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Introduction

The thesis covers several topics in geometry and combinatorics concentrated
around the idea of counting geometric objects with presecribed singularities. The
most typical of them is the problem, going back to A.Hurwitz [1], of counting
equivalence classes of meromorphic functions having critical points of prescribed
types and defined on a curve of a given genus. Combinatorial machinery involved
in studying this question in many cases involves numerous extensions of another
classical result, the matrix-tree theorem by G. Kirchhoff [2].

The main results of the thesis fall into three categories:

1. (joint with R. Fesler) Theory of real Hurwitz numbers largely parallel to the
classical (“complex”) theory. Several models are developped and compared;
explicit formulas for the numbers are provided and the generating function
thereof is shown to satisfy a PDF similar to the classical cut-and-join.

2. (some of the results joint with several authors including V.Kulishov, B. Sha-
piro, D. Zvonkine, A. Ploskonosov and A.Trofimova) Generalizations of the
matrix-tree theorem. Special elements of group algebra of a reflection group
are used instead of Laplace matrices, and determinants are replaced by a
number of functions including their higher-degree analogs.

3. (joint with several authors including B. Shapiro and S. Lvovski) Geometric
and combinatorial problems related to the Hurwitz problem. These includes
counting functions with presrcibed singularities in special algegraic families
(e.g. Severi varieties), description of maps of algebraic surfaces ramified
over a given curve, and some more.

This is a brief summary of the research done; see the introductory part of the
thesis for more details.
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1. Real Hurwitz numbers

Let m be an integer, and λ = (λ1 ≥ · · · ≥ λs), a partition. Classical (one-part)
Hurwtitz numbers hm,λ dating back to [1] are defined as numbers of equivalence
classes of meromorphic functions on a compact complex curve having m simple
critical values and one more critical value with the profile λ (i.e. its preimage consists
of a point of multiplicity λ1, a point of multiplicity λ2, etc.) The monodromy
construction (see e.g. [3] and the references therein) proves that n!hm,λ (where
n = |λ| ) is equal to the number of sequences σ1, . . . , σm of transpositions in the
group Sn such that their product has the cyclic structure λ. It was proved in [4]
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and later in [5] that n!hm,λ is equal to the number of ribbon decompositions — cell
complexes with special properties on the source curve.

In this section we extend the above notions to the case of real curves without real
points, that is, complex curves with fixed-point-free anti-holomorphic involution.
Here we consider real meromorphic functions with real critical values, sequences of
transpositions of the length 2m enjoying some sort of symmetry, and involution-
invariant ribbon decompositions.

Generating function of the classical Hurwitz numbers

H(β, p) =
∑

m,λ

hm,λ

βm

m! |λ| !
pλ1

pλ2
. . .

satisfies (see e.g. [3]) a parabolic PDE called cut-and-join equation. The corre-
sponding generating function for real Hurwitz numbers is proved to satisfy a simi-
lar equation. (Both equations are members of the Laplace–Beltrami family, see [6],
corresponding to the parameters α = 1 and α = 2, respectively.)

2. Generalization of the matrix-tree theorem

The Laplace matrix is a matrix L with nondiagonal entries wij (1 ≤ i 6= j ≤ n)
and diagonal entries −

∑
j 6=i wij (1 ≤ i ≤ n). The classical matrix-tree theorem

discovered by G.Kirchhoff in 1847 expresses the principal minor of L as a sum of
monomials of wij indexed by directed trees with n vertices and a single source. The
theorem was extended later, including a formula for the arbitrary minor; see [7] for
details.

We generalize the theorem in several directions. First, we prove a three-parameter
family of identities between formal linear combination of graphs where the co-
efficients are directed versions of the Tutte polynomials defined by J.Awan and
O.Bernardi [17]. Specialization of parameters in them yields analogs of the matrix-
tree theorems where the determinants (minors) are replaced with specially chosen
polynomials of arbitrary degree of matrix elements; we call these polynomials higher
minors. Second, in the symmetrix case (wij = wji) the Laplace matrix is the matrix

of the element W
def

=
∑

1≤i6=j≤n wij(1− (ij)) of the group algebra of the symmetric
group Sn acting in its n-dimensional permutation representation. We prove that
one can replace Sn with any reflection group, and W , with any element of a Lie
subalgebra of the group algebra, called the algebra of Lie elements. The matri-
ces obtained exhibit nice combinatorial properties, and we prove analogs of the
matrix-tree theorem for them.

Finally, we prove a topological result counting, for an arbitrary connected graph,
the number of its embeddings into the surface of minimal genus. This requires a
refinement of the generating function for Hurwitz number; the formula obtained
has the matrix-tree theorem as one of its ingredients.

3. Miscellaneous

The thesis contains some results not related directly to the Hurwitz problem
but similar in formulation and/or using similar techniques. One of them is the
matrix-subgraph theorem involving, instead of the summation over the set of span-
ning trees, the summation over the set of spanning subgraphs with a given 2-core.



4

Such sums allow to compute analogs of minors of the matrix, called f -minors; gen-
erating functions of various classes of subgraphs (like subgraphs with zero Euler
characteristics) are conveniently expressed via them.

The classical Hurwitz problem counts functions with prescribed ramification
among all meromorphic functions on curves of a given genus. It is possible to
consider the same counting problem for functions from another family, say, for pro-
jections of plane curves. For such families we obtain interesting partial result in case
where parameters of the problem (genus of the curve, its degree and degeneration
parameter) satisfy a specific inequality.

Also we consider one problem in a higher dimension: to find conditions when a
given curve is the ramification divisor for a map between algebraic surfaces. Here
our results generalize classical theorems by V. Kulikov [8].

4. Structure of the thesis

The thesis consists of an introduction, a list of references, and of the following
articles:

Numbers in brackets refer to the general bibliography at the end of this summary.

1. [16] Yu. Burman. Triangulation of surfaces with boundary and the ho-
motopy principle for functions without critical points // Annals of Global
Analysis and Geometry, Vol. 17 (1999), No. 3, pp. 221–238.

2. [12] Yu. Burman, B. Shapiro, Around matrix-tree theorem // Mathematical
Research Letters, Vol. 13 (2003), No. 5. p. 7611–774.

3. [15] A. Berenstein, Yu. Burman, Quasiharmonic polynomials for Coxeter
groups and representations of Cherednik algebras// Transactions of the
American Mathematical Society, Vol. 362 (2010). No. 1, pp. 229–260.

4. [4] Yu. Burman, D. Zvonkine. Cycle factorizations and 1-faced graph em-
beddings // European Journal of Combinatorics, Vol. 31 (2010), No. 1,
pp. 129–144.

5. [9] Yu. Burman, A. Ploskonosov, A. Trofimova, Matrix-tree theorems and
discrete path integration // Linear Algebra and its Applications, Vol. 466
(2015), pp. 64–82.

6. [13] Yu. Burman, S. Lvovski, On projections of smooth and nodal plane
curves // Moscow Mathematical Journal, Vol. 15 (2015), No. 1, pp. 31–48.

7. [11] Yu. Burman, Higher matrix-tree theorems and Bernardi polynomial //
Journal of Algebraic Combinatorics, Vol. 50 (2019), No. 4, pp. 427–446.

8. [14] Yu. Burman. B. Shapiro, On Hurwitz–Severi numbers // Annali della
Scuola Normale Superiore di Pisa, Classe di Scienze, Vol. XIX (2019),
No. 1, pp. 155–167.

9. [18] Yu. Burman, R. Froeberg, B. Shapiro, Algebraic relations between
harmonic and anti-harmonic moments of plane polygons // International
Mathematics Research Notices. Vol. 14 (2021), pp. 11140–11168.

10. [10] Yu. Burman, V. Kulishov, Lie elements and the Matrix-tree theorem
// Moscow Mathematical Journal, Vol. 23 (2023), No. 1, pp. 47–58.
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5. List of the main results of the thesis

1. In [5] introduce a notion of a real (twisted) Hurwitz number h∼
m,λ (where m is

an integer and λ, a partition of n = |λ| ) and prove that three sets Dm,λ, Sm,λ and
#Hm,λ have the cardinality n!hm,λ. Here

• Dm,λ is the set of equivalence classes of real meromorphic functions on a
real curve without real points having m real critical values with the profile
221n−4 and one critical value ∞ of the profile 12λ122λ2 . . . .

• Sm,λ is the set of sequences (σ1, . . . , σm) of transpositions σl ∈ S2n such
that the cyclic structure of the permutation xτx−1τ ∈ S2n where x =
σ1 . . . σm and τ = (1, n+1) . . . (n, 2n), contains cycles c1, c

′
1, c2, c

′
2, . . . where

for all k the length of ck and c′k is λk and c′k = τckτ .
• #Hm,λ is the ribbon decompositions of a real surface with boundary, having
m ribbons and a profile λ; see the thesis for exact definition.

Also we prove that the generating function

H∼(β, p)
def

=
∑

m≥0

∑

λ

h∼
m,λ

m! |λ| !
pλ1

pλ2
. . . pλs

βm

satisfies the partial differential equation ∂H∼

∂β
= CJ∼(H∼) where CJ∼ (“a twisted

cut-and-join operator”) is the Laplace–Beltrami operator with the parameter α = 2
(the classical cut-and-join is the same with α = 1).

2. Let V be finite-dimensional vector space; e1, . . . , eN ∈ V and α1, . . . , αN ∈ V ∗;
denote by M [e, α] : V → V the rank 1 operator M [e, α](v) = 〈α, v〉e. In [9] we
consider a linear operator R : V → V given by R = P (M [e1, α1], . . . ,M [eN , αN ])
where

P (x1, . . . , xN ) =

m∑

s=1

∑

1≤i1,...,is≤N

ci1,...,isxi1 . . . xis

is a noncommutative polynomial of some degree m. We obtain an explicit formula
for the characteristic polynomial of R via ei, αh and ci1...is . The formula looks
like “discrete path integral” and implies Cauchy–Binet formula as well as many
versions of the matrix-tree theorem and G.Kenyon’s formula for the determinant of
the graph Laplacian.

3. In [11] we prove a three-parametric family of identities

∆Bn,k(q, y, z) = B̂n,k(q, y − 1, z − 1).

where Bn,k(q, y, z) and B̂n,k(q, y, z) are formal linear combinations of directed graphs
with n vertices and k edges. The coefficient at a graph G in Bn,k is BG(q, y, z),
a directed analog of its Tutte polynomial, defined earlier in [17]; the coefficient in

B̂n,k is the degree k part of this polynomial. ∆ is a special linear operator (“an
abstract Laplacian”). Specialization of parameters gives several results in the flavor
of the matrix-tree theorem, in particular the following:

∆detIn,k =
(−1)k

k!

∑

G∈AI
n,k

G.

where detIn,k is the formal alternating sum of totally cyclic graphs having vertices

from the set I = {i1, . . . , is} ⊂ {1, . . . , n}, and only them, isolated, and A
I
n,k is
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the set of acyclic graphs having the vertices from I, and only them, as sinks. The
left-hand side is actually a higher-degree analog of the determinant (a minor).

4. In [14] we study the following problem: given a point p on the plane, how many
are there nodal plane curves of degree d and genus g having a given set of ℓ tangents
at p, given set of lines passing through p and tangent to the curve elsewhere and,
dimension permitting, nodes at given lines passing through p. The answer is

(
d

2

)d+ℓ−g−2

dℓhg,1d/d! if d+ ℓ ≥ g + 2,

dd+2ℓ−g−2

(
2g − d− ℓ− 1

g − 3

)
hg,1d/d! if d+ ℓ < g + 2 ≤ d+ 2ℓ

where hg,1d is the classical Hurwitz number. The remaining case g + 2 > d+ 2ℓ is
still open.
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