ,∆n), where vol(∆1, . . . ,∆n) is a
mixed volume of polytopes ∆1, . . . ,∆n.

Kushnirenko�Bernstein formula (also called the BKK or Bernstein�Kushni-
renko�Khovanskii formula) stimulated interest in the algebraic geometry of
the complex torus (C \ 0)n. The practice of using Newton polytopes that
arose after the BKK theorem led to the creation and application of concepts
such as toric variety, tropical algebraic geometry, Newton-Okounkov body,
ring of conditions of spherical space, etc.

It is known that the algebraic geometry of a torus, compared with a�ne
algebraic geometry in Cn, has some signi�cant di�erences. Previously, sim-
ilar di�erences were manifested, e.g., in Diophantine algebraic geometry;
see [BMZ]. These di�erences are explained by the group structure of the
complex torus. BKK-type theorems were also discovered for arbitrary com-
plex linear reductive Lie groups, as well as for spherical homogeneous spaces;
see [KK2,K04,VK1,VK2,B1,K1,O1].

If α ∈ Cn∗ is a linear functional in Cn, then the function z 7→ eα(z) is
a character of the additive group Cn+ of Cn. A �nite linear combination of

characters of the form eα(z) is called the exponential sum (ES) in the space
Cn. The �rst part of the thesis is based on the following analogy between
the torus (C \ 0)n and the group Cn+. Representation of Cn+ in the space of
exponential sums, as well as the representation of the torus in the space of
Laurent polynomials, decomposes into a direct sum of characters. The set of
common zeroes of the �nite system of ESs is called exponential analytic set
(EAS). The thesis describes our �ndings on intersections of EASs, similar to
the previous �ndings on intersections of algebraic subvarieties of the torus.
In particular, we de�ne the intersection index of EASs and we construct an
analogue of the ring of conditions of the torus (C \ 0)n � the ring of the
corresponding intersection theory of EASs, called the ring of conditions for
Cn. As for the torus (C\0)n, the ring of conditions of the space Cn turns out
to be closely related to the geometry of convex polytopes. The calculation
of this ring is based, mostly, on the use of technology of tropical geometry.

Our analogue of the BKK theorem is the computation of the intersection
index of n exponential hypersurfaces {fi = 0}. We de�ne a homogeneous
polynomial of degree n on the space of convex polytopes in the space Cn,
called pseudovolume of polytope. It turns out that this intersection index is
equal to the mixed pseudovolume of Newton polytopes of exponential sums
f1, . . . , fn (in this case, a full description of the results is in preparation, and
the construction of the ring of conditions in the text of the dissertation is
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not given). If the ESs fi are quasialgebraic then the mixed volume of their
Newton polytopes is equals to their mixed volume.

In the second part of the thesis, a connection is established between the
numbers of roots of smooth systems of equations and mixed volumes of
some families of convex bodies. More precisely, for any collection of n �nite-
dimensional function spaces Vi ⊂ C∞(X) on the n-dimensional di�erentiable
manifold X we consider the systems of equations

f1 − a1 = . . . = fi − ai = . . . = fn − an = 0, (1)

where fi ∈ Vi, fi 6= 0, ai ∈ R. The equation fi − ai = 0 corresponds to an
a�ne hyperplane in the space of linear functionals V ∗i . To any smooth non-
negative translation invariant measure in the space of a�ne hyperplanes in
V ∗i we associate a Banach body inX, which is a family of centrally symmetric
convex bodies in the �bers of the cotangent bundle T ∗X → X. The union
of these convex bodies is a domain in the manifold T ∗X. The symplectic
volume of this domain is called the Banach body volume. This volume is
analogous to the volume of the Newton polytope in the BKK theorem.

For any arbitrary set of translation invariant measures νi in manifolds
of a�ne hyperplanes in V ∗i , we consider ν1 × . . . × νn as a measure in the
space of systems (1). It turns out that the number of roots of systems
(1), averaged over this measure is equal to the mixed symplectic volume of
Banach bodies corresponding to the measures νi. This last result is a far-
reaching generalization of Crofton's classical formula, approving, that the
length of a plane curve is equal to the expected number of its intersection
points with a random a�ne line.

The space of systems (1) is not compact. It is known from integral geome-
try that the computations of compact averaging are usually more meaningful
and more convenient to use. Consider the system

f1 = . . . = fi = . . . = fn = 0, (2)

as a point of P(V1)× . . .× P(Vn), where P(Vi) is the projectivization of the
space Vi. Suppose that in the spaces Vi the scalar products are given. In
this case, for each of the subspaces Vi one can de�ne a Banach ellipsoid in
X, which is a Banach body consisting of ellipsoids in the cotangent spaces
T ∗xX. Let νi denote the rotation invariant measure in P(Vi) and consider
the averaging of the number of solutions of the systems (2) with respect to
measure ν1 × . . . × νn. It turns out that in this case, the average number
of solutions is also equal to the mixed volume of the corresponding Banach
ellipsoids. This result is applied to the calculation of the average number of
roots of random systems of eigenfunctions of the Laplace operator, random
systems of trigonometric polynomials, and, more generally, random systems
of functions on arbitrary compact Lie group.
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1. Thesis subject

The subject of the �rst part of the thesis is the theory of intersections of
exponential analytic sets, which are subsets of Cn, given as sets of common
zeros of �nite tuples of exponential sums. In the second part, we consider
smooth versions of the BKK theorem. In this section, we give some basic
de�nitions and a brief description of our �ndings.

1.1. Exponential analytic sets. Recall that the exponential sum (ES) is
an entire function in Cn of the form

f(z) =
∑

λ∈Λ⊂Cn∗, cλ∈C

cλ e〈z,λ〉,

where Cn∗ is the space of linear functionals in Cn, and Λ is a �nite set in Cn∗
called the support of ES. The convex hull of the support is called the Newton
polytope of ES. The Newton polytope of a generic ES is of dimension 2n. An
analytical set of common zeros of �nite tuple of ESs is called an exponential
analytic set (EAS). If the support ES belongs to subspace Re Cn∗, then
ES is called quasi-algebraic. The corresponding EASs are also called quasi-
algebraic.

The ring of ESs looks like a Laurent polynomial ring. However, many at-
tempts to �nd the algebraic-geometric properties of the ring of ESs, similar to
the properties of the ring of polynomials encountered great di�culties. The
�rst result in this direction was obtained by J. Ritt about a hundred years
ago [R]. Ritt proved that, if the result of dividing two ESs in one variable
is an entire function, then this function is also ES. (Ritt's multidimensional
theorem was proved later; see [AG].) On the other hand, the existence of a
common zero of two ESs does not imply the existence of a common divisor.

For example, ESs ez− 1, e
√

2z− 1, having a common zero at the point z = 0
have no common divisor in the ES ring. It is probable that J. Ritt himself
proposed the conjecture about the �niteness of the set of common zeros of
two coprime ESs in one variable. Currently, this conjecture is very far from
being proven. If one of the ESs is ez − 1, then the conjecture is true. In this
case, it follows from a theorem called the "Mordell-Lang conjecture" for a
complex torus.

Exponential sums are linear combinations of characters of the additive
group Cn+ of Cn. Below, we consider ESs as an analogue of Laurent poly-
nomials, which are linear combinations of characters of the torus (C \ 0)n.
Respectively, EASs are considered as analogs of algebraic varieties in the
torus. Guided by this analogy, we construct the ring of conditions of the
corresponding intersection theory. This construction, in the case of quasi-
algebraic ESs, is described in [8] and [9]. For arbitrary EASs the geometry of
EASs becomes more involved. In particular, in the general case, apart from
standard tropical geometry, a certain complex extension of tropical concepts
(see subsection 2.2) is used. The texts describing the theory of intersections
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of arbitrary EASs are in preparation. Accordingly, below we consider only
the quasi-algebraic ESs and EASs.

The �rst obstacles one encounters when trying to construct the intersec-
tion theory are 1) absence of a regular concept of dimension EAS and 2)
in�nity of the zero set of EAS of dimension 0 (for example, the zero set of
ez − 1 is 2πiZ). Respectively, we de�ne the concepts of 1) algebraic codi-
mension of EAS and 2) of weak density of EAS of algebraic codimension
n. Note that the de�nition of algebraic codimension is algebraic. It means,
that the computation of the algebraic codimension reduces to calculating the
dimension of some algebraic variety. To de�ne the intersection index we use
the concept of a domain of relatively full measure in the real vector space E.

De�nition 1.1. Let I = {I} be a �nite set of proper subspaces of a real
vector space E. Put BI = E \

⋃
I∈I I. When 0 < R ∈ R, let BR

I denote the
subset of E consisting of the points lying at the distance ≥ R from

⋃
I∈I I.

We call a domain U ⊂ E that contains a subdomain of the form BR
I a domain

of relatively full measure.

Note that 1) the property of being a domain of relatively full measure
does not depend on the choice of the metric in the space E and 2) the
union or intersection of a �nite number of domains of relatively full measure
is also a domain of relatively full measure.

Theorem 1.1. Let the sum of algebraic codimensions EASs X, Y be equal
to n. Then there is a domain of relatively full measure U(X,Y ) in the space
Re Cn, such that for all z ∈ U(X,Y ) + Im Cn

(1) the algebraic codimensions of EASs (z +X) ∩ Y are equal to n
(2) the weak densities of EASs (z +X) ∩ Y are the same.

De�nition 1.2. Intersection index I(X,Y ) is de�ned as the weak density
of EAS X ∩ (z + Y ) for z ∈ U(X,Y ) + Im Cn.

De�nition 1.3. We say that two EASs with algebraic codimension k ≤ n
are numerically equivalent if I(X,Z) = I(Y, Z) for each EAS Z of algebraic
codimension n− k. All EASs of algebraic codimension > n are also said to
be numerically equivalent.

Furthermore, following [dCP, dC], we construct a quasi-algebraic ring of
conditions for the space Cn. This ring is a commutative graded Z-algebra,
whose elements are formal di�erences of numerical equivalence classes of
EASs. In order to establish that equivalence classes form a ring, we must
prove the following statement: Let µ, ν be the classes of numerical equiva-
lence. Then for almost all X ∈ µ, Y ∈ ν the equivalence classes of EASs
X∪Y and X∩Y do not depend on the choice of X,Y . In the quasi-algebraic
case, the proof of the statement is based entirely on applying the methods
of tropical algebraic geometry.

The degree of EAS as an element of the ring of conditions is equal to its
algebraic codimension. A posteriori, the ring of conditions turns out to be an
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algebra over the �eld R. If the numerical equivalence class ν contains EASX,
de�ned by equations {fi(z) = 0}, then for t > 0 the class tν contains EAS,

de�ned by the equations {fi(t
1
k z) = 0}, where k is the algebraic codimension

of X.
The structure of the ring of conditions of a complex torus can be described

in di�erent ways in the language of lattice polytope geometry (geometry of
Newton polytopes). These descriptions of the ring of conditions remain
valid when we move from polynomials to ESs but only if the condition that
polytopes are integral is abandoned. Here we give one statement of the BKK
type formula for exponential sums. It is a re�nement of the previously known
results; see [Kh1,K3].

For any quasi-algebraic ESs f1, . . . , fn with Newton polytopes ∆1, . . . ,∆n

there is an exponential hypersurface D in the space Cn×n, such that, if
(w1, . . . , wn) 6∈ D, then the weak density of EAS, de�ned by equations

f1(z + w1) = . . . = fn(z + wn) = 0,

is equal to the mixed volume of the polytopes ∆i, multiplied by n!.

1.2. Smooth versions of the BKK theorem. The relationship between
the numbers of common zeroes and mixed volumes also exists for any systems
of smooth real functions.

Consider a smooth n-dimensional manifold X as an analogue of the torus
(C \ 0)n. The formulation of Theorem BKK involves n spaces of Laurent
polynomials Vi, consisting of linear combinations of n �xed �nite sets Λi in
the lattice of characters of the torus (C \ 0)n. Let us replace these n spaces
by n arbitrary �nite-dimensional spaces of smooth real functions V1, . . . , Vn
in n-dimensional di�erentiable manifold X.

Suppose that for every x ∈ X we are given a centrally symmetric convex
body B(x) ⊂ T ∗xX depending continuously on x ∈ X. We call the collec-
tion B = {B(x) | x ∈ X} a Banach set in X. The volume of a Banach
set B is de�ned as the volume of ∪x∈XB(x) ⊂ T ∗X with respect to the
standard symplectic structure on the cotangent bundle. More precisely, if
ω is a simplectic form, then the volume form is ωn/n!. Using Minkowski
sum and homotheties, we consider linear combinations of convex sets with
non-negative coe�cients. The linear combination of Banach sets is de�ned
by

(
∑
i

λiBi)(x) =
∑
i

λiBi(x).

The symplectic volume of the Banach set λ1B1+. . .+λnBn is a homogeneous
polynomial of degree n in λ1, . . . , λn. Its coe�cient at λ1 · . . . · λn divided by
n! is called the mixed volume of Banach sets B1, . . . ,Bn and is denoted by
vol(B1, . . . ,Bn).

We denote by AGrk(E) the a�ne Grassmanian, whose points are a�ne
subspaces of codimension k in vector space E. Let νi be a translation in-
variant smooth non-negative measure in AGr1(V ∗i ). For fi ∈ Vi, ai ∈ R we
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identify the equation fi − ai = 0 with an a�ne hyperplane

Hi = {v∗ ∈ V ∗i : v∗(fi) = ai} ∈ AGr1(V ∗i ).

Respectively, we identify the set of equations {fi − ai = 0} with the set of
a�ne hyperplanes {Hi ∈ AGr1(V ∗i )}. Consider the measure ν = ν1 × . . . νn
on the manifold AGr1(V ∗1 )× . . .×AGr1(V ∗n ). The integral of the number of
roots of systems

f1 − a1 = . . . = fn − an = 0. (1.1)

over the measure ν is called the average number of roots of systems (1.1). To
each of the measures νi there corresponds (see section 3.2) a Banach body
Bi in X. We consider the following statement as a smooth version of the
BKK theorem.

Theorem 1.2. The average number of roots (1.1) is equal to n!vol(B1, . . . ,Bn).

In applications of the theorem, it often turns out that there is a scalar
product de�ned on each of the spaces Vi. In such cases, instead of systems
of equations (1.1), one can consider systems of the form

f1 = . . . = fn = 0. (1.2)

In these cases, where scalar products are de�ned, we de�ne Banach ellipsoids
Bi which are Banach bodies, consisting of ellipsoids in the cotangent spaces
T ∗xX. Let νi be a normalized rotation invariant measure in the projective
space P(Vi). Consider the averaging of the number of roots of the systems
(1.2) over the measure ν1 × . . . × νn. It turns out that the average number
of solutions is also equal to n!vol(B1, . . . ,Bn).

If a transitive action of a compact group G on a manifold X preserves
the spaces Vi and their scalar products, then for any �xed x ∈ X the mixed
volume of Banach ellipsoids B1, . . . ,Bn, coincides, up to a constant multipli-
cation factor, with the mixed volume of the ellipsoids Bi(x). An unexpected
consequence of this last statement are the following inequalities for the av-
eraged numbers of roots of systems of equations on homogeneous spaces of
compact groups.

Theorem 1.3. Let the transitive action of a compact group on the manifold
X preserve the Euclidean function spaces V1, . . . , Vn. Let M(V1, . . . , Vn) be
the average number of solutions of (1.2). Then

M2(V1, . . . , Vn) ≥M(V1, . . . , Vn−1, Vn−1) ·M(V1, . . . , Vn, Vn),

Mn(V1, . . . , Vn) ≥M(V1) · · ·M(Vn),

where M(Vk) = M(Vk, . . . , Vk).

These inequalities are similar to the Hodge inequalities for the intersec-
tion indices of divisors in projective algebraic varieties. Just like the Hodge
inequalities, they follow from the Aleksandrov-Fenchel inequalities for mixed
volumes of convex bodies; see, for example, [KK]. If the action of the group
on X is isotropically irreducible, then these inequalities become equalities.
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For example, in this case

Mn(V1, . . . , Vn) = M(V1) · · ·M(Vn). (1.3)

Example 1.1. Let V be the space of trigonometric polynomials

a0 +
∑

1≤k≤m
ak cos(kθ) + bk sin(kθ)

of degree ≤ m on the circle X = S1 = { eiθ : 0 ≤ θ ≤ 2π}. Consider a metric
in the space V with an orthonormal basis

1√
2π
,
cos(θ)√

π
,
sin(θ)√

π
, . . . ,

cos(mθ)√
π

,
sin(mθ)√

π
.

In this case, the action of the circle S1 preserves the Banach ellipsoids. The

Banach ellipsoid at the point θ = 0 is a segment

[
−
√

m(m+1)
3 ,

√
m(m+1)

3

]
.

This implies that the average number of zeros of trigonometric polynomials of

degree ≤ m equals 2

√
m(m+1)

3 . On the other hand, trigonometric polynomial

a0 +
∑

k≤m ak cos(kθ) + bk sin(kθ) is a restriction of a Laurent polynomial
on the circle. This Laurent polynomial is de�ned as

P (z) = a0 +
∑
k≤m

αkz
k + αkz

−k, (1.4)

where αk = ak+ibk
2 . This implies, that the average fraction of real zeros (i.e.

of the zeroes in S1) of polynomials (1.4) is
√

m+1
3m , and for m→∞ converges

to
√

1
3 .

2. Results and publications

2.1. Tropical geometry [2,3,5].

2.1.1. Tropical bases of ideals [3]. To apply the tropical mathematics in ge-
ometry of zero varieties of Laurent polynomials or of exponential sums, it
is convenient to use some special bases in ideals of the Laurent polynomial
ring. These bases are called the tropical bases of ideal. Recall the de�nition
of the tropical basis of the ideal.

The Laurent polynomial is the function P =
∑

m∈Λ⊂Zn, cm 6=0 cmz
m on the

complex torus (C\0)n. The �nite subset Λ of the character lattice Zn of the
torus (C\0)n is called the support of the polynomial P . We put H = Zn⊗RR
and denote by H∗ the space of linear functionals in the H.

To each linear functional ξ ∈ H∗ we associate truncation P (ξ) of order ξ
of Laurent polynomial P . By de�nition, P (ξ) =

∑
m∈B cmz

m, where B is a
subset of the support Λ of P on which the function ξ attains its maximum.
For every ideal I in the ring of Laurent polynomials and every order ξ we
have an ideal I(ξ) generated by the truncations of order ξ of all Laurent
polynomials in I.
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De�nition 2.1. The �nite set {Qj} ⊂ I is called the tropical basis of the

ideal I, if for every order ξ ∈ H∗ the ideal I(ξ) is generated by the Laurent

polynomials {Q(ξ)
j }.

The Laurent polynomial ring has the following tropical Noetherian prop-
erty: there is a tropical basis in every ideal of the Laurent polynomial ring.
Some versions of this statement were previously known; see [K6]. Since the
introduction of tropical algebraic geometry, related statements were found
by several authors, for example, [EKL]. The strongest version and its com-
plete proof are found in [3]. We list some additional properties of tropical
ideal bases.

(1) For any order ξ ∈ H∗ the truncations Q
(ξ)
i of elements of the tropical

basis {Qi} of the ideal I form a tropical basis of the truncation ideal I(ξ)

(2) Recall that the convex hull ∆(P ) of the support of the polynomial P
is said to be its Newton polytope. Let KP be a fan of dual cones of faces
of nonzero dimension of the polytope ∆(P ). Then the support of the fan-
intersection K{Qj} =

⋂
jKQj coincides with the Bergman cone of the zero

variety of the ideal I.

(3) A toric variety is called good with respect to an m-dimensional algebraic
variety X ⊂ (C \ 0)n, if the closure of X does not intersect toric orbits of
codimension greater than m. If, moreover, the closure of X is compact,
then the toric variety is called a good compacti�cation of X. The toric
variety, corresponding to the fan of cones K{Qj}, is a good compacti�cation
of the zero variety of the ideal I. A completely geometric proof of the good
compacti�cation existence theorem recently found in [Kh2].

In conclusion we present one conjecture from [K6]. A fan of cones K is
said to be minimal for X, if the fan of cones corresponding to any toric
compacti�cation of X contains some partition of the fan K. For example,
for any algebraic curve X there exists a minimal fan. If X is a shift of a
subtorus of dimension > 1, then there is no minimal fan.

In Diophantine geometry, the variety is considered generic if it does not
contain shifted subthors of nonzero dimension (for example, it is known that
the intersection of a generic variety with any �nitely generated subgroup
of the torus is �nite). In [K6], it was suggested that for such varieties a
minimum fan exists. This assumption is not proven, except for the case
dimX = 2, see [K6]. It is connected with the tropical bases of ideals in the
following way. We call the points ξ, ψ in the space H∗ equivalent, if there is
a curve K = {K(t) ⊂ H∗ : 0 ≤ t ≤ 1}, such that 1) K(0) = ξ, 2) K(1) = ψ

and 3) ∀x ∈ K : I(x) = I(ξ). The equivalence classes are called the truncation
chambers of the ideal I. The above assumption is equivalent to the following
statement about truncation chambers. If the zero variety of the ideal I does
not contain shifted subtori of nonzero dimension, then the set of truncation
chambers of the ideal I is a fan, consisting of strictly convex cones.
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2.1.2. Multiplication of cocycles in polyhedral complex ([5]). The main �nd-
ing of the article [5] is the algorithm for multiplying cochains of the poly-
hedral complex (hereinafter P-complex) X, located in the space V . This
algorithm depends on the choice of the functional v ∈ V ∗. For any choice of
v, the cocycles form a subring, and coboundaries form an ideal in the ring
of cocycles. The quotient ring of cocycles along coboundaries is independent
of the choice of v and coincides with the cohomology ring of the P-complex.
The algorithm is obtained by transferring the multiplication algorithm for
tropical varieties to the context of arbitrary polyhedral complexes. Recall
the de�nition of the P-complex.

De�nition 2.2. Let X be a �nite set of closed convex polyhedra of dimen-
sion ≤ k in a real vector space V . We will call them polyhedra cells. We call
X a k-dimensional P-complex if
(1) any face of any cell is a cell;
(2) any non-empty intersection of two cells is their common face.

The multiplication of cohomology classes was discovered independently by
Kolmogorov and Alexander, and published at the conference on topology in
Moscow in 1935 [Ko1,Ko2,A36]. However, in their reports, multiplication
formulas for cocycles of a simplicial complex were incorrect. The �rst correct
formula of multiplication cochains of a simplicial complex, inducing the mul-
tiplication in the cohomology ring, was suggested by Cech [Ch] (apparently
during the same conference). Cech's rule for multiplication of cochains is as
follows. Let rp and rq be respectively p-cochain and q-cochains of simplicial
complex X. Then

(rp ` rq)([u0, · · · , up+q]) = rp([u0, · · · , up]) rq([up, up+1, · · · , up+q]),
where [u0, · · · , um] is anm-dimensional simplex with ordered vertices u0, . . . , um
(some order of vertices X is assumed to be de�ned). If the P-complex X
is simplicial, then the multiplication algorithm proposed here practically
coincides with Cech's algorithm. Equivalence of the de�nitions of Cech mul-
tiplication and Kolmogorov-Alexander multiplication is proved by Whitney
in 1938 [Wh]. See the details of this story in [M].

Topologists sometimes consider the manifolds, related to the geometry
of convex polyhedra; see [B]. Such manifolds can arise together with P-
complexes due to their origin. The proposed algorithm allows multiplying the
cohomology of such manifolds without simplicial triangulation, i.e. without
destroying the original geometry of the problem.

The algorithm for multiplying the cochains of a polyhedral complex has
geometric origin. For simplicial complexes, most of the geometry is trivial-
ized. The algorithm is also used in convex geometry, for example, to calculate
the mixed volumes of polyhedra or to construct a stable intersection of trop-
ical varieties. In these applications, cocycles with values in the Grassmann
algebra of the space are considered. Therefore, we assume that the value ring
S is supercommutative. Recall that a supercommutative ring is a Z2-graded
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ring, such that for homogeneous elements it is true that xy = (−1)|x||y|yx,
where |x| is the parity (i.e. Z2-degree) of x. (A commutative ring is a
supercommutative ring without odd elements.) Below, wherever the nota-
tion |r| is used, it is assumed that the parities of all values of the cochain r
are the same and equal to |r|.

In the abovementioned geometrical applications, we sometimes consider
homotopically trivial P-complexes. In this case, it turns out to be essential
that the product of some special cocycles does not depend on the choice of
parameter v. Therefore, we operate with the multiplication of cocycles more
accurately than it is necessary to construct the multiplication of cohomol-
ogy. The topology also sometimes require such accuracy when multiplying
cocycles; see for example [St].

In the space V ∗ there are two subsets D′ ⊃ D, each of them being the
union of a �nite set of subspaces of codimension 1. When the parameter v
changes in the connected component of V ∗ \D, the products of cocycles do
not change. For parameters belonging to di�erent components, the product
of cocycles can di�er by the cobound. When the parameter v changes in the
connected component of V ∗\D′ the products of cochains also do not change.

By de�nition, the product of cochains rp `v rq on the (p+ q)-dimensional
cell γ of P-complex X has a value

(rp `v rq)(γ) =
∑

(δ,λ)∈P(p,q,γ,v)

rp(δ)rq(λ), (2.1)

where P(p, q, γ, v) is some subset of the set of pairs of oriented faces (δ, λ) of
dimensions p, q of polytope γ. The subset P(p, q, γ, v) depends on the choice
of parameter v ∈ V ∗. A cochain multiplication algorithm is an algorithm
for choosing a subset P(p, q, γ, v). Let us explain the choice of this set for
p = q = 1.

Example 2.1. Let r, s be the 1-cochains of the P-complex X, v ∈ V ∗, γ ∈ X,
dim γ = 2.

Pγ : P∗γ :

-A
A
A
A
A
AK

�

?

γ

α

β

δ

λ �

6

?

�
��

�
�*

◦
0

δ∗

α∗

β∗

λ∗�

6

?

�
��

�
�*

vγ
◦

β∗

λ∗

α∗

δ∗

Draw the polygon γ on its tangent plane Pγ (in the picture on the left). On
its cotangent plane P∗γ (in the picture on the right) there is a point vγ , equal
to the restriction of v ∈ V ∗ onto the plane Pγ . On the plane P∗γ we draw the
exterior normals of the sides of the polygon twice: starting at points 0 and
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vγ . Intersections of the normals from the �rst set with the normals from the
second set de�ne the pairs of oriented sides from the set P(p, q, γ, v) (the set
P(p, q, γ, v) depends on the choice of the parameter v ∈ V ∗). In the picture,
these are the pairs (δ, β) and (λ, α). In this case, the multiplication formula
is (r `v s)(γ) = r(δ)s(β) + r(λ)s(α).

Example 2.2. Let
∧∗ V be a Grassmann algebra of V . Let the cocycle r1 ∈

C1(X,
∧∗ V ) be de�ned as follows: r1(α) = α, where α ∈ X is any oriented

edge of the P-complex. Then the 2-cocycle r1 `v r1 does not depend on the
choice of v. Hence it follows, that the area of the polygon γ is equal to the
sum of the areas (depending on the choice of v) triangles, formed by pairs
of vectors from the set P(p, q, γ, v). In the picture, these are pairs of vectors
(δ, β) and (λ, α). A multidimensional version of this statement is one of the
formulations of the tropical BKK theorem; see [8].

The source of the multiplication rule (2.1) is the multiplication of some
special cocycles, arising in the geometry of polyhedra. To construct these
cocycles, the following de�nition of volume is used.

Let U be a bounded domain in oriented q-dimensional a�ne subspace of
the space V and βU ∈

∧q V is such a multivector, that
∫
U ω = ω(βU ) for any

ω ∈
∧q V ∗. The multivector βU changes sign when changing the orientation

of U . We consider βU as the q-dimensional volume of U .
Let X be a P-complex in the space V and S =

∧∗ V be a Grassmann
algebra of the space V . We denote by Vδ the subspace, generated by the
point di�erences of the cell δ ∈ X. Consider the q-dimensional cochain X

volXq (δ) = βδ (2.2)

with values in
∧q V ⊃

∧q Vδ. From Pascal's equations for (q+1)-dimensional
cells of X it follows that the cochain volXq is a cocycle with values in S.
(Pascal's equation for the convex polytope ∆ is the equality

∑
λ ηλ = 0,

where λ is a facet of ∆, and ηλ is the vector of its exterior normal with
length, equal to area of λ). It is true that for any choice of the functional v

volXp `v volXq =
(p+ q)!

p!q!
volXp+q. (2.3)

Hence we get that
(volX1 )p = p!volXp . (2.4)

The equation (2.1) reduces the statement (2.3) to the case of a P-complex
X, which consists of the faces of the convex polytope. In this latter case, it
is formulated in the language of tropical varieties and becomes the so-called
"tropical formula BKK"

Let the P-complex ∆̄ consist of the faces of the convex polytope ∆. Fur-
ther, from the properties of the cocycles volXp , only the following simple

property of the 1-cocycles vol∆̄1 is used. Let ∆ = Λ + Γ be a Minkowski sum
of convex polytopes. Any edge δ of polytope ∆ is uniquely represented as

11



δ = λ+ γ, where λ, γ are the faces of the summand polytopes Λ,Γ. Then

vol∆̄1 (δ) = volΛ̄1 (λ) + volΓ̄1 (γ) (2.5)

(if dimλ = 0 then by de�nition volX1 (λ) = 0).
In conclusion, recall the de�nition of a tropical variety and explain its

connection with cocycles volXp . Let K be a k-dimensional fan of cones in N -
dimensional vector space E. In other words, K is a P-complex, whose cells
are convex polyhedral cones. For K ∈ K, we denote by EK the subspace in
E generated by the cone K. Let W : K 7→ W (K) ∈

∧q E∗ be a p-chain of
P-complex K. Let's say that W is a p-chain of degree q.

De�nition 2.3. (1) Closed k-chainW of degree N−k is called the weighted
chain of the k-dimensional fan of the cones K, if

∀{v1 ∈ EK , v2, . . . , vN−k ∈ E} : W (K)(v1 ∧ . . . ∧ vN−k) = 0.

The value of W (K) is called the weight of the cone K.
(2) Fan of cones with a closed weight chain is called a tropical fan.

Remark 2.1. In publications on tropical geometry, the closedness of the chain
W sometimes called the balance relations or additive relations.

Example 2.3. Let ∆̄ be a P-êîìïëåêñ of faces of the convex polytope ∆ ⊂ E∗.
We denote by Kd,∆ the d-dimensional fan of cones, consisting of the cones
dual to the faces ∆ of dimension ≥ N − d. For the d-dimensional cone K
dual to the (N − d)-dimensional face Λ ⊂ ∆ we put

W (K) = volXd (Λ).

Then the fan Kd,∆ with the weight chain W is a d-dimensional tropical fan.

De�nition 2.4. Any partition of tropical fan K with weights inherited from
K also is a tropical fan. Two tropical fans are said to be equivalent, if they
have a common tropical partition. The equivalence class of tropical fans is
called tropical variety.

Remark 2.2. Sometimes (see [A1]), in the tradition of classical intersection
theory (see, for example, [8], subsection 4.1.5), instead of the term "tropical
variety" the term "tropical cycle" is used.

It is known that tropical varieties in the space E form a commutative
graded ring T(E) with the following properties (see [K5], [9]):
(1) Equidimensional tropical fans of dimension N − k form homogeneous

component Tk(E) of degree k in the ring T(E) (a fan K of dimension k is
called equidimensional, if any of its cones is a face of some k-dimensional
cone K ∈ K).
(2) The spaces T0(E), TN (E) are one-dimensional
(3) If ∆ is a convex polytope in E∗ then (see example 2.3)

Kp,∆ · Kq,∆ = Kp+q,∆.
(4) Tropical varieties Kp,∆, corresponding to convex polytopes ∆ ⊂ E∗,

generate an additive group of the space Tp(E). For p = 1, according to (2.5),
12



it is true that K1,∆ + K1,Λ = K1,∆+Λ, i.e. the addition of tropical varieties
corresponds to the Minkowski addition of polytopes. Moreover, the tropical
varities K1,∆ are the generators of R-algebra T(E).
(5) The pairing Tp(E) × TN−p(E) → TN (E), which is de�ned as the

multiplication of tropical varieties, is non-degenerate.
(6) For any linear operator s : V → U , there exists the pull back ring

homomorphism s∗ : T(U)→ T(V ). The corresondence s 7→ s∗ is functorial,
i.e. if s = s1 · s2 then s∗ = s∗2 · s∗1. Moreover, for any convex polytope
∆ ⊂ U∗ it is true that s∗K∆,k = Ks′Λ,k, where s′ : U∗ → V ∗ is a linear
operator conjugate to operator s : V → U .

2.2. Exponential tropical geometry ([1,2]).

2.2.1. Mixed Monge-Ampere operator. The Monge�Ampere operator of de-
gree k is the map de�ned by

(h1, . . . , hk)→ ddch1 ∧ . . . ∧ ddchk
(recall that, given a function g on a complex variety, the value of the 1-form
dcg at a tangent vector xt equals dg(xt/i)). We regard the values of this
operator as currents, i.e. linear functionals on the space of compactly sup-
ported smooth di�erential forms. If the hi are continuous convex functions
on the space Cn, then the current ddch1 ∧ . . . ∧ ddchk is well de�ned. This
means that, if the functions hi are locally uniformly approximated by smooth
plurisubharmonic (in particular, convex) functions, then the sequence of the
values of the Monge�Ampere operator weakly converges to a current not
depending on the choice of an approximation. The limit current can be ex-
tended to a functional on the space of forms with continuous coe�cients, i.e.,
is a current of measure type. For example, the values of the Monge-Ampere
operator of degree n are measures in the space Cn.

We say that a continuous function h : Cn → R is piecewise linear if there is
a �nite set of convex polyhedra ∆, such that Cn =

⋃
∆, and ∀∆: h : ∆→ R

is a real �rst-degree polynomial. Any piecewise linear function is the di�er-
ence of two convex piecewise linear functions. Therefore, the Monge�Ampere
operator

(h1, · · · , hk) 7→ ddch1 ∧ · · · ∧ ddchk
is well de�ned for piecewise linear functions hi. By de�nition, Monge-Ampere
currents are the images of the mixed complex Monge-Ampere operator on
tuples of piecewise linear functions. We de�ne the product of Monge-Ampere
currents as

(ddch1 ∧ . . . ∧ ddchp) · (ddchp+1 ∧ . . . ∧ ddchp+q) = ddch1 ∧ . . . ∧ ddchp+q.
In what follows, we assume that all polyhedra ∆i are cones. The ring gen-
erated by the corresponding Monge-Ampere currents, denote by A.

Example 2.4. Let hi be the support function of the convex polytope ∆i ⊂
(Cn)∗ (recall that hi(z) = maxw∈∆i Re w(z). Then the following is true.
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(1) If ∆i ⊂ Re (Cn)∗, then the support of the measure ddch1 ∧ . . .∧ ddchn is
the subspace Im Cn, and this measure is the measure of the n-dimensional
Euclidean area of the space Im Cn, multiplied by n! vol(∆1, . . . ,∆n), where
vol(∆1, . . . ,∆n) is the mixed volume of polytopes ∆i. In this way, according
to the Kushnirenko-Bernstein theorem, this measure contains information
about the number of common zeros of n Laurent polynomials with Newton
polytopes ∆i. Note that the measure ddch1 ∧ . . . ∧ ddchn does not depend
on the choice of the Hermitian metric in the space Cn.
(2) For arbitrary polytopes ∆i the integral of this measure over the ball of
radius 1 centered at 0 is called the mixed pseudovolume of the polytopes ∆i.
According to [K3,K4], this pseudovolume is equal to the density of the set of
common zeros of n exponential sums with Newton polytopes ∆i. For mixed
pseudovolumes of polyhedra, the vanishing criterion is valid, similar to the
criterion for the vanishing of mixed volumes of convex bodies (see [8] and
[2]). In particular, the pseudovolume of the polyhedron is 0, if and only if
the polytope is contained in some proper complex a�ne subspace of Cn.

We denote by AR the subring of the ring A, consisting of Monge-Ampere
currents ddch1 ∧ · · · ∧ ddchk, such that

∀(i ≤ k, z ∈ Cn, x ∈ Re Cn) : hi(z + ix) = hi(z).

According to [E1] and [1], the ring AR is isomorphic to the ring of tropical
varieties in the space Re Cn.

2.2.2. Exponential tropic varieties. Below we de�ne the notion of an expo-
nential tropical variety (ETV). ETVs form a ring. This ring is isomorphic
to the ring of Monge-Ampere currents. Below (see subsection 3.1) it is ex-
plained that the ring of tropical varieties in the space ReCn is isomorphic to
the quasi-algebraic ring of conditions of the space Cn. It turns out that the
ring of conditions of the theory of intersections of arbitrary (not necessarily
quasi-algebraic) EASs is isomorphic to the ring ETVs. The text containing
the proof of this assertion is in preparation.

Let 2N -dimensional space E be a rei�cation of the complex vector space
CN . Using the pairing (z, z∗) = Re〈z, z∗〉, we identify the dual space E∗

with the rei�cation of the space of complex linear functionals CN ∗ in CN .
Let K be a fan of cones of dimension N +k in the space E. An odd function
W : K 7→W (K) ∈

∧m
C CN ∗ on the set of p-dimensional oriented conesK ∈ K

is said to be a complex p-chain of degree m. As usual, we de�ne a complex
(p − 1)-chain dW of the same degree, called the boundary of the complex
p-chain W . A complex chain W is called closed if dW = 0.

We denote by EK the real subspace of E generated by the cone K. We
call a complex (N + k)-chain W of degree N − k the weight chain, if for any
K ∈ K, e1 ∈ EK , . . . , eN−k ∈ EK is true, that

W (K)(e1 ∧ . . . ∧ eN−k) ∈ R. (2.6)

In this case, W (K) is called the complex weight of the cone K.
14



De�nition 2.5. Fan of cones of dimension N+k with closed complex weight
chain is called the k-dimensional exponential tropical fan (hereinafter ETF).
The degree of a k-dimensional ETF is, by de�nition, N − k.

From the (2.6) it follows, that the (N−k)-formW (K) vanishes on any set
of vectors, containing a vector from any complex subspace of CN contained
in EK .

De�nition 2.6. Any partition of ETF K with complex weights inherited
from K also is ETF. Two ETFs, having a common partition are called
equivalent. The equivalence class of k-dimensional ETFs is called exponential
tropical variety (ETV) of dimension k. The union of (N + k)-dimensional
cones with nonzero weights will be called the support of ETV.

Next, we de�ne the linear operator Π: T(E) → E(E) of the space of
tropical varieties to the space of ETVs in E. To do this, we consider the
homomorphism of Grassmann algebras % :

∧
RE
∗ →

∧
CCN ∗, such that

∀a ∈ E∗ : %(a) = −ia.
If K is a tropical fan in E with a weight chain Φ, then the fan K with complex
weight chain ρ(Φ) is ETF.

Example 2.5. We denote by K the one-dimensional tropical fan of cones on
the plane C, consisting of one cone K = Re C with a weight chain Φ(z) =
Im (z). Then the restriction of ρ(Φ) to the cone K is real. Really,

ρ(Φ)(x) = Φ(%(x)) = Φ(−ix) = Im (−ix) = −x.
Therefore, ρ(Φ) is a complex weight chain and the fan K is ETF.

The above de�ned mapping, which takes the tropical fan K with the weight
chain Φ to the ETF K with complex weight chain %(Φ), denote by Π.

Theorem 2.1. (1) The mapping Π is a surjective linear operator from the
space of tropical fans in E onto the space of ETFs, and also from the space
of tropical varieties to the space of ETVs E(E) in E.

(2) The kernel ker Π of the operator Π is an ideal of the ring of tropical
varieties.

(3) The k-dimensional tropical fan K belongs to ker Π, if and only if for any
k-dimensional cone K ∈ K the dimension of the maximal complex subspace
of the space EK is greater than k − N . In particular, if dimK < N , then
Π(K) = 0.

Further, using the mapping Π, we consider the space ETVs, as the quo-
tient ring of the ring of tropical varieties by the ideal ker Π. We note, that
the homomorphism Π preserves degrees (but not dimensions!) of tropical
varieties.

Example 2.6. The ETV Π(K∆,k) (see example 2.3) can be described as fol-
lows. Let K be a cone, dual to the k-dimensional face Λ of the polytope
∆ ⊂ E∗ = CN ∗. We denote by ω a complex symplectic form on the space
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CN ∗ ⊕ CN (i.e. ω = dz ∧ dz∗) and put Ω = (−i)2N−kωk/k!. Consider the
projection mapping πΛ : Λ ⊕ CN → CN . Choose the orientation of the face
Λ and denote by W (K) the push forward (πΛ)∗Ω of Ω. The orientation of
the face Λ corresponds to its co-orientation and, therefore, to the orientation
of the cone K. Thus, on a fan of cones, dual to the faces of ∆ of dimension
≥ k, a complex k-chain W : K 7→W (K) of degree (2N − k) is de�ned. The
chain W is weighted and closed. Let's denote the de�ned ETF by K∆,k;C. it
is true that

K∆,k;C = Π(K∆,k).

From this we get that
1) ETVs K∆,1;C span the ring E(E)
2) Km∆,1;C = m!K∆,m;C.

2.2.3. ETVs as Monge-Ampere currents. Consider ETF K of dimension k
as a current K̄ of degree 2k (linear functional on the space of compactly
supported di�erential forms of degree 2k) as

K̄(ϕ) =
∑

K∈K,dimK=N+k

∫
K
W (K) ∧ ϕ

(recall that the weighted form W (K) is real-valued). If k > 0, then the
current K̄ is closed (this follows from the closedness of the weight form W ).
For equivalent ETFs K,L the currents K̄, L̄ are the same.

Theorem 2.2. Map K 7→ K̄ is an isomorphism of the ring ETFs into the
ring of Monge-Ampere currents A (see subsection 2.2.1).

We �x the Hermitian metric of the space CN and denote by χ the characte-
ristic function of the unit ball centered at 0. For 0-dimensional ETF K we
put psv(K) = K̄(χ) (recall that the support fan of a 0-dimensional ETF has
a dimension N).

De�nition 2.7. We will call psv(K) the pseudovolume of the 0-dimensional
ETV K. If h1, . . . , hN are support functions of polytopes ∆1, . . . ,∆N , then
psv(ddch1∧. . .∧ddchN ) is called the mixed pseudovolume of these polytopes.

Remark 2.3. Because the Monge-Amp�ere operator h 7→ (ddch)k is de�ned for
any plurisubharmonic (in particular, convex) function h, then the pseudo-
volumes and mixed pseudovolumes of any convex bodies are also correctly
de�ned in a Hermitian complex space. Pseudovolume as a function on the
set of convex bodies is a unitary invariant valuation; see [Al].

The geometric de�nition of the pseudovolume of a polyhedron is as follows.
For the N -dimensional face Λ of the polytope ∆ ⊂ CN ∗ we introduce the
notation:

(1) volN (Λ) is an N -dimensional volume Λ,
(2) A(Λ) is an angle of the dual cone Λ (full N -dimensional angle is 1),
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(3) c(Λ) is an area distortion coe�cient under the orthogonal projection
R⊥Λ →

√
−1RΛ, where RΛ is a tangent space of the face Λ, and R⊥Λ is an

orthogonal to RΛ subspace CN ∗.
The pseudovolume of ∆ equals∑

Λ⊂∆, dim(Λ)=N

c(Λ)A(Λ) volN (Λ).

The pseudovolume of a polygon in C1 is equal to its semi-perimeter, the
pseudovolume of the polyhedron ∆ ⊂ Re CN

∗
is equal to its N -dimensional

volume.

2.3. Eigenfunctions of Laplace operator ([4]). LetM be a compact Rie-
mannian manifold without boundary, n = dimM , and dx the Riemannian
measure on M . For an eigenvalue λ of the Laplace operator ∆ on M let
H(λ) denote the corresponding eigenspace, i.e.,

H(λ) = {f ∈ C∞(M,R)|∆u+ λu = 0}.
Then H(λ) is a �nite dimensional real vector subspace of L2(M,dx), consid-
ered with the induced scalar product. We note that the space H(λ) and the
scalar product are invariant under any isometry of M . Our goal is to de�ne
and, under certain assumptions, to evaluate the average number of zeros of
the system of equations

u1 = u2 = . . . = un = 0, (2.7)

where ui ∈ H(λ) are linearly independent. The linear envelope of ui is a
subspace U ⊂ H(λ) of dimension n. We denote by Z(U) the number of
isolated common zeros of functions ui from (2.7). The average number of
zeroes M(λ) is de�ned as the integral of Z(U) over the Grassmanian Grn(H)
with respect to the normalized measure induced by the Haar measure of
SO(N,R) acting on H(λ).

Theorem 2.3. Let M = K/V be a homogeneous space of a compact con-
nected Lie group K with a K-invariant Riemannian metric. Then

M(λ) ≤ 2

σnnn/2
λn/2volM (2.8)

For isotropically irreducible homogeneous spaces, the estimate (2.8) be-
comes an equality, which was previously proven in [Gi]. In this case, applying
equality (1.3), we obtain the following result (also from [Gi])

M(λ1, . . . , λn) =
2

σnnn/2
volM

√
λ1 · · ·λn,

where M(λ1, . . . , λn) is an average number of zeroes of systems (2.7) with
ui ∈ H(λi).

Remark 2.4. (1) The right side of the estimate (2.8), up to a coe�cient,
coincides with the �rst term of the asymptotics of the eigenvalue number
from the celebrated Weyl's law, see [Iv]. Therefore, we obtain an estimate
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for the average number of common zeros of eigenfunctions in terms of the
asymptotic expression for the eigenvalue number.

(2) The classical Courant's theorem [Co] says that the number of nodal
domains de�ned by the k-th eigenfunction does not exceed k. Consider now
the set Z of common zeros of m ≤ n eigenfunctions. In order to carry over
Courant's theorem to this case, V.Arnold suggested to study the topology of
the analytic set Z and to �nd the dependence of suitable topological invari-
ants of Z on the number of the corresponding eigenvalue of the Laplacian,
see [A] (see Problem 2003-10), p.174). We follow Arnold's suggestion for
m = n under certain additional assumptions of group-theoretic character.

2.4. Smooth version of BKK theorem ([6,7]). Let V1, . . . , Vn be �nite
dimensional spaces of smooth functions on n-dimensional di�erentiable man-
ifold X. In [6] we considered equations

f1 = . . . = fn = 0; fi ∈ Vi (2.9)

Each function fi is de�ned up to a non-zero constant multiplication factor.
Therefore the space of systems (2.9) is compact. In this case we assume
that spaces Vi are Euclidian. The average number of common zeroes of the
functions fi turns out to be equal to the mixed volume of Banachs bodies
corresponding to chosen metrics in Vi. Each of these Banach bodies is a
family of ellipsoids; see also [ZK]. This statement is also used to compute the
average number of roots in various scenarios, see, for example, the previous
section 2.3.

In [7] we consider systems of equations

f1 − c1 = . . . = fn − cn = 0; fi ∈ Vi, 0 6= ci ∈ R. (2.10)

In this case (see section 3.2), there is a wide choice of averaging methods.
Each averaging method corresponds to a set of Banach bodies in X; see
section 3.2. These Banach bodies can be arbitrary. We also prove that no
matter how we choose the method of averaging, the average number of roots
always equals to the mixed volume of Banach bodies.

2.5. Real roots of systems of random Laurent polynomials ([10]). It
is known that the expectation of the fraction of real zeros of a real polynomial
of increasing degree m asymptotically equal to 2

π
logm
m � 0; see [Kac]. This

calculation assumes that the coe�cients of the polynomial are normally and
independently distributed. with zero means and unit variances. For more
details on the distribution of the number of real solutions to systems of
random polynomial equations, see the review [EK] and the references therein.

The transition from ordinary polynomials to Laurent ones leads to an
unexpected result. The restriction of real Laurent polynomial of degree m
(see below De�nition 2.8)

P (z) = a0 +
∑

1≤k≤m
akz

k + akz
−k

18



to the circle z = eiθ is a trigonometric polynomial

P ( eiθ) = a0 +
∑

1≤k≤m
αk cos(kθ) + βk sin(kθ),

where αk = (ak + ak)/2, βk = (ak − ak)/(2i). The restriction is an isomor-
phism of the space of real Laurent polynomials of degree m onto the space
of real trigonometric polynomials with spectrum (−m, . . . ,−1, 0, 1, . . . ,m).
The randomness assumption is that the numbers

a0/
√

2π, α1/
√
π, β1/

√
π, . . . , αm/

√
π, βm/

√
π

are normally and independently distributed with zero means and unit vari-
ances. It turns out that, as the degree m increases, the average fraction of
zeros located on the unit circle of a random real Laurent polynomial tends
not to 0, but to 1/

√
3. This follows from the known results on the distri-

bution zeros of random trigonometric polynomials in one variable; see, for
example, [ADG] and the bibliography there. Below we describe a multidi-
mensional analogue of this phenomenon.

De�nition 2.8. If a Laurent polynomial is real-valued on a compact subtorus
Tn = {z ∈ (C \ 0)n : z = ( eiθ1 , . . . , ei thetan)} of the torus (C \ 0)n, then
we call it real Laurent polynomial. If the Laurent polynomial vanishes at the
point z ∈ Tn, then z is called the real zero of the Laurent polynomial.

The following statements are direct consequences of the de�nition of 2.8.
(A) Laurent polynomial P (z) =

∑
λ∈Λ aλz

λ is real if and only if 1) its
support Λ is centrally symmetric, and 2) ∀λ ∈ Λ: a−λ = aλ.

(B) The set of zeros of the real Laurent polynomial is invariant under the
mapping (z1, . . . , zn) 7→ (z̄−1

1 , . . . , z̄−1
n ).

Next, we consider Laurent polynomials in n variables and use the concepts
the system of random real Laurent polinomial supported at Λ and the mean
fraction realn(Λ) of real roots of such random systems.

Theorem 2.4. Let Bm be a ball with radius m in Rn centre at the origin,
Zn be the integer lattice in Rn, and let Λm = Bm ∩ Zn. Then

lim
m→∞

realn(Λm) =

(
σn−1

σn
βn

)n
2

,

where βn =
∫ 1
−1 x

2(1 − x2)
n−1
2 dx, and σk is a volume of k-dimensional unit

ball.

The following table shows the values βn for 1 ≤ n ≤ 20; note that√
σ0
σ1
β1 = 1√

3
(see below Example 2.8).

Remark 2.5. The expression x2(1 − x2)
n−1
2 dx is the so-called Tchebyshev

di�erential binomial. Tchebyshev proved [Tch] that the binomial xm(a +
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Table 1. βn for n ≤ 20

n 1 2 3 4 5 6 7 8 9 10

βn
2
3

π
8

4
15

π
16

16
105

5π
128

32
315

7π
256

256
3465

21π
1024

n 11 12 13 14 15 16 17 18 19 20

βn
512
9009

33π
2048

4096
109395

429π
32768

2048
45045

715π
65536

65536
2078505

2431π
262144

131072
4849845

4199π
524288

bxn)pdx is non-integrable in elementary functions outside three cases of in-
tegrability found by L. Euler. For odd n, the above expression refers to the
�rst, and for even n, to the third case.

Recall that the Newton polytope of the Laurent polynomial is the convex
hull of conv(Λ) its support Λ. We also de�ne the ellipsoid ell(Λ) ⊂ conv(Λ),
called the Newton ellipsoid of Λ, and prove that

realn(Λ) =
vol (ell(Λ))

vol (conv(Λ))
(2.11)

For n = 1, the Newton ellipsoid is a line segment with ends at the points

±
√

1
N

∑
λ∈Λ λ

2, where N = #Λ.

Example 2.7. In the one-dimensional case, the segments ell(Λ) and conv(Λ)
coincide only for supports of the form Λ = {λ,−λ}. In this case, (2.11)
implies that real1(Λ) = 1, that is, all zeros of any polynomial of the form
azλ + āz−λ lie on the unit circle, which is true, because these zeros are 2λ
roots of −ā/a.

Example 2.8. Let Λm = {−m, . . . ,−1, 0, 1, . . . ,m}. Then√
1

#Λm

∑
k∈Λm

k2 =

√
2(12 + . . .+m2)

2m+ 1
=

√
m(m+ 1)

3

Hence, according to (2.11), we get that real1(Λm) =
√

m+1
3m , and hence

limm→∞ real1(Λm) = 1/
√

3.

We also de�ne the fraction of real roots realn(Λ1, . . . ,Λn) for systems of
Laurent polynomials with supports Λ1, . . . ,Λn. In this case, the volumes
in the numerator and denominator of the fraction (2.11) are replaced by
mixed volumes of the corresponding Newton ellipsoids and Newton poly-
topes. Using the geometry of the formula (2.11), we calculate the asymp-
totics of realn(Λ1, . . . ,Λn) for growing supports Λ1, . . . ,Λn, and apply this
calculation to prove Theorem 2.4.

3. Main results

3.1. Intersections of exponential analytic sets. First (using the nota-
tion of the subsection 1.1), we de�ne the notions of tropicalization, weak
density, and intersection index of quasi-algebraic EASs. Let G be a �nitely
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generated subgroup of the additive group (Re Cn∗)+ of Re Cn∗, and let TG
be the torus of characters of G. Assume that G contains a basis of the
space Re Cn∗. For any z ∈ Cn we take ωG(z) to be the character of G de-

�ned by ωG(z) : g 7→ e〈z,g〉. In this way we obtain an embedding of groups
ωG : Cn → TG.
De�nition 3.1. We call the image ω(Cn) of ω the standard winding on the
torus TG, and ωG : Cn → TG the standard winding map.

Let EG denote the ring of ESs supported in G. The image ωG(Cn) of the
standard winding is everywhere Zariski dense in TG. Therefore, the pullback
map ω∗G : C[TG]→ EG is a ring isomorphism1.

De�nition 3.2. Let I be the ideal of EG generated by the equations of an
EAS X. Let MG ⊂ TG denote the zero locus of the ideal ω∗(I) ⊂ C[TG].
We call MG a model of the EAS X.

De�nition 3.3. (1) If the model MG of EAS X is equidimensional (i.e.,
it consists of irreducible components of equal dimensions), then EAS X is
called equidimensional.
(2) The codimension MG in TG is said to be the algebraic codimension

of EAS X and denoted by codimaX.

This de�nition uses the group G, containing the supports of the EAS X
equations. However, it is easy to see that codimaX and the property of X
to be equidimensional do not depend on the choice of G. The concept of
equidimensional EAS is a replacement for the nonexistent concept of irre-
ducibility: any EAS is uniquely represented as a union of equidimensional
EASs of di�erent algebraic codimensions.

De�nition 3.4. The tropicalizationM trop
G of the modelMG (see [9]) of EAS

X is a tropical variety in the space ReTG, where TG is the Lie algebra of the
torus TG. Let sG : ReCn → TG be a restriction of di�erential of the mapping
ωG at the point 0 to the space ReCn. The pullback Xtrop = s∗GM

trop
G of the

tropical variety M trop
G (see property (6) at the end of the section 2.1) is a

tropical variety in the space Re Cn, and is called the tropicalization of EAS
X.

It turns out that the tropicalization Xtrop of EAS X does not depend on
a choice of group G.

Below we use the following notation: for a 0-dimensional tropical variety
K in the space Re Cn its zero cone weight form (see de�nition 2.3) is equal
to w(K) · voln, where voln is a volume form, corresponding to the Euclidean
metric in Re Cn, and w(K) ∈ R.
De�nition 3.5. The dimension of the tropical variety Xtrop equals to n −
codimaX. In particular, if dimaX = n, then dimXtrop = 0. We denote the
constant w(Xtrop) by dw(X) and call it the weak density of EAS X.

1The practice of viewing exponential sums as restrictions of Laurent polynomials to a
dense winding on the torus goes back to Weyl's celebrated paper [W38].
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Example 3.1. If EAS X ⊂ C1 is given by the equation f(z) = 0, then
dw(X) = p

2π , where p is the length of Newton's segment of ES f . The number
of zeros of the function f in a circle of increasing radius r asymptotically
equals to 2rdw(X).

Example 3.2. (see [Z,K2]) Assume that EAS is given by equations f = g = 0.
If f and g have no common divisor in the ring of ESs, then codimaX = 2;
otherwise codimaX = 1. In particular 0 ∈ C treated as the EAS given

by the equations ez − 1 = e
√

1z − 1 has algebraic codimension 2. Thus,
the codimension of an analytic set X can be lower than codimaX. Let
(X, z) be the irreducible germ of an EAS X at z ∈ X. If (X, z) has lower
codimension than codimaX, then the germ is said to be atypical. It is known
that each atypical germ of an EAS lies in a proper a�ne subspace of Cn. In
particular, each component of anEAS of algebraic codimension 2 in C2 is an
a�ne line. In addition, it is known that the set of minimal a�ne subspaces
containing atypical components is small in a certain sense. The phenomenon
of atypically large intersections of algebraic varieties with windings of tori
also studied in algebraic Diophantine geometry; see [BMZ].

The following tropical de�nition of intersection index I(X,Y ) for EASs
X,Y , such that codimaX+ codimaY = n, is equivalent to the de�nition 1.2.

De�nition 3.6. I(X,Y ) = w
(
Xtrop · Y trop

)
, whereXtrop·Y trop is a product

in the ring of tropical varieties.

Recall that equidimensional EASs X,Y of algebraic codimension k are
called numerically equivalent, if for any EAS Z of algebraic codimension
n − k it is true that I(X,Z) = I(Y,Z). The main results of the EASs
intersection theory are as follows

(1) The algorithm De Concini and Procesi for constructing the ring of con-
ditions En for the above de�ned numerical equivalence of EASs terminates
successfully.

(2) The mapping X → Xtrop is constant on the numerical equivalence
classes, and de�nes an isomorphism of the ring of conditions En onto the
ring of tropical varieties T(Re Cn) in Re Cn.

Note, that the Hermitian metric of the space Cn is involved in the def-
initions of weak density and of intersection index. However, the partition
of EASs into numerical equivalence classes and the structure of the ring of
conditions do not depend on the choice of this metric.

In conclusion, we present several consequences of the main statements.

Corollary 3.1. The ring of conditions En is generated by the images of
exponential hypersurfaces.

Corollary 3.2. The ring En is isomorphic to the ring of convex polytopes in
the space Re Cn (the de�nition of polytope ring in [8]).
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Corollary 3.3. For any quasi-algebraic ESs f1, . . . , fn there is an exponen-
tial hypersurface Ξ ⊂ Cn×n, such, that the following is true. If (w1, . . . , wn) 6∈
Ξ, then the weak density of EAS given by the equations f1(z + wi) = . . . =
fn(z + wn) = 0, is equal to n! vol(∆1, . . . ,∆n).

3.2. Smooth version of BKK theorem. Let V1, . . . , Vn be �nite-dimen-
sional spaces of smooth functions on the n-dimensional di�erentiable mani-
fold X. For fi ∈ Vi, ai ∈ R we identify the equation fi − ai = 0 with a�ne
hyperplane Hi ∈ AGr1(V ∗i ) = {v∗ ∈ V ∗i : v∗(fi) = ai} (recall that AGrk(V )
is the manifold of a�ne subspaces in V of codimension k). Respectively, we
identify the set of equations {fi − ai = 0} with the set of a�ne hyperplanes
{Hi ∈ AGr1(V ∗i )}.

De�nition 3.7. A translation invariant signed Borel measure on AGrk(V ),
�nite on compact sets, is said to be a normal measure. The vector space of
normal measures on AGrk(V ) is denoted by mk.

Remark 3.1. Normal measures form a ring. On the one hand, this ring is a
smooth version of the ring of tropical varieties (see [8,9]), on the other hand,
it is isomorphic to the ring of "valuations on convex bodies" constructed by
S. Alesker (see [Al2]). The operation of multiplication of normal measures,
as well as the connection between the concept of a normal measure with the
concept of "valuation on convex bodies" is explained in [7].

Let ν1 ∈ AGr1(V ∗1 ), . . . , νn ∈ AGr1(V ∗n ) be smooth normal measures of
degree 1. Consider the measure ν = ν1× . . . νn on the manifold AGr1(V ∗1 )×
. . .×AGr1(V ∗n ). The integral of the number of roots of systems of the form

f1 − a1 = . . . = fn − an = 0. (3.1)

with respect to measure ν is called the average number of roots of systems
(3.1).

Let µ ∈ AGr1(E). We de�ne a positively homogeneous function Hµ : E →
R as follows: for e ∈ E, we set Hµ(e) equal to the measure of the set of a�ne
hyperplanes, intersecting the segment [0, e]. If the function Hµ is convex,
then it is a support function of some centrally symmetric convex body in
the dual space E∗. If the measure ν is non-negative, then the function Hµ

is convex. In this case, the corresponding convex body is a zonoid ; see [S].
Recall that a zonotope is a polytope representable as the Minkowski sum of
segments, and zonoid is the limit of the sequence of zonotopes converging
with respect to the Hausdor� topology on the set of convex bodies in the
space E∗. If the ball of Banach metric is a zonoid, then such a metric is
said to be a zonoid metric. Thus, the nonnegative measure µ ∈ AGr1(E)
de�nes a zonoidal Banach metric in the dual space E∗. On the other hand,
any smooth Banach metric in the space E∗ is the di�erence of two zonoid
metrics and, hence, it comes by this way from some (perhaps not everywhere
positive) measure µ on the manifold AGr1(E).
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In this way, the collection of measures νi ∈ AGr1(V ∗i ) de�nes the Banach
metrics on the spaces Vi. Any collection of Banach metrics of the spaces Vi
can be obtained in a similar way. If the measures νi are non-negative, then
these metrics are zonoid metrics.

We denote by Di the unit ball of the Banach metric, corresponding to the
measure νi. Consider the mapping Fi : X → V ∗, assigning to the point x
the functional Fi(x) : v 7→ v(x). Let dF ∗i,x : V → T ∗xX be a linear operator,
conjugate to the di�erential of the mapping Fi at the point x. Denote by
Bi(x) the image dF ∗i,x(Di) of the unit ball Di. Family of convex bodies Bi(x)
in �bers of the cotangent bundle T ∗X forms a Banach body on the manifold
X. The main result [8] is that that average number of solutions of systems
of the form (3.1) is equal to the mixed symplectic volume of Banach bodies
(see subsection 1.2) B1, . . . ,Bn.
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