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Introduction

The necessity of developing numerical methods of non-smooth convex
optimization in recent years is caused by significant progress in various fields of
science, including biology, economics, chemistry, applied mathematics, theoretical
physics, and many others. A particular difficulty, primarily in machine learning
and data analysis problems, is the large size of the initial sample, the importance
of obtaining as accurate solution as possible and minimizing the error, and the
difficulty in calculating the value of a function or its derivatives that describe
a particular mathematical model. The latter aspect is especially relevant due to
the impossibility of performing an accurate numerical evaluation of the various
characteristics of a function in many applied problems. Thus, many classical
optimization algorithms turn out to be inapplicable, for example, in case when the
objective function is non-smooth. It is worth noting that today the vast majority
of applied problems generate optimization problems with non-smooth functions
[3; 17; 26].

It is well known that both convex [32] and Lipschitz continuous [31]
functions are differentiable in their domain almost everywhere. Nevertheless,
optimization methods for the smooth case are not applicable to many applied
problems with similar properties of the objective functional. It is not difficult
to show [6] that for a function whose gradient satisfies the Lipschitz condition
(hereafter — for a smooth function)

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖* ≤ 𝐿||𝑥− 𝑦||, (1)

the following inequality is satisfied

𝑓(𝑦)− 𝑓(𝑥) ≤ ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝐿

2
‖𝑥− 𝑦‖2 ∀𝑥,𝑦 ∈ 𝑑𝑜𝑚𝑓. (2)

A natural attempt to generalize the inequality (2) is to replace the second
summand of the right-hand side of (2), by distance in some generalized sense. The
motivation for this approach is both the difficulty of using Euclidean distance in
many applied problems and the deliberate replacement of ‖𝑥− 𝑦‖2 by a distance
more adapted to the particular formulation of the problem. Such an idea was
proposed in [16] with replacing the norm of the difference of variables 𝑥, 𝑦 by
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distance in a generalized sense, namely — by Bregman divergence. An important
point of such a generalization is to preserve the optimal convergence rate of first­
order methods [1; 15; 16].

Thus, one of the main results in this direction was the recently proposed
concept of relative smoothness [16], which allowed the application of the gradient­
type method to solve the problem of constructing an optimal ellipsoid covering
a set of given points. This problem plays a crucial role in [1; 16] statistics and
data analysis. Further, in [15], there was proposed a concept of relative Lipschitz
continuity, which allowed us to take a new look at many applied problems, among
which there is mentioned the Support Vector Machine for the binary classification
problem and the problem of finding a common point of 𝑛 of given ellipsoids.

The second problem that arises when considering the inequality (2) is the
impossibility of calculating the exact gradient of the function 𝑓(𝑥). Recently,
in [30; 33], it was shown that various modifications of the Mirror Descent
Algorithm are applicable in the case of using the so-called 𝛿–subgradient, it also
was shown that there is no accumulation of error value in the final estimates
of the convergence rate. However, in many applied problems, it is difficult not
only to calculate the gradient with some error but also the value of the objective
function itself. One of the most important results in this direction was the concept
(𝛿,𝐿)–oracle proposed in [4], which deteriorates the quality of the solution of the
optimization problem by only 𝑂(𝛿).

The first part of the dissertation extends the class of problems, including
an abstract model of a function replacing the first term ⟨∇𝑓(𝑥), 𝑦−𝑥⟩ with some
error, while admitting that the function itself is represented in abstract form
using the so-called model, that allows one to work with composite optimization
problems. It is worth noting that the optimal convergence rate estimates for the
proposed methods are preserved.

The second focus of the dissertation is variational inequalities and saddle
point problems with corresponding levels of smoothness of operators. It is worth
noting, that variational inequalities play a key role in solving many applications
in fluid dynamics [12], dynamical system design [5; 20] economics, particularly in
modeling the network effect [19], finding general economic equilibrium [5; 8; 11],
Nash equilibria [28], matrix games [22] etc.
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One of the most notable numerical methods for solving variational
inequalities was the extragradient method of G. M. Korpelevich, proposed in
1976 [13]. Recently, combining some ideas of [22] and [24], there was proposed a
universal numerical algorithm [7] that is capable of making automatic adjustments
to the smoothness level of the problem (namely, the 𝜈 parameter, see (3) below).
In the thesis, this method is extended to the strong monotonicity condition of
the operator under the assumptions of the smoothness classes introduced earlier.
Also, there was considered a variant of the recently proposed accelerated method
for solving saddle point problems in the non-smooth formulation. In particular,
there is considered a generalization of the Lipschitz condition of the gradient of the
objective function (1) to the following Holder condition for saddle point problems

‖∇𝑓(𝑧)−∇𝑓(𝑢)‖* ⩽ 𝐿𝜈‖𝑧 − 𝑢‖𝜈, (3)

which plays an important role in solving many applied problems, such as the
multi-armed bandit problem [14], the heart rate variability problem [21], etc.

This thesis aims to develop optimal numerical methods for solving
multidimensional non-smooth convex optimization problems with functional
constraints. The well-known Mirror Descent Algorithm and its modifications are
used as a base for developing the methods. To be able to apply the proposed
methods in a broader class of functional The modification of the concept of inexact
model of the objective functional and functional constraint. The applicability of
the methods for functionals satisfying a relaxed version of the Lipschitz condition,
namely the condition of relative Lipschitz continuity for classical optimization
problems and the relative smoothness concept for variational inequalities. Also,
the goal of the thesis includes the development of modifications of methods for
solving variational inequalities and saddle point problems with corresponding
smoothness classes. In particular, it is planned to propose for the first time a
restart technique of Adaptive Proximal method for strongly monotone variational
inequalities as well as an accelerated method for the non-smooth (Holder) saddle
point problem.

The following goals were proposed to achieve the aim:
1. Develop an analogue of the Mirror Descent method with switchings

to solve the problem of minimization of quasi-convex non-Lipschitz
continuous functions with quasi-convex Lipschitz continuous inequality
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constraints; substantiate the corresponding theoretical estimates of the
convergence rate.

2. Extend the applicability of Mirror Descent Methods to a class of
relatively Lipschitz problems, extending the proposed modifications
of the Mirror Descent method to minimize functions admitting
representation in abstract model generality, and investigating the
theoretical characteristics of the proposed methods in the case of online
and stochastic settings of relatively Lipschitz optimization problems.

3. Develop a modification of the Mirror Descent algorithm for variational
inequalities with monotone and relatively bounded operator.

4. Propose a restart technique for the adaptive proximal mirror method
for strongly monotone variational inequalities with a Holder continuous
operator.

5. Develop an accelerated algorithm for solving strongly convex-concave
saddle point problems with a decreased level of smoothness of the
functional.

Relevance.
The relevance of this direction is primarily due to the sharp development of
related disciplines, requiring solving multidimensional optimization problems with
minimal errors. The issue of optimization of high-dimensional functions plays a
crucial role in such sciences such as machine learning and data analysis. The
online formulation of the problem is used in financial markets, social networks, and
decision-making problems. The introduced concept of relative Lipschitz continuity
helps to solve reinforcement learning problems. Variational inequalities, in turn,
are an essential tool for solving problems of general economics, market equilibrium
search, and complementary problems.

The obtained results:
1. An analogue of the Mirror Descent Algorithm has been developed for

optimization problems of quasi-convex functions satisfying the condition
of non-standard growth in the presence of quasi-convex functional
inequalities.

2. A variant of the Mirror Descent method was proposed for convex
programming problems on a class of relatively Lipschitz problems,
including online optimization problems as well as problems in the
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stochastic setting; theoretical estimates of the convergence rate of
Mirror Descent algorithms for solving optimization problems with
functions admitting representation in abstract model generality were
obtained.

3. A modification of the Mirror Descent Algorithm for variational
inequalities with a monotone and relatively bounded operator was
proposed, an estimate of the convergence rate that can be considered
optimal was proved.

4. A restarted version of the Adaptive Proximal Mirror for variational
inequalities with a strongly monotone Holder continuous operator was
proposed, an estimate of the convergence rate that is optimal at 𝜈 = 0

and 𝜈 = 1 was proved.
5. A technique for accelerating an algorithm for solving strongly convex­

concave saddle point problems with decreased smoothness has been
described.

Novelties:
1. For the first time, an analogue of the Mirror Descent Method with

switchings was proposed for minimization problems with quasi-convex
objective functional with quasi-convex inequality constraints.

2. The restart technique of Adaptive Proximal Mirror Method for strongly
monotone variational inequalities with Holder continuous operators was
proposed for the first time.

3. An accelerated method for the saddle point problems with decreased
smoothness was proposed for the first time.

Reliability of the obtained results is due to the publication of 12 articles
indexed by Scopus and Web of Science. Below is a list of publications related to
the materials of the thesis.

First-tier publications
1. Bayandina, A., Dvurechensky, P., Gasnikov, A., Stonyakin, F., Titov,

A. Mirror descent and convex optimization problems with non-smooth
inequality constraints //Large-scale and distributed optimization. –
Springer, Cham, 2018. – С. 181-213.

2. Gasnikov, A. V., Dvurechensky, P. E., Stonyakin, F. S., Titov, A. A. An
adaptive proximal method for variational inequalities //Computational
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Mathematics and Mathematical Physics. – 2019. – Т. 59. – №. 5. – С.
836-841.

3. Stonyakin, F., Gasnikov, A., Dvurechensky, P., Titov, A., Alkousa,
M. Generalized Mirror Prox Algorithm for Monotone Variational
Inequalities: Universality and Inexact Oracle //Journal of Optimization
Theory and Applications. – 2022. – С. 1-26.

4. Ablaev, S. S., Titov, A. A., Stonyakin, F. S., Alkousa, M. S., Gasnikov,
A. (2022). Some Adaptive First-Order Methods for Variational
Inequalities with Relatively Strongly Monotone Operators and
Generalized Smoothness. In International Conference on Optimization
and Applications (pp. 135-150). Springer, Cham.

Second-tier publications
1. Titov, A. A., Stonyakin, F. S., Gasnikov, A. V., Alkousa, M. S. Mirror

descent and constrained online optimization problems //International
Conference on Optimization and Applications. – Springer, Cham, 2018.
– С. 64-78.

2. Stonyakin, F. S., Alkousa, M. S., Titov, A. A., Piskunova, V. V.
On some methods for strongly convex optimization problems with
one functional constraint //International Conference on Mathematical
Optimization Theory and Operations Research. – Springer, Cham, 2019.
– С. 82-96.

3. Stonyakin, F. S., Alkousa, M., Stepanov, A. N., Titov, A. A.
Adaptive mirror descent algorithms for convex and strongly convex
optimization problems with functional constraints //Journal of Applied
and Industrial Mathematics. – 2019. – Т. 13. – №. 3. – С. 557-574.

4. Stonyakin F.S., Stepanov A.N., Gasnikov A.V., Titov A.A. Mirror
descent for constrained optimization problems with large subgradient
values of functional constraints // Computer Research and Modeling,
2020, vol. 12, no. 2, pp. 301-317

5. Titov, A. A., Stonyakin, F. S., Alkousa, M. S., Ablaev, S. S., Gasnikov,
A. V. Analogues of switching subgradient schemes for relatively
Lipschitz-continuous convex programming problems //International
Conference on Mathematical Optimization Theory and Operations
Research. – Springer, Cham, 2020. – С. 133-149.
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6. Titov, A. A., Stonyakin, F. S., Alkousa, M. S., Gasnikov, A.
V. Algorithms for solving variational inequalities and saddle point
problems with some generalizations of Lipschitz property for operators
//International Conference on Mathematical Optimization Theory and
Operations Research. – Springer, Cham, 2021. – С. 86-101.

7. Savchuk O.S., Titov A.A., Stonyakin F.S., Alkousa M.S. Adaptive first­
order methods for relatively strongly convex optimization problems //
Computer Research and Modeling, 2022, vol. 14, no. 2, pp. 445-472.

Other publications
1. F. S. Stonyakin, A. A. Titov. One Mirror Descent algorithm for

convex constrained optimization problems with non-standard growth
properties.// SchoolSeminar on Optimization Problems and their
Applications, OPTA-SCL 2018. CEUR-WS 2018, Vol. 2098, P. 372–384.

Reports at conferences and seminars.
1. MIPT Scientific Conference, 2018, 2019.
2. 23rd International Symposium on Mathematical Programming (ISMP

2018), Bordeaux, France.
3. International Conference Optimization and Applications (OPTIMA),

2019, 2020 Petrovac, Montenegro.
4. Mathematical Optimization Theory and Operations Research

(MOTOR), 2019, 2020, 2021. Novosibirsk, Irkutsk, Russia
5. Quasilinear Equations, Inverse Problems and Their Applications

(QIPA), 2018, 2019, 2021, Moscow, Russia.
6. International Symposium on Application of Numerical Optimization

Methods for Solving Inverse Problems, 2021, Moscow, Russia.
7. Moscow Conference on Combinatorics and Applications, 2021,

Dolgoprudny, Russia.
8. International Conference “Optimization without Borders”, 2021, Sochi,

Russia.

Contents

In the first chapter of the dissertation, the formal statement of the
problem is given, and some modifications of the Mirror Descent method of
the minimization problem of functions with non-standard growth conditions are
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proposed. In item 1.1 the general statement of the optimization problem as well
as basic definitions used in the dissertation, are presented. As noted earlier, an
essential focus of the thesis is the abandonment of the classical distance work in
favor of distance in a more general sense. Let us introduce some basic concepts
concerning the so-called Bragman distance.

Let (𝐸, || · ||) be some normed finite-dimensional vector space, 𝐸* — the
space of continuous linear functionals, defined in 𝐸 — its conjugated. Let the norm
of the conjugate space be defined as follows

‖𝑦‖𝐸,* = ‖𝑦‖* = max
𝑥

{︁
⟨𝑦,𝑥⟩,||𝑥|| ≤ 1

}︁
, (4)

where ⟨𝑦,𝑥⟩ denotes the value of a continuous linear functional 𝑦 at 𝑥 ∈ 𝐸.
Consider a convex compact subset 𝑋 ⊂ 𝐸, and two convex subdifferentiable
functions 𝑓(𝑥) : 𝑋 → R и 𝑔(𝑥) : 𝑋 → R.

Definition 1. Let 𝑑(𝑥) : 𝑋 → R+ be some continuously differentiable and
1-strongly convex function with respect to the norm ‖·‖, i.e.

⟨∇𝑑(𝑥)−∇𝑑(𝑦), 𝑥− 𝑦⟩ ≥ ‖𝑥− 𝑦‖2 ∀𝑥, 𝑦 ∈ 𝑋. (5)

Let us call the function 𝑑(𝑥) a prox or distance generating function.

Definition 2. Let us say that 𝑉𝑑(𝑦, 𝑥) = 𝑉 (𝑦, 𝑥) — Bregman distance, generated
by the prox function 𝑑(·), if the following equality is satisfied

𝑉 (𝑦, 𝑥) = 𝑑(𝑦)− 𝑑(𝑥)− ⟨∇𝑑(𝑥), 𝑦 − 𝑥⟩. (6)

In Section 1.2 an adaptive modification of the Mirror Descent method [18]
for solving the optimization problem with a functional constraint is considered

𝑓(𝑥)→ min
𝑥∈𝑑𝑜𝑚𝑓

, (7)

s.t. 𝑔(𝑥) ≤ 0. (8)

The convergence rate (the number of iterations sufficient to obtain 𝜀-accuracy
of the problem in question) is 𝑂

(︀
1
𝜀2

)︀
, assuming that the objective function

and functional constraint satisfy the Lipschitz condition, that is, the following
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inequalities are satisfied for all 𝑥, 𝑦 ∈ 𝑋

|𝑓(𝑥)− 𝑓(𝑦)| ≤𝑀𝑓 ||𝑥− 𝑦||, (9)

|𝑔(𝑥)− 𝑔(𝑦)| ≤𝑀𝑔||𝑥− 𝑦||. (10)

Hereinafter 𝜀 will be understood as the accuracy of the solution of the problem.

Definition 3. Let us say that the point 𝑧 is an 𝜀–solution of the problem (7-8),
if the following inequalities hold

𝑓(𝑧)− 𝑓(𝑥*) ≤ 𝜀, (11)

𝑔(𝑧) ≤ 𝜀. (12)

If the objective function 𝑓(𝑥) does not satisfy the Lipschitz condition, but
has a Lipschitz continuous gradient, a corresponding modification of the Mirror
Descent method [18] with a similar convergence rate is considered. A natural
example of the emergence of a problem statement with such a smoothness class
is quadratic functions.

Section 1.3 is devoted to the case of non-convex functions, including
both simultaneous quasi-convexity of the objective function and the functional
constraint and the case of quasi-convexity of the objective function alone. The
convergence rate of the proposed methods is also 𝑂

(︀
1
𝜀2

)︀
. Methods of minimization

of quasi-convex functions found a lot of applications in many applied problems,
among which the problem of search for internal rate of return was considered in
the framework of this dissertation.

Definition 4 ([10]). Function 𝑓 : 𝑋 → R is called quasi-convex if the following
inequality holds

𝑓
(︁
(1− 𝛼)𝑥+ 𝛼𝑦

)︁
⩽ max{𝑓(𝑥),𝑓(𝑦)} ∀𝛼 ∈ [0; 1] ∀𝑥,𝑦 ∈ 𝑋. (13)

When working with quasi-convex functions instead of the classical
(sub)gradient the following set is often considered [25]

𝐷̂𝑓(𝑥) = {𝑝 | ⟨𝑝, 𝑥− 𝑦⟩ ⩾ 0 ∀𝑦 ∈ 𝑋 : 𝑓(𝑦) ⩽ 𝑓(𝑥)}. (14)
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Hereinafter 𝐷𝑓(𝑥) will be understood as an arbitrary vector of 𝐷̂𝑓(𝑥)

𝐷𝑓(𝑥) ∈ 𝐷̂𝑓(𝑥). (15)

For a given function 𝑓(𝑥) and each subgradient ∇𝑓(𝑥) at the point 𝑦 ∈ 𝑋,
define the following function that will be used to characterize the complexity of
the Algorithm 1

𝑣𝑓(𝑥, 𝑦) =

⎧⎪⎨⎪⎩
⟨
∇𝑓(𝑥)
‖∇𝑓(𝑥)‖*

,𝑥− 𝑦
⟩
, ∇𝑓(𝑥) ̸= 0

0 ∇𝑓(𝑥) = 0

, 𝑥 ∈ 𝑋. (16)

Let us introduce the following definition of a proximal operator.

Definition 5. For any 𝑥 ∈ 𝑋 and 𝑝 ∈ 𝐸* define a proximal operator Mirr𝑥(𝑝)

as follows
Mirr𝑥(𝑝) = argmin

𝑦∈𝑋

{︁
⟨𝑝, 𝑦⟩+ 𝑉 (𝑦, 𝑥)

}︁
. (17)

Algorithm 1 Modification of Adaptive Mirror Descent for quasi-convex functions
Require: 𝜀 > 0; Θ0, such that 𝑑(𝑥*) ≤ Θ2

0, 𝐶𝑓 ,𝐶𝑔

1: 𝑥0 = argmin
𝑥∈𝑋

𝑑(𝑥)

2: Define 𝐼 = ∅, 𝑘 = 0
3: repeat
4: if 𝑔(𝑥𝑘) ≤ 𝜀𝑀𝑔 then
5: ℎ𝑓𝑘 =

𝐶𝑓

‖𝐷𝑓(𝑥𝑘)‖*

6: 𝑥𝑘+1 = Mirr𝑥𝑘

(︁
ℎ𝑓𝑘𝐷𝑓(𝑥𝑘)

)︁
"productive step"

7: 𝐼 = 𝐼 ∪ {𝑘}.
8: else
9: ℎ𝑔𝑘 =

𝐶𝑔

‖𝐷𝑔(𝑥𝑘)‖*

10: 𝑥𝑘+1 = Mirr𝑥𝑘

(︁
ℎ𝑔𝑘𝐷𝑔(𝑥𝑘)

)︁
"non-productive step"

11: end if
12: 𝑘 = 𝑘 + 1
13: until 2Θ2

0

𝜀2 ≤ 𝑁
Ensure: ̃︀𝑥 := argmin

𝑖∈𝐼
𝑓(𝑥𝑖)

Theorem 1. Let 𝑓(𝑥) be a quasi-convex function, 𝑔(𝑥) be a quasi-convex function
satisfying the Lipschitz condition with constant 𝑀𝑔. Then after 𝑁 =

⌈︁
2Θ2

0

𝜀2

⌉︁
steps

of Algorithm 1 the following inequalities are satisfied
12



min
𝑘∈𝐼

𝑣𝑓(𝑥𝑘,𝑥*) ⩽ 𝜀, max
𝑘∈𝐼

𝑔(𝑥𝑘) ⩽ 𝜀𝑀𝑔. (18)

The second chapter is primarily devoted to a generalization of the
Lipschitz condition (2) in the case of replacing the difference norm by a distance
in some generalized sense, more precisely, by a Bregman divergence.

Item 2.1 is devoted to the motivation in considering classes of relatively
smooth and relatively Lipschitz continuous functions. An important feature of
these concepts is the relaxation of the requirements for the prox-function (1),
namely, the replacement of the 1-strong convexity condition by ordinary convexity.
The thesis describes how the following definition of the relative smoothness of the
function has found application in solving the optimal design problem.

Definition 6 ([16]). Let us say that the function 𝑓(𝑥) satisfies the condition of
relative smoothness with constant 𝐿 (or is 𝐿-relatively smooth), if for all 𝑥, 𝑦 ∈ 𝑋
the following inequality is satisfied

𝑓(𝑦) ≤ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝐿𝑉𝑑(𝑦, 𝑥). (19)

The main focus of chapter 2, however, is relatively Lipchitz continuous
functions, which allowed us to take a fresh look at many well-known applied
problems, among which the Support Vector Machine for the binary classification
problem and the Intersection of Ellipsoids problem were considered.

Definition 7 ([15]). Let us say that a function 𝑓(𝑥) satisfies the condition
of relative Lipschitz continuity with constant 𝑀𝑓 (or is 𝑀𝑓 -relatively Lipschitz
continuous) if for all 𝑥, 𝑦 ∈ 𝑋 the following inequality is satisfied

‖∇𝑓(𝑥)‖* ≤
𝑀𝑓

√︀
2𝑉 (𝑦,𝑥)

‖𝑦 − 𝑥‖
∀𝑥, 𝑦 ∈ 𝑋, 𝑦 ̸= 𝑥. (20)

Example 1 (Support Vector Machine). Consider the optimization setting of
the binary classification problem solved by Support Vector Machine with 𝑙2-
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regularization [27; 29]

𝑓(𝑥) :=
1

𝑛

𝑛∑︁
𝑖=1

𝑓𝑗(𝑥)→ min
𝑥
,

𝑓𝑗(𝑥) := max
{︀
0,1− 𝑦𝑖𝑥𝑇𝑤𝑖

}︀
+
𝜆

2
‖𝑥‖22,

(21)

where 𝑤𝑖 is the feature vector of the sample element, and 𝑦𝑖 ∈ {−1,1} is the class
label. Obviously, 𝑓(𝑥) is neither differentiable nor Lipschitz continuous (due to
regularization), so it is difficult to use classical (sub)gradient methods to solve
(21). In [15] it is shown that the considered function 𝑓(𝑥) is 1-relatively Lipshitz
continuous for the following prox-function

𝑑(𝑥) :=
𝜆2

4
‖𝑥‖42 +

2𝜆

3𝑛

(︃
𝑛∑︁

𝑖=1

‖𝑤𝑖‖2

)︃
‖𝑥‖32 +

1

2𝑛

(︃
𝑛∑︁

𝑖=1

‖𝑤𝑖‖22

)︃
‖𝑥‖22. (22)

Thus, using the approach with stochastic approximation of the (sub)gradient of
the objective function 𝑓(𝑥) and a prox-function according to (22), the classical
Mirror Descent Algorithm in the stochastic setting

𝑥𝑘+1 = argmin
𝑥∈𝑋

{︂
𝑓(𝑥𝑘) + ⟨∇𝑓(𝑥𝑘), 𝑥− 𝑥𝑘⟩+

1

𝜀
𝑉𝑑(𝑥, 𝑥𝑘)

}︂
,

𝑥̃ :=
1

𝑘 + 1

𝑘∑︁
𝑖=0

𝑥𝑖
(23)

guarantees the point 𝑥̃, which is a stochastic 𝜀–solution of the problem (21)

E𝑓(𝑧)− 𝑓(𝑥*) ≤ 𝜀, (24)

𝑔(𝑧) ≤ 𝜀. (25)

Moreover, the number of steps of the algorithm is 𝑂( 1
𝜀2 ). Note that ∇𝑓(𝑥) in (23)

is a stochastic (sub)gradient, satisfying

E
[︀
∇𝑓(𝑥, 𝜉)

]︀
= ∇𝑓(𝑥) ∈ 𝜕𝑓(𝑥), E

[︀
∇𝑔(𝑥, 𝜁)

]︀
= ∇𝑔(𝑥) ∈ 𝜕𝑔(𝑥), (26)

14



and
‖∇𝑓(𝑥, 𝜉)‖* ≤𝑀𝑓 , ‖∇𝑔(𝑥, 𝜁)‖* ≤𝑀𝑔 almost surely. (27)

Example 2 (Intersection of Ellipsoids). Consider 𝑛 ellipsoids, each defined as
follows

Υ𝑖 =

{︂
𝑥 ∈ R𝑚 :

1

2
𝑥𝑇𝐴𝑖𝑥+ 𝑏𝑖𝑥+ 𝑐𝑖 ≤ 0

}︂
, (28)

где 𝐴𝑖 ∈ S𝑚++, 𝑖 = 1, . . . ,𝑛. The problem is to find such a point 𝑥 ∈ R𝑚, that

𝑥 ∈
𝑛⋂︁

𝑖=1

Υ𝑖. (29)

It is worth noting that the inner point methods common for solving such problems
are applicable only in the case of relatively small dimension 𝑚,𝑛. Consider the
problem of finding the intersection of ellipsoids in the following form

𝑓(𝑥) := max
0≤𝑖≤𝑛

{︂
1

2
𝑥𝑇𝐴𝑖𝑥+ 𝑏𝑇𝑖 𝑥+ 𝑐𝑖

}︂
→ min

𝑥
(30)

𝑓(𝑥) is neither differentiable nor Lipschitz continuous. Let 𝜎 := max
0≤𝑖≤𝑛

‖𝐴𝑖‖22,

where ‖𝐴𝑖‖2 is spectral radius 𝐴𝑖; 𝜌 := 2 max
0≤𝑖≤𝑛

‖𝐴𝑖𝑏𝑖‖2, 𝛾 := max
0≤𝑖≤𝑛

‖𝑏𝑖‖22.
[15] showed that the function 𝑓(𝑥) is 1-relative Lipschitz continuous for

the following prox function

ℎ(𝑥) :=
𝜎

4
‖𝑥‖42 +

𝜌

3
‖𝑥‖32 +

𝛾

2
‖𝑥‖22. (31)

Moreover, the classical Mirror Descent Algorithm (23) with the classical
(sub)gradient ∇𝑓(𝑥) instead of the stochastic one guarantees 𝜀–solution of the
problem (30) after no more than 𝑂( 1

𝜀2 ) iterations.

Thus, various adaptive modifications of the Mirror Descent method are
already proposed in section 2.2 within the framework of the relative Lipschitz
continuous of functions. An important feature of the proposed methods is the
assumption of function representation in some abstract generality, which is a
natural generalization of the abovementioned concept of (𝛿, 𝐿)-model of the
function [4]. Generalizations of the proposed methods in the case of multiple
function constraints are also considered. More precisely, the functions are assumed
to admit the following representation in model generality.

15



Definition 8. Let 𝛿 > 0. Let us say that functions 𝑓(𝑥) and 𝑔(𝑥) admit a
relatively Lipschitz continuous (𝛿, 𝜑, 𝑉 )-model at the point 𝑦 ∈ 𝑋 if

𝑓(𝑥) + 𝜓𝑓(𝑦,𝑥) ≤ 𝑓(𝑦), −𝜓𝑓(𝑦,𝑥) ≤ 𝜑−1𝑓

(︁
𝑉 (𝑦,𝑥)

)︁
+ 𝛿, (32)

𝑔(𝑥) + 𝜓𝑔(𝑦,𝑥) ≤ 𝑔(𝑦), −𝜓𝑔(𝑦,𝑥) ≤ 𝜑−1𝑔

(︁
𝑉 (𝑦,𝑥)

)︁
+ 𝛿, (33)

where 𝜓𝑓(𝑦, 𝑥) and 𝜓𝑔(𝑦, 𝑥) are convex functions with respect to the first variable
and 𝜓𝑓(𝑥, 𝑥) = 𝜓𝑔(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑋.

Let us motivate the introduced Definition 8 by the following examples [26],
while omitting the problem statement in model generality, that is, let us put

𝜓𝑓(𝑦,𝑥) = ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩, 𝜓𝑔(𝑦,𝑥) = ⟨∇𝑔(𝑥), 𝑦 − 𝑥⟩. (34)

Example 3. Let prox-function 𝑑(𝑥) again be 1-strongly convex and the
(sub)gradient 𝑓(𝑥) be bounded. Under these assumptions, it is known that the
Bregman divergence satisfies the following inequality

𝑉 (𝑦,𝑥) ≥ 1

2
‖𝑥− 𝑦‖2 ∀𝑥,𝑦 ∈ 𝑋. (35)

Then
⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩ ≤𝑀𝑓‖𝑥− 𝑦‖ ≤𝑀𝑓

√︀
2𝑉 (𝑦,𝑥), (36)

so one can consider
𝜑𝑓(𝑡) =

𝑡2

2𝑀 2
𝑓

. (37)

Example 4. Consider the problem of maximizing a positive concave function
𝑞(𝑥) : 𝑋 → R+:

𝑞(𝑥)→ max
𝑥∈𝑋

. (38)

Then the function 𝑓(𝑥) := − log 𝑞(𝑥) will satisfy the inequality (36) with
𝑀𝑓 = 1. In this case, the maximization problem (38) can be solved by standard
minimization of the function 𝑓(𝑥).

Example 5 (Composite optimization problem [2; 16; 23]). The method proposed
below, as well as its modifications considered in the dissertation, are applicable to

16



the composite optimization problem

min{𝑓(𝑥) + 𝑟(𝑥) : 𝑥 ∈ 𝑋, 𝑔(𝑥) + 𝜂(𝑥) ≤ 0}, (39)

where 𝑟(𝑥), 𝜂(𝑥) : 𝑄→ R are simple convex functions. Then for all 𝑥, 𝑦 ∈ 𝑋

𝜓𝑓(𝑦, 𝑥) = ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝑟(𝑦)− 𝑟(𝑥), (40)

𝜓𝑔(𝑦, 𝑥) = ⟨∇𝑔(𝑥), 𝑦 − 𝑥⟩+ 𝜂(𝑦)− 𝜂(𝑥). (41)

Let us define the proximal operator for the step ℎ > 0 as follows

Mirrℎ(𝑥,𝜓) = argmin
𝑦∈𝑋

{︂
𝜓(𝑦,𝑥) +

1

ℎ
𝑉 (𝑦,𝑥)

}︂
. (42)

Algorithm 2 Mirror Descent Method in Model Generality.
Require: 𝜀 > 0, 𝛿 > 0, ℎ𝑓 > 0, ℎ𝑔 > 0,Θ0, 𝑑(𝑥*) ≤ Θ2

0

1: 𝑥0 = argmin
𝑥∈𝑋

𝑑(𝑥)

2: Set 𝐼 = ∅, 𝐽 =: ∅
3: 𝑘 = 0
4: repeat
5: if 𝑔 (𝑥𝑘) ≤ 𝜀+ 𝛿 then
6: 𝑥𝑘+1 = Mirrℎ𝑓 (𝑥𝑘,𝜓𝑓) "productive step"
7: 𝐼 = 𝐼 ∪ {𝑘}
8: else
9: 𝑥𝑘+1 = Mirrℎ𝑔 (𝑥𝑘,𝜓𝑔) "non-productive step"

10: 𝐽 = 𝐽 ∪ {𝑘}
11: end if
12: 𝑘 = 𝑘 + 1
13: until Θ2

0 ≤ 𝜀
(︀
|𝐽 |ℎ𝑔 + |𝐼|ℎ𝑓

)︀
− |𝐽 |𝜑*𝑔(ℎ𝑔)− |𝐼|𝜑*𝑓(ℎ𝑓)

Ensure: ̃︀𝑥 := 1
|𝐼|
∑︀
𝑘∈𝐼

𝑥𝑘

Theorem 2. Let 𝑓(𝑥) and 𝑔(𝑥) be convex functions admitting the model
generality representation (32), (33), respectively, 𝜀 > 0, 𝛿 > 0. As before, suppose
that there exists a constant Θ0 > 0 such that 𝑑(𝑥*) ≤ Θ2

0. Suppose that at
a certain step of the Algorithm 2 the stopping criterion is satisfied, then the
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following inequality holds

𝑓(̃︀𝑥)− 𝑓(𝑥*) ≤ 𝜀+ 𝛿, 𝑔(̃︀𝑥) ≤ 𝜀+ 𝛿. (43)

Further, various options for specifying the type of function model are
considered and there are proposed corresponding optimal algorithms.

Section 2.3 is devoted to the online optimization problem with a functional
constraint

1

𝑁

𝑁∑︁
𝑖=1

𝑓𝑖(𝑥)→ min
𝑥

𝑠.𝑡. 𝑔(𝑥) ≤ 0

(44)

There were proposed algorithms to solve the problem both in the classical
formulation and in the case when functions admit a representation in model
generality. The proposed methods are also optimal [9]. More precisely, the number
of non-productive steps is proportional to the total number of iterations of
algorithms 𝑁 . Also, in the dissertation, the case of negative regret was analyzed,
and corresponding theoretical estimates of the number of non-productive steps,
in this case, were obtained.

Section 2.4 is devoted to the stochastic setting of the optimization problem
with preserving assumptions about the smoothness of the objective function and
functional constraint; moreover, the proposed methods also have optimal estimates
of the convergence rate 𝑂

(︀
1
𝜀2

)︀
.

Section 2.5 considers the minimization problem of the relatively strongly
convex

𝑓(𝑥)− 𝑓(𝑦) + 𝜇𝑉 (𝑦, 𝑥) ≤ ⟨∇𝑓(𝑥), 𝑥− 𝑦⟩ ∀𝑥, 𝑦 ∈ 𝑑𝑜𝑚𝑓 (45)

of the objective function with functional constraint and proposes a restart
procedure of the previously introduced Mirror Descent Algorithm with
convergence rate 𝑂

(︁
𝑀2

𝜇𝜀

)︁
, where 𝑀 — the maximum constant of the relative

Lipschitz continuity of the objective function 𝑀𝑓 and functional constraint 𝑀𝑔

𝑀 = max{𝑀𝑓 ,𝑀𝑔}. (46)
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Secton 3 is devoted to variational inequality problems for some operator
𝑔 : 𝑄 −→ R𝑛, where 𝑄 is some convex closed subset of R𝑛

max
𝑥
⟨𝑔(𝑥), 𝑥* − 𝑥⟩ ≤ 0, (47)

and saddle point problem

𝑓 * = min
𝑥

max
𝑦
𝑓(𝑥,𝑦), (48)

where 𝑓(𝑥,𝑦) : 𝑄𝑥 × 𝑄𝑦 → R is convex with respect to 𝑥 and concave with
respect to 𝑦, 𝑄𝑥 ⊂ 𝐸1, 𝑄𝑦 ⊂ 𝐸2 are convex compact subsets of some normalized
finite-dimensional vector spaces with given norms ‖ · ‖|1, ‖ · ‖2, respectively.

In Section 3.1, there is considered an Adaptive Proximal method for solving
variational inequalities with Lipschitz continuous operator that guarantees an
𝜀–solution after no more than 𝑂

(︀
1
𝜀

)︀
iterations, which is an optimal estimate.

Section 3.2 proposes an analogue of the Mirror Descent method for
variational inequalities with relatively bounded

⟨𝑔(𝑥),𝑦 − 𝑥⟩ ≤𝑀
√︀

2𝑉 (𝑦,𝑥), (49)

and monotone
⟨𝑔(𝑦)− 𝑔(𝑥),𝑦 − 𝑥⟩ ≥ 0, (50)

operator, which guarantees an 𝜀–solution of (47) after no more than 𝑂
(︀
1
𝜀2

)︀
iterations.

Further, in Section 3.3 there is proposed an accelerated method for solving
the saddle point problem (48) assuming that the gradient of the objective function
partially satisfies the Hodler condition, 𝜈 ∈ [0,1], while being smooth in one
variable (the gradient satisfies the Lipschitz condition)

‖∇𝑥𝑓(𝑥,𝑦)−∇𝑥𝑓(𝑥
′,𝑦)‖2 ≤ 𝐿𝑥𝑥‖𝑥− 𝑥′‖𝜈2, (51)

‖∇𝑥𝑓(𝑥,𝑦)−∇𝑥𝑓(𝑥,𝑦
′)‖2 ≤ 𝐿𝑥𝑦‖𝑦 − 𝑦′‖𝜈2, (52)

‖∇𝑦𝑓(𝑥,𝑦)−∇𝑦𝑓(𝑥
′,𝑦)‖2 ≤ 𝐿𝑥𝑦‖𝑥− 𝑥′‖𝜈2, (53)

‖∇𝑦𝑓(𝑥,𝑦)−∇𝑦𝑓(𝑥,𝑦
′)‖2 ≤ 𝐿𝑦𝑦‖𝑦 − 𝑦′‖2. (54)
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The number of iterations to obtain the 𝜀–solution is given as follows

𝒪

(︃√︃
𝐿

𝜇𝑥
· log

√︃
𝐿𝑦𝑦

𝜇𝑦
· log 2𝐿𝑅2

𝜀

)︃
, (55)

where

𝐿 = 𝐿̃

(︃
𝐿̃

2𝜀

(1− 𝜈)(2− 𝜈)
2− 𝜈

)︃ (1−𝜈)(1+𝜈)
2−𝜈

, 𝐿̃ =

(︃
𝐿𝑥𝑦

(︂
2𝐿𝑥𝑦

𝜇𝑦

)︂ 𝜈
2−𝜈

+ 𝐿𝑥𝑥𝐷
𝜈−𝜈2

2−𝜈

)︃
,

(56)
where 𝐷 is diameter of the domain of 𝑓(𝑥,·).

Section 3.4 first proposes a restart technique for variational inequalities
with Holder continuous and strongly monotone operator

⟨𝑔(𝑥)− 𝑔(𝑦), 𝑥− 𝑦⟩ ≥ 𝜇‖𝑥− 𝑦‖2, (57)

it is assumed that the calculation of the operator satisfying the Holder condition
with constant 𝐿𝜈 is acceptable with some inaccuracy. The convergence rate of the
algorithm in this case is

𝑂

(︃(︂
𝐿𝜈

𝜇

)︂ 2
1+𝜈 2

2
1+𝜈Ω

𝜀
1−𝜈
1+𝜈

· log2
2𝑅2

0

𝜀

)︃
, (58)

where 𝑅0,Ω are some characteristics of the considered space. It is worth noting
that for 𝜈 = 0 the convergence rates of the proposed algorithm and the accelerated
method, proposed in Section 3.3, coincide, while for 𝜈 > 0 the asymptotic
convergence rate of the accelerated method is better.

Definition 9. Suppose that for some 𝛿𝑢 > 0 (uncontrollable error) and for
any 𝛿𝑐 > 0 (controllable error) there exists a constant 𝐿(𝛿𝑐) ∈ (0,+∞) that
∀𝑥,𝑦 ∈ 𝑄 one can calculate such 𝑔(𝑥,𝛿𝑐,𝛿𝑢) and 𝑔(𝑦,𝛿𝑐,𝛿𝑢) ∈ 𝐸* that the following
inequalities are satisfied

⟨𝑔(𝑦,𝛿𝑐,𝛿𝑢)− 𝑔(𝑥,𝛿𝑐,𝛿𝑢), 𝑦 − 𝑧⟩ ≤
𝐿(𝛿𝑐)

2

(︀
‖𝑦 − 𝑥‖2 + ‖𝑦 − 𝑧‖2

)︀
+ 𝛿𝑐 + 𝛿𝑢, (59)

⟨𝑔(𝑦,𝛿𝑐,𝛿𝑢)− 𝑔(𝑦), 𝑦 − 𝑧⟩ ≥ −𝛿𝑢, ∀𝑧 ∈ 𝑄. (60)

Then let us call the operator 𝑔(·,𝛿𝑐,𝛿𝑢) an inexact oracle of 𝑔.
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Algorithm 3 Adaptive Proximal Method for variational inequalities with inexact
oracle
Require: 𝜀 > 0, 𝛿𝑢 > 0, 𝛿𝑝𝑢 > 0, 𝑀−1, 𝐿(𝛿𝑐), 𝑑(𝑥)

1: 𝑘 = 0, 𝑧0 = argmin
𝑢∈𝑄

𝑑(𝑢)

2: for 𝑘 = 0,1, . . . do
3: 𝑖𝑘 = 0, 𝛿𝑐,𝑘 = 𝜀

4 , 𝛿𝑝𝑐,𝑘 =
𝜀
8

4: repeat
5: 𝑀𝑘 = 2𝑖𝑘−1𝑀𝑘−1
6: Calculate

𝑤𝑘 = argmin
𝑥∈𝑄

𝛿𝑝𝑐,𝑘+𝛿𝑝𝑢
{︁
⟨𝑔(𝑧𝑘,𝛿𝑐,𝑘,𝛿𝑢),𝑥⟩+𝑀𝑘𝑉 (𝑥,𝑧𝑘)

}︁
(61)

𝑧𝑘+1 = argmin
𝑥∈𝑄

𝛿𝑝𝑐,𝑘+𝛿𝑝𝑢
{︁
⟨𝑔(𝑤𝑘,𝛿𝑐,𝑘,𝛿𝑢),𝑥⟩+𝑀𝑘𝑉 (𝑥,𝑧𝑘)

}︁
(62)

7: 𝑖𝑘 = 𝑖𝑘 + 1
8: until

⟨𝑔(𝑤𝑘,𝛿𝑐,𝛿𝑢)−𝑔(𝑧𝑘,𝛿𝑐,𝛿𝑢), 𝑤𝑘−𝑧𝑘+1⟩ ≤
𝑀𝑘

2

(︁
‖𝑤𝑘−𝑧𝑘‖2+‖𝑤𝑘−𝑧𝑘+1‖2

)︁
+𝛿𝑐,𝑘+𝛿𝑢

(63)

9: 𝑘 = 𝑘 + 1
10: end for
Ensure: ̂︀𝑤𝑘 =

1∑︀𝑘−1
𝑖=0 𝑀−1

𝑖

∑︀𝑘−1
𝑖=0 𝑀

−1
𝑖 𝑤𝑖

Theorem 3 ([7]). Suppose that 𝑔(·) and 𝑔(·,𝛿𝑐,𝛿𝑢) satisfy (59) and (60). Then,
∀𝑘 ≥ 1 and any 𝑢 ∈ 𝑄

1∑︀𝑘−1
𝑖=0 𝑀

−1
𝑖

𝑘−1∑︁
𝑖=0

𝑀−1
𝑖 ⟨𝑔(𝑤𝑖), 𝑤𝑖 − 𝑢⟩

≤ 1∑︀𝑘−1
𝑖=0 𝑀

−1
𝑖

(𝑉 (𝑢,𝑧0)− 𝑉 (𝑢,𝑧𝑘)) +
𝜀

2
+ 𝛿𝑢 + 2𝛿𝑝𝑢.

(64)

Moreover, the total number of oracle calls does not exceed

inf
𝜈∈[0,1]

(︃
16

(︂
𝐿𝜈

𝜀

)︂ 2
1+𝜈

·max
𝑢∈𝐶

𝑉 (𝑢,𝑧0) + 2 log2 2

(︃(︂
1

𝜀

)︂ 1−𝜈
1+𝜈

𝐿
2

1+𝜈
𝜈

)︃)︃
−2 log2(𝑀−1).

(65)
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Algorithm 4 Restarts of Adaptive Proximal Method for Variational Inequalities
with Inexact Oracle
Require: 𝜀 > 0, 𝛿𝑢 > 0, 𝛿𝑝𝑢 > 0, 𝜇 > 0, Ω, такое что 𝑑(𝑥) ≤ Ω

2 ∀𝑥 ∈ 𝑄 : ‖𝑥‖ ≤
1; 𝑥0, 𝑅0, такое что ‖𝑥0 − 𝑥*‖2 ≤ 𝑅2

0

1: 𝑝 = 0,𝑑0(𝑥) = 𝑅2
0𝑑
(︁
𝑥−𝑥0

𝑅0

)︁
2: repeat
3: 𝑥𝑝+1 — result of 3 with accuracy 𝜇𝜀

2 , 𝛿𝑢, 𝛿𝑝𝑢, prox-function 𝑑𝑝(·) and stopping
criterion

∑︀𝑘−1
𝑖=0 𝑀

−1
𝑖 ≥ Ω

𝜇

4: 𝑅2
𝑝+1 = 𝑅2

0 · 2−(𝑝+1) + 2(1− 2−(𝑝+1))(𝜀4 + 𝛿𝑢 + 2𝛿𝑝𝑢)

5: 𝑑𝑝+1(𝑥)← 𝑅2
𝑝+1𝑑

(︁
𝑥−𝑥𝑝+1

𝑅𝑝+1

)︁
6: 𝑝 = 𝑝+ 1

7: until 𝑝 > log2
2𝑅2

0

𝜀 .
Ensure: 𝑥𝑝.

Theorem 4. Suppose that operator 𝑔(𝑥) is 𝜇 > 0–strongly monotone. Also,
suppose that prox-function 𝑑(𝑥) satisfies 𝑑(𝑥) ≤ Ω

2 ∀𝑥 ∈ 𝑄 : ‖𝑥‖|𝑙𝑒𝑞1, and
initial point 𝑥0 ∈ 𝑄 and 𝑅0 > 0 are such that ‖𝑥0 − 𝑥*‖2 ≤ 𝑅2

0. Then for 𝑝 ≥ 0,
the sequence 𝑥𝑝, generated by Algorithm 4, satisfies

‖𝑥𝑝 − 𝑥*‖2 ≤ 𝑅2
0 · 2−𝑝 +

𝜀

2
+

2𝛿𝑢 + 4𝛿𝑝𝑢
𝜇

, (66)

and the point 𝑥𝑝, which is the result of Algorithm 4, satisfies

‖𝑥𝑝 − 𝑥*‖2 ≤ 𝜀+
2𝛿𝑢 + 4𝛿𝑝𝑢

𝜇
. (67)

Conclusion contains the main results of the work, which are as follows.
Within the framework of the dissertation for the first time there were

proposed
1. an analogue of the Mirror Descent method with switchings for problems

of minimization a quasi-convex objective functional with quasi-convex
inequality constraint;

2. the restart technique of the Adaptive Proximal Mirror method for
strongly monotone variational inequalities with Holder continuous
operators;

3. an accelerated method for the (Holder) saddle point problem with
decreased smoothness level.
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Within the framework of the given problems, an analogue of the mirror descent
method with switchings was developed to solve the problem of minimization
of quasi-convex non-Lipschitz continuous functions with quasi-convex Lipchitz
continuous inequality constraint with convergence rate 𝑂

(︀
1
𝜀2

)︀
. An algorithm was

proposed to solve the problem of minimizing a quasi-convex objective function
that does not satisfy the Lipschitz condition but has a Lipschitz continuous
gradient with a quasi-convex constraint. Optimal Mirror Descent methods for
relatively Lipschitz optimization problem with a functional constraint in the case
of an online and stochastic problem setting were proposed. In doing so, the concept
of model generality of the function of the corresponding smoothness class was
considered. Appropriate modifications of the Mirror Descent method for relatively
Lipschitz problems in the case of the stochastic setting of the optimization problem
were proposed.
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31. Rademacher H. Über partielle und totale differenzierbarkeit von Funktionen
mehrerer Variabeln und über die Transformation der Doppelintegrale //
Mathematische Annalen. — 1919. — Т. 79, № 4. — С. 340—359.

32. Schwartz L. Analyse mathématique. — 1967.
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