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Introduction

Field of study

The problems of the optimal distribution of resources in the system are be-
ing studied by mathematicians for a relatively long time. Many examples
in finance, physics, information technology and queuing theory show that
intuitive approaches to optimisation may give results that are far from the
real optimum. In particular, there are situations in which the addition of an
extra resource into the system leads to deterioration of the overall perfor-
mance. As an example, let us take the famous Braess paradox [1], describing
the theoretical (in the form of a graph) road configuration, in which the
construction of a new connecting road may slow down the average motion
speed, even if the number of cars remains constant. And vice versa, closing
one road in the Braes network will allow all vehicles to travel faster on av-
erage. Other situations of this kind from the field of computing systems [2]
are also highlighted.

In classical optimisation problems, deterministic systems are considered, which
leads to optimal control problems (see, for example, [3], [4]). Meanwhile, in
systems describing processes in time, such as the exchange of information in a
communication network, establishing connections in a social network, move-
ment of particles and exchange of energy, interaction of players in the market,
probabilistic models of processes are of great importance. If an aggregate
measure of the system’s performance over a certain period is taken, then we
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get a function that does not contain time as a parameter. One of perhaps the
least studied problems of this kind in terms of rigorous mathematical results is
the optimal taxation. The impact of taxation on the economy was considered
in practice rather intuitively. More rigorous research in this area has been
initiated by specialists in mathematical economics in two main branches: the
impact of tax changes on the distribution of various goods in the economy
(see [5]) and problems of the optimal income taxation. On the second topic
we mention a very well-known article by the Nobel laureate D.A. Mirrlis [6],
his review [7], as well as [8], [9]. Also, in mathematical economics commodity
taxation is distinguished (see [10]), but specific mathematical models are not
strictly tied to a particular economic issue and appear in different senses in
a variety of fields. Let us give the formulation of the problem investigated
by the author in the papers [11] (co-authored with S. N. Popova) and [12].
We will consider the income tax model and the optimisation problem in this
model, motivated by [13] and [14]. This problem consists in maximising the
integral functional on the space of increasing functions in the presence of non-
linear constraint leading to rather singular objects. Therefore, in contrast to
many works from applied economics using heuristic methods to differentiate
all the necessary functions and assuming that they have zero derivatives at
the extremum points, a rigorous mathematical analysis of the problem leads
to interesting questions in the theory of functions.

We will assume that an economic agent is an abstract object of some class,
fully characterised by the performance type θ ∈ Θ ⊂ Rn

+. Agents are dis-
tributed among the types according to the probability measure P on Θ (in
general, measure should be probabilistic up to normalisation, but for the sake
of convenience we will further assume it is probabilistic, which will not affect
the analysis). Denote by l ∈ Rn

+ the labour effort of particular subject. As a
result of the scalar product we have a numerical income y = (θ, l) and utility
U(θ, l) = y − T (y) − f(l), where T (y) is a tax collected from the income
y, determined by the regulator, and f(l) is a function of labour effort, de-
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scribing the financial costs arising from the agent’s activities. Utility can be
understood as the net profit of the agent after all costs have been incurred.
It is also specified that f(l) is twice continuously differentiable, increasing,
strictly convex function. Based on common sense considerations, T (y) and
y−T (y) are increasing non-negative continuous functions. Normally, we will
also assume that the function T is convex, which makes sense, given the fact
that the tax is assumed to grow faster for higher incomes. For the particular
performance type θ and fixed taxation function T we solve the optimisation
problem

max
li>0 ∀i

U(θ, l) = max
l∈Rn

+

((θ, l)− T (θ, l)− f(l)). (1)

Having found the points of maxima lmax(θ) for each θ and, henceforth,
ymax(θ) = (θ, lmax(θ)), we define the government revenue as

R(T ) =

∫
Θ

T (ymax(θ))P (dθ). (2)

By analogy, the overall utility in the economy can be defined as∫
Θ

U(θ, lmax(θ))P (dθ).

The monopoly problem

In the study of interaction of agents (customers) in economic models one en-
counters problems of a monopolist, multidimensional screening and auctions
[15], [16], [17], [18]. The subject of study is a Dirichlet type functional

Φ(u) =

∫
X

(
⟨x,∇u⟩ − u− φ(∇u)

)
ρdx,

where X = [0, 1]n, φ is a convex function on X, ρ is a probability density on
X. The problem is to maximise the functional Φ.
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In the paper [15], an equivalent formulation of the monopolist problem was
obtained in the form of finding the maximum of the functional Φ on the set
U0 of convex and coordinate-wise increasing functions on X, equal to 0 at
zero (maximisation of the total income).

In the paper [17], another representation of the functional Φ was introduced.
Under the assumption of a sufficient smoothness of ρ we integrate by parts
in the term ∫

X

⟨x,∇u⟩ρdx.

This gives the following representation on the set of all Lipschitz functions:∫
X

(
⟨x,∇u⟩ − u

)
ρdx+ u(0) =

∫
X

udm,

where m is a measure of bounded variation with the property m(X) = 0. We
note that m can contain singular components, including the Dirac measure
at zero and a nontrivial measure on ∂X. Thus, the auction problem for a
singe customer reduces to the problem of finding∫

X

udm → max

on the set U(X) ∩ Lip1(X). As shown in the paper [17], this representation
enables us to find a connection between the original problem and the trans-
port problem with the cost function c(x, y) = |x− y| and the corresponding
distance W1. Namely, the auction problem is dual for the transport problem
in the following sense:

max
u∈U(X)∩Lip1(x)

∫
X

udm = min
m+⪯γ1,m−⪰γ2

W1(γ1, γ2). (3)

Here m = m+ − m− is the decomposition of m into positive and negative
parts, γi are nonnegative measures with the property m+(X) = m−(X) =
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γ1(X) = γ2(X); µ1 ⪯ µ2 means that for each function u ∈ U we have∫
X udµ1 ≤

∫
X udµ2.

In the paper [18] the following equality was proved generalising (3):

sup
u∈U(X)

Φ(u) = inf
c∈C

∫
X

φ∗(c)ρdx, (4)

where C is the set of vector fields with the property

C =
{
c :

∫
X

udm ≤
∫
X

⟨∇u, c⟩ρdx, ∀u ∈ U(X)
}
.

For sufficiently regular fields this relationship can be written as

m ⪯ −div(c · ρ),

so equality (4) takes the form

sup
u∈U(X)

Φ(u) = inf
m⪯π

Beckρ,φ∗(π), (5)

where
Beckρ,φ∗(m) = inf

c:div(c·ρ)=−m

∫
X

φ∗(c)ρdx

is the Beckman functional introduced in the paper [19] for modelling trans-
port flows. It is shown in Chapter 4 of this dissertation that the functional
in the right side of (5) attains a minimum.

Queueing system

In addition to representing a resource-constrained system as a probabilistic
distribution of elements of this system, a powerful tool such as network rep-
resentation emerges. Namely, in such representation we consider a network
(graph) of vertices and links (edges) between them, where each vertex and
each link has its own qualities. Within the network, processes of origination
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and processing of some nominal queries (jobs) take place. Such processes
are modelled by stochastic processes. These processes require the network to
allocate a resource to optimise its performance. Examples of systems can be
observed in nature, such that they optimise their own activities on the basis
of natural laws in a distributed way. The behaviour of liquid or gas can be
approximated to a microscopic level by considering process in terms of the
mechanics of each molecule, with the edges of the virtual graph describing
physical interaction between particles. At this level of detail, the velocity
norm of a molecule looks like a random process with the stationary distri-
bution found by Maxwell and later discussed by Erlang ([24]). Moving to
a larger scale, we get an aggregated description, which operates with values
such as temperature and pressure. Similarly, the behaviour of electrons in a
power grid can be described in terms of random walks, and this simple way
of modelling leads to very complex behaviour at the macroscopic level: the
structure of the potentials in the resistor network is such that it minimises
heat dissipation at a given level of current flow ([25]). The local, random be-
haviour of electrons forces the network as a whole to solve a rather difficult
optimisation problem.

When considering communication networks, one can imagine a situation in
which “smart” control system redirects connections established on blocked
lines. This, in turn, causes the next connections to be redirected. As a result,
it starts a chain reaction leading to a fatal outcome for the performance of
the entire network. In this way, when a system is too efficient, it can overdo
it. These examples show how important are routing algorithms ([26]). We
also mention issues of random network growth and other concepts from the
area of random graphs (an overview can be found in [27] or [28]).

Apart from the mentioned approaches to the extremely broad problem of
optimisation of the structure of networks with a load, we should consider
optimisation of processes taking place in a given network and subject to a
certain probabilistic model (a systematic review can be found in [29]). We
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will give a brief introduction to this topic to state the problem explored in
Chapter 3 of this work. At the micro level, the analysis of a basic service
system is queuing theory ([30]). The first thing to consider is a single queue
with an incoming flow of jobs and a processor of a given capacity that pro-
cesses these jobs. The resulting process will have Markov properties. When
switching to a network of queues, the concept of Poisson flows in the network
is arising. For the first time these properties were discovered for telephone
networks by Erlang ([31]). The concept of loss networks is also considered,
the essence of which is that the connection between two vertices requires
simultaneously holding a line on each intermediate edge in a route between
vertices (see [32] for more on this). The main difference between a loss net-
work and a queuing network is that in the first, network congestion causes
a loss of connection, while in the second, congestion leads to an increase of
delays. In both types of networks, problems can be formulated at different
scales of network size and time. When moving from a single node to the
network as a whole, we get flows of jobs that use resources throughout their
paths in the network. Then problems arise related to the concepts of fairness
with respect to processing of different flows (see [33], [34]). Among other
things, in [34] fluid scheduling models were investigated, which in many ways
became a source of inspiration for problem statements in this dissertation.
However, if we move to a larger time scale, then the job flows are being
considered as objects that appear in the system and run out. At this level,
the entire network as a whole is considered as a processor-sharing system.
There is a connection between the policies of the scheduler at different scales
of consideration, it is partially studied, for example, in [35].

This dissertation explores a problem at the junction of different scales. The
model we are about to present is explored in [36] by the author of the thesis.
In this model, a single network node can be considered, or an entire network
serving several job flows in parallel. Consider a system of N queues and
one processor of power 1 (see fig. 1). There is a constraint M describing
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Figure 1: Job scheduler model

the maximum size of a single queue. In other words, M is the size of the
buffer allocated to a single queue. If the buffer size is exceeded, the job is
lost. At any given time moment, the processor determines how to allocate
its processing power between the queues. The processor is assumed to have a
high number of logical threads, so that it can perform several jobs, i.e. serve
several queues, at the same time. But within a single queue, jobs are carried
out strictly in sequence. The queues are formed by jobs entering them from
outside the system. Jobs coming in from a particular flow j (the flow of jobs
coming into the queue j) represent a continuous stochastic process Aj(t).
Suppose that all jobs are relatively small in size and arrive in large numbers.
Then we can look at each jobs stream as a flow of a fluid pouring at a speed
of AIj(t), with speed changes corresponding to a particular trajectory of the
process Aj(t).

Specific vector of computational distribution resource w = (w1, . . . , wN),
where w1 + · · ·+wN = 1, describes the behaviour of the system at a partic-
ular point in time, and the vector field w(·) describes the whole scheduling
policy. Researchers usually consider the arrival flows of jobs with stationary
properties, e.g. distributed according to Poisson’s law or to a more complex

9



Poisson’s law with Markov intensities (the so-called Markov-modulated Pois-
son process), and try to provide a scheduler policy that is «good» for such
flows. In this study we make local assumptions for the forthcoming time
period of duration Tupd, i.e. Tupd is the update frequency of the scheduling
policy. The reason for this approach is long-term sustainability. Indeed, by
acting in the described way, we will not be as dependent on whether the ar-
rivals of the jobs are really well estimated by stationary processes in the long
term. Moreover, in recent years, researchers have learned to detect moments
of Markov "jumps" with fairly good accuracy ([37]). We can then assume
that in the near future, after the decision has been made, the arrival of the
jobs in the queue with number i will be close to a Poisson process with in-
tensity ai. More specifically, we will assume that each Ai(t) is a Gaussian
stochastic process defined as follows:

1. Ai(0) = 0.

2. increments of the process Ai(t) are independent.

3. for t1 < t2 is true that Ai(t2) − Ai(t1) is a Gaussian random variable
with the expectation ai(t2 − t1) and the same variance.

This makes sense in terms of real-world applications, where incoming jobs
during the upcoming period of time can be modelled by Poisson processes
with intensities ai, but the total capacity and intensity values are large. Then
the discrete arrival process is approximated by a smooth Gaussian process,
and, up to scale, the total capacity is 1.

Denote by bi the initial queue size Qi(0). The queue size at time t is then
described by the random variable

ξi(t) = Ai(t) + bi − wit. (6)

If we cut the value of ξi(t) inside of the segment [0,M ], i.e. put 0 where it is
less than zero, and M where ξi(t) > M , then we get a random value Qi(t),
which is the actual queue size.
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For an event ω ∈ Ω and a time moment u ∈ [0, Tupd] let’s define a set of
τi(ω, u) = {t ∈ [0, u] : ξi(ω, t) ≥ M}. Data from the queue will be lost at
points in time t ∈ τi(ω, u). The amount of data that did not fit in queue for
the whole set of intervals τi(ω, u) and have been removed, is assessed by the
penalty function

Li(ω, u) =

∫
τi(ω,u)

(ξi(ω, t)−M)dt. (7)

By analogy, define the set βi(ω, u) = {t ∈ [0, u] : ξi(ω, t) ≤ 0} and the
bonus function

Bi(ω, u) =

∫
βi(ω,u)

(−ξi(ω, t))dt. (8)

The resulting random processes Li and Bi with the time on [0, Tupd] describe
the amount of loss and the total downtime bonus for the time up to u.

The mathematical expectation of the reference value ξi(t) is

si(t) = Eξi(t) = bi + ait− wit (9)

Definition 0.0.1. The queue size prediction i at time t is the value qi(t),
given by restricting the value of si(t) into the range [0,M ].

Note that this value is not equivalent to the calculation of the mathematical
expectation of the true queue size Qi(t).

Definition 0.0.2. Expected delay Di(t) is the time required to process the
predicted queue qi(t) using the allocated bandwidth. It is based on a function

di(t) =
ai − wi

wi
t+

bi
wi

(10)

after limiting its values inside the boundaries of [0,M/wi].

Note that if Qi(t) = 0, then Di(t) = 0 independent of wi.
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Remark. Note that this method of estimating the delay is not equivalent
to the calculation of the mathematical expectation of the delay process
Qi(t)/wi.

Definition 0.0.3. For each flow we define the mean local delay:

D(wi, ai, bi) =

∫ Tupd

0 Di(t) dt

Tupd
(11)

In this approach, the values of (ai, bi) are assumed to be known, the question
of how best to predict the value of ai is left out of consideration. The control
variable is the vector w with the constraint w ∈ W , where W — set of points
w = (w1, . . . , wN) such that wi ≥ 0 and w1+ · · ·+wN = 1, i.e. the standard
N -symplex.

Let us introduce various performance metrics for the entire system, generat-
ing the corresponding optimisation problems.

Problem (Minimising the sum of the mean delays).
The problem of minimising the arithmetic mean of mean local delays of each
stream (or, equally, their sums, since the summation goes on a fixed set) for
a given state of the system:

min
w∈W

(
N∑
1

D(wi, ai, bi).

)
(12)

Note that this problem is different from the problem of minimisation of the
overall mean delay over the entire system.

Problem (Minimax mean delay).
The problem of minimising the maximum of all mean local delays:

min
w∈W

[
max

i
(D(wi, ai, bi))

]
. (13)
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Further, we narrow down the requirements for the resource allocation vector
and the initial state of the entire system, based on some conceptual consid-
erations from the realm of practical requirements. Namely, the concept of
steadiness of a state is introduced, which has the meaning that for this state,
there is at least one resource allocation such that none of the N queues will
not qualitatively change their status over the next period of time. We will
call such allocations uniform. The classification of queue and system statuses
is collectively a set of simple, but cumbersome relations on ai, bi,M, Tupd, so
we won’t present them here. We will only point out that as a result these
conceptual considerations in this model, they acquire a specific form of con-
straints in the form of inequalities. So in the end the resource allocation
vector, in addition to being on the standard W simplex, must be inside the
parallelepiped, which we denote by R. The resulting constraint area is the
(N − 1)-dimensional polytope P inside the simplex.

Research objectives and results

The aim of the study is to optimise the policy of a complex system in the
various models presented above, or finding analytical properties of optimal
solutions. Here are the main results of the work.

1 (Taxation, smooth univariate type distribution). In the described taxation
model, associated with a probability distribution of economic agents among
types θ, consider the following clarifications. First, we will consider θ, l in
one-dimensional form, i.e. as numbers instead of vectors. In Chapter 2 it
is shown that this does not limit the generality in this model, namely the
consideration of vector parameters is reduced to the consideration of the
norms of these vectors. Make a substitution and consider the problem in the
variables y, θ, rather than θ, l, which translates f(l) into f(y, θ). Recall that
agents are distributed among the types according to the probability measure
P on Θ. Let’s impose the following conditions on the functions listed:
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• f(y, θ) is a non-negative continuous function where y ≥ 0, θ > 0 (or θ
lies in some interval [θmin, θmax] ⊂ (0,+∞)).

• f(0, θ) = 0 for every θ, function f(y, θ) increases with y.

• derivative ∂θf(y, θ) exists and is continuous with respect to θ and de-
creasing with respect to y.

• there is a derivative ∂yf(y, θ) > 0.

• T : [0,+∞) → [0,+∞) is continuous increasing, T (0) = 0 and the
function y 7→ y − T (y) increases. Such functions form the class T .

• For each θ > 0 for sufficiently large values of y we have y− f(y, θ) < 0.
Concretely, there is P -integrable locally bounded function γ > 0, for
which

y − f(y, θ) ≤ 0 for y ≥ γ(θ).

The class T can be described as the set of all 1-lipschitz functions, which
are increasing and equal to zero at zero. Let yT (θ) be the minimum point
at which the maximum utility (1) is reached. Such a point exists as a conse-
quence of the conditions on f and T . Assume yT (0) = 0.

Let the Borel probability measure of the distribution of agents be given by
the density: P = p dx on (0,+∞). We will assume that either the density
p is positive on (0,+∞) or the measure P is concentrated on a segment and
the density of p is positive on that segment. Put

F (θ) = P ([θ,+∞)) =

∫ +∞

θ

p(t) dt.

We investigate the problem of finding the value of

J(f, P ) = sup
T∈T

R(T ), (14)
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i.e. the tax collected is maximised. Note that it follows from what is written
above that J(f, P ) ≤ ∥R∥L1(P ).

Denote by Y the set of all increasing continuous functions y : [0,+∞) →
[0,+∞), for which y(0) = 0 and for all θ > 0 hold the inequalities:

y(θ) ≤ γ(θ), ∂yf(y(θ), θ) ≤ 1, f(y(θ), θ) ≤ y(θ).

For each function y ∈ Y we introduce the right inverse function with the
formula

v(s) = sup{t : y(t) ≤ s}.
The function v also increases and is left-continuous. Moreover, y(v(s)) = s
at points from the set of values of y, for such a point v(s) — the maximal
point in y−1(s).

The main result of this part of the work is as follows.

Theorem 0.0.4. The following equality is true

J(f, P ) = sup
y∈Y

∫ (
y(θ)− f(y(θ), θ) +

∫ θ

0

∂θf(y(τ), τ) dτ

)
P (dθ) =

= sup
y∈Y

∫
[y(θ)− f(y(θ), θ)]P (dθ) +

∫
∂θf(y(θ), θ)F (θ) dθ, (15)

and the supremum can be taken over increasing infinitely differentiable func-
tions y with y′ > 0. Approximations to the supremum by T can be obtained
using mappings of the form

T (s) = s− f(s, v(s)) +

∫ v(s)

0

∂θf(y(τ), τ) dτ,

where
y ∈ Y

is an infinitely differentiable function with inverse function v.
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Using the theorem 0.0.4 a description of the solution to the optimisation
problem is obtained in the case

f(y, θ) =
y2

2θ2
(16)

Namely:

J(f, P ) =
1

2

∫
p2(θ)θ3

p(θ)θ + 2F (θ)
dθ. (17)

2 (Piecewise linear taxes). Consider a piecewise linear taxation function, rep-
resented by N linear parts. The corresponding segments are described by the
split points m1≤ . . .≤mN−1 and the coefficients k1 ≤ . . . ≤ kN , so that

T (y) =


k1y, if y ≤ m1

k1m1 + k2(y −m1), if m1 ≤ y ≤ m2
...
k1m1 + k2(m2 −m1) + · · ·+ kN(y −mN−1) at mN−1 ≤ y.

(18)

Then the following statements are true.

Theorem 0.0.5 (On the form of optimal income). In the case of piecewise
linear tax the optimal income ymax(θ) is a piecewise constant function of type,
i.e. the half-line [0,+∞) is divided into consecutive intervals I1, . . . , I2N−1,
where ymax is constant on intervals with even numbers and quadratically
increases on those with odd numbers.

Theorem 0.0.6 (On the form of maximal utility). In the case of piecewise
linear tax the maximum utility Umax(θ) is a continuous strictly increas-
ing function of type. Moreover, [0,+∞) divides into consecutive intervals
I1, . . . , I2N−1, where the function Umax is convex on intervals with even num-
bers and concave on those with odd numbers.
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Note that the problem formulation echoes, but is not the same as the problem
explored in [38].

3 (The duality in the monopoly problem). When studying the Φ functional
arising in the monopolist, multidimensional screening, and auction problems,
the following results were obtained:

1. A new proof of the relation (5) is obtained based on a variant of the
minimax principle, not assuming the compactness of one of the spaces

2. The following amplification of (5) has been proven:

sup
u∈U(X)

Φ(u) = min
m⪯π

Beckρ,φ∗(π). (19)

That is, the functional on the right side reaches a minimum.

More strictly, true is

Theorem 0.0.7. Let φ be a convex lower semicontinuous function finite on
X = [0, 1]n and equal to +∞ outside X, m ∈ M0, where M0 is the set of
measures of finite variation with the property m(X) = 0.

Then the following relation holds (part of the statement is that both the min-
imum and maximum are reached):

max
u∈U(X)

Φ(u) = min
π∈M0:m⪯π

Beckρ,φ∗(π),

where

Φ(u) =
(∫

X

udm−
∫
X

φ(∇u)ρdx
)
, Beckρ,φ∗(π) = inf

π+div(c·ρ)=0

∫
X

φ∗(c)ρdx.

4. When investigating the resource allocation model in the form of a queuing
system with resource sharing it is justified to consider as an element of the
performance metric the queue size prediction functions. More specifically,
proved is
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Lemma 0.0.8. It is true that

Eξi(t) = EQi(t)−∆i,1(t) + ∆i,2(t), (20)

where ∆i,1 is the time density to calculate downtime bonus, and ∆i,2 is the
data loss density over time. Concretely, for each u ∈ [0, Tupd] it is true that

EBi(u) =

∫ u

0

∆i,1(t)dt

ELi(u) =

∫ u

0

∆i,2(t)dt.

(21)

5. When investigating forecasts in a queuing system model with the joint use
of the resource, the following results were obtained.

Theorem 0.0.9 (On optimising of the uniform steadiness). For a given steady
state (a, b) the problem of minimising the sum of the mean local delays of all
queues in the system among all uniform allocations of the given steady state
is equivalent to the problem

min
w1+···+wN=1
w∗+

i ≤wi≤w′
i

(
c1
w1

+ · · ·+ cN
wN

)
, (22)

where

w∗
i = ai −

M − bi
Tupd

, w′
i = ai +

bi
Tupd

, ci =
aiTupd

2
+ bi

and x+ = max(0, x) for real x. The algorithm below finds the exact solution
to this optimisation problem in a finite number of iterations.

Algorithm. 1. Take the point v with coordinates vi =
√
ci∑

i

√
ci
. If v satisfies

the constraints of the problem, then v is the desired solution. Otherwise
we move on to the next step.

18



2. If N = 2, the solution is chosen directly between the two ends of the
segment, that corresponds to the constraints of the problem.

3. Let vi1, . . . , vil be the components that violate the problem constraints,
while all other components comply with the conditions of the problem.
We will look for a solution on one of the F1, . . . , Fl – faces of the par-
allelepiped R, corresponding to the violated restrictions. Each of these
faces corresponds to a hyperplane, obtained by fixing one of the vari-
ables wi to w∗+

i or w′
i. We carry out the following steps for each face

indicated.

(a) Without loss of generality, assume that we have fixed the component
wN . If wN = 0, 1, then the value of the target function on this face
is infinite, so there is no point in looking for an optimum on it.

(b) Otherwise, we have the following problem:

min
(w1,...,wN−1)∈PN

wN

(
c1
w1

+ · · ·+ cN−1

wN−1

)
, (23)

where PN
wN

⊂ RN−1 is the set of points x = (x1, . . . , xN−1) such
that (x1, . . . , xN−1, wN) ∈ P . After setting the new variables yi =

xi

1−wN
we have y1 + · · · + yN−1 = 1. The problem in variables

(y1, . . . , yN−1) is similar to the initial one. Let’s run the algorithm
from the beginning for a new problem in a smaller dimension.

4. After performing the previous step recursively on the faces F1, . . . , Fl

we have a minimum for each of them. Let’s compare the values of the
target function at these points and choose the minimum.
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Research methods

The methods used in the current work include probability theory and stochas-
tic processes, real and functional analysis, measure theory, convex optimisa-
tion.

Scientific novelty and applicability of results

All of the above results of the study are new. The model explored in Chapters
1 and 2 is widely used in mathematical economics to study income taxation.
The results obtained for the smooth version of this model allow in some cases
obtain an explicit solution to the problem of maximising the total tax. The
monopoly problem arises in questions of economic applications of various
kinds. The resource sharing model is mainly applied to optimise various
processes of queueing theory. For example we could mention the processing
of jobs by the processor, the distribution and processing of incoming packets
on the network router, network-wide connection management, etc.

Results approbation

The results of the thesis have been presented at the following conferences
and seminars:

1. Conference “New Frontiers in High-Dimensional Probability and Appli-
cations to Machine Learning”, 12-16 May 2021, Sirius University, Sochi,
Russia. Report “Mathematical Problems of Optimal Scheduling”.

2. Research Seminar “Stochastic Analysis and its Applications in Eco-
nomics” led by Professor A.V. Kolesnikov and Professor V.D. Konakov,
Higher School of Economics. Moscow, 2022. Report “Tax optimisation
and probabilistic models”.

3. Joint workshop on Network Theory between IITP RAS and Huawei
Russian Research Institutes. A series of reports on the topic “Scheduling
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Optimisation” in 2020 and 2021.

Publications

The results of the thesis have been presented in papers [11], [12], [39], pub-
lished in journals indexed by citation systems Scopus and Web of Science.

1. Paper [11] is co-authored with S.N. Popova and published in the journal
“Mathematical Notes” (Scopus Q2).

2. Paper [12] is published without co-authors in the journal “The Bulletin
of Irkutsk State University. Series Mathematics”. (Scopus Q2).

3. Paper [39] is co-authored with the supervisor A.V. Kolesnikov and is
submitted to the journal “Mathematical Notes” (Scopus Q2).

Aside from journal publications the author prepared a preprint [36] published
within the arXiv system.

Work structure and scope

The thesis is set out on 98 pages and consists of a table of contents, an intro-
duction, four chapters, containing the results of the work and their proofs,
the conclusion and the list of references, containing 40 items.

Work content

Chapter 1 investigates the one-dimensional version of the aggregate tax max-
imisation problem with smoothness conditions, which we will not duplicate
here. In its original formulation, the problem consists of two stages of optimi-
sation – each entity first optimises its utilitu, then the total tax is maximised.
Under given conditions, however, the problem is reduced to a supremum over
a specially constructed class of functions. This makes it easier to get an an-
swer, because this method does not contain an intermediate maximum. In
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the special case where the cost function is

f(y, θ) =
y2

2θ2
(24)

we get that

J(f, P ) =
1

2

∫
p2(θ)θ3

p(θ)θ + 2F (θ)
dθ. (25)

Chapter 2 shows for a start that the multidimensional problem is elementarily
reduced to one-dimensional. Mostly, however, in chapter 2 we deal with the
behaviour of agents in the model with piecewise linear taxation. An explicit
view of the agent’s optimal labour effort is obtained depending on its type
of performance and the parameters of the tax function.

Chapter 3 deals with a dynamic process in a system with limited resources,
which immediately distinguishes this formulation of the problem from the
aggregate statistics in the first model. Consider a system of N queues, where
each queue is formed by the jobs coming from corresponding flow. The flows
are in the form of Gaussian processes of given intensities. The single process-
ing centre handles all queues, allocating its resource between the queues at
each point in time. After that, the choice of a specific system performance
metric is supported by its probabilistic properties. Initial system parame-
ters are classified and for each of the described classes the system optimisa-
tion problem is presented in the form of an explicit function minimisation.
An algorithm is obtained for one class of system state (so-called uniform
steadiness), which gives an exact solution to the optimisation problem. The
correctness of the algorithm is proved analytically.

Chapter 4 considers the monopoly problem that arises in many models of
mathematical economics. Previous results of this area are improved. In
particular, the attainability of the maximum on convex functions in the
monopoly problem is proved, as is the attainability of the minimum of the
dual problem.
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