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Introduction

The present paper refers to the classical theory of knots, links and tangles
in Euclidean 3-space R3. This is a branch of low-dimensional topology that
studies embeddings of one-dimensional manifolds into three-dimensional
ones. A knot is a pair (S3, S1), where S3 is a three-dimensional sphere and
S1 is the image of a circle smoothly embedded in S3; the knot is considered
up to a homeomorphism of the pair. Knots arise as the first example of in-
teresting pair of manifolds. Indeed, the previous non-trivial pair — (S2, S1)
— is classified by Schoenflies theorem (all such pairs are equivalent).

Knot theory is a rich area of research with lots of beautiful and deep
results, and many fundamental questions of this theory are still open (for
example, the problem of efficient knot recognition). At the same time knot
theory has extensive connections with other areas of mathematics. For ex-
ample, any connected closed orientable 3-manifold can be uniquely defined
using a link (the Lickorish-–Wallace theorem). Kirby calculus is an example
of the application of knot theory to the topology of 3- and 4-manifolds.

The classic way to define knots is to use knot diagrams (see 1 for de-
tailed definitions). The theorem of Reidemeister states that two diagrams
represent the same knot if and only if they are connected by a sequence of
local moves (Reidemeister moves)1. Moreover, in many problems (for exam-
ple, when constructing knot invariants) it is convenient to consider not all
diagrams but only diagrams of a certain type (for example, diagrams that
are closures of braid diagrams, or the so-called rectangular diagrams). An
interesting question is the study of universal classes of diagrams (a class of
knot diagrams is called universal if it contains diagrams of all knots). Note
that diagrams that are closures of braid diagrams and rectangular diagrams
give examples of universal classes.

The starting point of this study was the work [1], where three conjectures
about meander and semi-meander diagrams were put forward (see defini-
tions in section 2). The first two conjectures stated the universality of the
classes of semimeander and meander diagrams respectively. The third con-
jecture stated that each two-bridge knot has a semimeander diagram which

1And possibly taking a mirror image.
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is the minimum diagram of this knot (in terms of the number of crossings,
see section 2 for details).

In this paper, we present proofs of generalized versions of the first and
the second conjectures (in a non-generalized form they are derived from not
widely known results of several papers) and we also prove the third conjec-
ture, which remained open until recently. In addition, using the universality
property of semi-meander diagrams, the author defines a family of new knot
invariants (k-arc crossing numbers) and investigates their connection with
the classical crossing number.

The main results of the paper are Theorems 1–6 published in papers [BM17,
B18, BM20, BK+21].

Publications containing the main results of

the thesis

[BM17] Belousov Yury, Malyutin Andrei. Simple arcs in plane curves and
knot diagrams // Trudy Instituta Matematiki i Mekhaniki UrO
RAN. — 2017. — Vol. 23, no. 4. — P. 63–76.

[B18] Belousov Yury. The semimeander crossing number of knots and
related invariants // Zapiski Nauchnykh Seminarov POMI. —
2018. — Vol. 476. — P. 20–33.

[BM20] Belousov Yury, Malyutin Andrei. Meander diagrams of knots and
spatial graphs: Proofs of generalized Jablan–Radović conjectures
// Topology and its Applications. — 2020. — Vol. 274. — P.
107–122.

[BK+21] Lernaean knots and band surgery / Belousov Yu, Karev M, Ma-
lyutin A, Miller A, and Fominykh E // St. Petersburg Mathemat-
ical Journal. — 2022. — Vol. 33, no. 1. — P. 23–46.
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1 Definitions

Let us first introduce the necessary definitions.

Definitions (plane curves). By a closed plane curve we mean a smooth
immersion (and its image) of a circle S1 into the plane R2 (or the sphere S2).
By an open plane curve we mean a smooth immersion (and its image) of a
closed interval into the plane R2 (or the sphere S2). By an arc in the curve
we mean a restriction of the immersion (and its image) to some interval. A
curve is said to be simple if it is embedding.
It is assumed throughout that all curves are in general position, i. e. there
are only finitely many self-intersections and these are transverse double
points. For the case of open curves we also assume that no endpoints of the
curve are double points.

Let us recall some basic definitions from knot theory. A more complete
system of definitions can be found in [2, 3, 4].

Definitions (knots, links and tangles). A knot is an embedding (and its
image) of a circle S1 into Euclidean 3-space R3 (or the 3-sphere S3). We con-
sider knots up to autodiffeomorphism (not necessarily orientation-preserving)
of the ambient space. A knot K ⊂ S3 is said to be trivial it bounds a disk
in the ambient space.
By a tangle we mean a pair (B3, T ), where B3 is a 3-disk, and T is compact
proper one-dimentional submanifold (with or without boundary) of B3. By
a link we mean a tangle (B3, T ) where T is a manifold without boundary. A
component I ⊂ T of a tangle (B3, T ) is said to be unknotted if there exists
a proper embedding F of a 2-disk B2 into B3 such that I ⊂ F (B2) (F (B2)
can intersect T \ I).
Definitions (diagrams). Let K be a knot. The projection of K onto the
plane is said to be regular if its image is a plane curve in general position.
The diagram of K is its regular projections with additional information
about under-/over-crossings in its double points (double poits are called
crossings). The diagram of K is said to be minimal if there are no diagrams
of K with less number of crossings. The crossing number of the knot K
(designation is cr(K)) is the number of crossings in its minimal diagram.
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Definitions (spatial graphs). By a graph we mean a finite 1-dimensional
CW complex: 0-cells are its vertices and 1-cells are edges. A spatial graph is
a subset of R3 that is (i) ambient isotopic to the union of a finite number of
straight line segments and (ii) endowed with the structure of a graph. Two
spatial graphs are said to be equivalent if they are related by an ambient
isotopy preserving the graph structure. A loop in a (spatial) graph is an
edge whose closure is a circle. A knotted loop in a spatial graph is an edge
whose closure is a non-trivial knot.
We define diagrams of spatial graph as a natural generalization of diagrams
of knots. A diagram of a spatial graph G is the plane image of a regular
projection of a spatial graph G′ equivalent to G with additional information
of under- and over-crossings in all double points and with a set of marked
points that is the image of the set of vertices of G′. The marked points in
a spatial graph diagram are called the vertices of the diagram. The images
of the graph’s edges will be called the principal arcs (or principal curves)
of the diagram. A principal arc is said to be exceptional if it represents an
edge that is a knotted loop.

2 Jablan–Radović conjectures and its gener-

alizations

Let us now move to the main subject of this paper: the Jablan–Radović
conjectures (proposed in [1]) and their generalizations. We need a couple of
additional definitions.

Definition 1. We say that a knot diagram D is semimeander if it is com-
posed of two smooth simple arcs.

Definition 2. We say that a knot diagram D is meander if it is composed
of two smooth simple arcs whose common endpoints lie on the boundary of
the convex hull of the diagram.

Now let us generalize these definitions to the case of spatial graphs.
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Definition 3. We say that a diagram D of a spatial graph G is semi-
meander if all exceptional principal arcs of D are composed of two simple
subarcs, while all other principle arcs are simple.

Definition 4. We say that a semimeander diagram D is meander if (i) all
of the vertices of D lie on the boundary of the convex hull of D and (ii)
each exceptional principal arc of D is cut into two simple subarcs by a point
lying on the boundary of the convex hull of D.

Conjecture 1 ([1]). Each knot has a semimeander diagram.

Conjecture 2 ([1]). Each knot has a meander diagram.

Before formulating the third conjecture, let us recall the definitions.

Definitions. A simple arc of a knot diagram is called a bridge if it has no
under-crossings. A 2-bridge knot is a knot that has a diagram with two
bridges containing all crossings.

Conjecture 3 ([1]). Each 2-bridge knot has a minimal diagram that is
semi-meander.

Statements implying the truth of Conjecture 1 were independently proved
in the papers [5, 6, 7, 8, 9]. The same for Conjecture 2 — in the works [10, 9].
Conjecture 3 remained open until recently.

Conjectures 1 and 2 have a natural generalization to the case of spatial
graphs. In the paper [11] of A.V.Maluytin and the author the appropriate
generalizations and Conjecture 3 were proved.

Theorem 1 ([11]). Each spatial graph has a meander diagram.

Theorem 2 ([11]). Each 2-bridge knot has a minimal diagram that is semi-
meander.
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3 k-arc crossing number

The results of the previous section obviously implies that each knot possesses
a diagram composed of k smooth simple arcs, where k is any integer greater
than one. There arises a natural question: for a fixed knot K, how much
does a diagram ofK composed of k smooth simple arcs differ from a minimal
diagram of K? We introduce the following definition.

Definition 5. Let K be a knot. Then the minimum number of crossings
among all diagrams ofK composed of at most k smooth simple arcs is called
the k-arc crossing number of K. (The designation is crk(K).) Furthermore,
the 2-arc crossing number is also called thesemimeander crossing number.

In the author’s paper [12] the relation between the k-arc crossing number
and the classical crossing number is investigated. In particular, the following
theorems have been proved:

Theorem 3 ([12]). For each knot K, the following inequality holds:

cr2(K) ⩽ 4
√
6
cr(K)

.

Theorem 4 ([12]). For each knot K and for any integer k ⩾ 2, the following
inequality holds:

crk(K) ⩽ crk+1(K) +
2(crk+1(K))2

(k + 1)2
.

Remark. It is obvious that if K is a fixed knot, then the numbers crk(K)
form a nondecreasing sequence. Using the designation

p∗(K) = min{k | crk(K) = cr(K)},

we obtain the following chain of inequalities:

cr2(K) ⩾ cr3(K) ⩾ · · · ⩾ crp∗(K)−1(K) >

> crp∗(K)(K) = crp∗(K)+1(K) = . . .︸ ︷︷ ︸
=cr(K)

In this context, it is convenient to interpret cr(K) as cr∞(K).
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Figure 1: Examples of knots K with p∗(K) = cr(K)
3

.

Remark. It is clear, that for each nontrivial knot K the following inequality
holds: p∗(K) ⩽ 2 cr(K). We also note that the upper estimate for p∗(K)
cannot grow slower than linear function of cr(K). This is proved by the
examples shown in Fig. 1. The diagrams presented there (and similar ones)
are unique (up to isotopy) minimal diagrams of the corresponding knots (by
the third Tait conjecture, see [13, 14]). However, none of these diagrams

can be split int less than cr(K)
3

smooth simple arcs.

Remark. Using Theorem 4, we can sharpen the estimate for the semimean-
der crossing numbers for certain classes of knots. Namely, if we consider
knots K with p∗(K) ⩽ n, where n is a fixed number, then cr2(K) can
be estimated by a polynomial of degree at most 2n−2 in cr(K). However,
this does not allow us to sharpen the estimate of the semimeander crossing
number for all knots. (See the previous remark.)

To prove Theorems 3 and 4, we used the following result proved by
A.V.Malyutin and the author in the paper [15]:

Theorem 5 ([15]). For any knot K with cr(K) ⩾ 10 there is a minimal
diagram with a simple arc passing through 8 crossings.
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4 Band surgeries

The author had used a technique involving meander diagrams of knots to
prove a theorem about band surgery operations. Let us recall the defenition
of a band surgery.

Definition 6 (band surgery). Let L be a link in R3, let I denote the segment
[0, 1], and let f : I × I → R3 be an embedding such that

f(I × I) ∩ L = f(I × ∂I).

Then we say that the link

M = (L \ f(I × ∂I)) ∪ f(∂I × I)

is obtained from L by the band surgery along the band f(I × I). (See
Figure 2.)

L L ∪ f(I × I) M

Figure 2: Band surgery.

Theorem 6 ([16]). If K is a nontrivial knot, then there exists a Brunnian
two-component link L that is obtained from K by a single band surgery, and
for L the following inequality holds

cr(L) ⩽ 4
4
√
6
cr(K)

+ 2.
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