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GENERAL CHARACTERISTICS OF WORK 

Neural networks are currently used in classification, detection, semantic segmentation, 

and natural language processing. However, problems of limited accuracy and the balance 

between inference time and accuracy of algorithms significantly limit the scope of their 

application. Modern approaches of generalization of neural networks to hypercomplex 

algebras are aimed at solving these problems [1], [2]. 

The relevance of the topic is due to the increasing popularity of the direction of 

generalization of neural networks on hypercomplex algebras. On the one hand, this is due 

to the fact that raw data are often presented in a complex form, on the other hand, a 

number of new studies demonstrate the superiority of the use of complex neural networks, 

compared to real ones, including greater accuracy [3] and better convergence [4]. 

Complex neural networks are increasingly being used in various applications and 

research tasks [5]. Such tasks as radio signal turnover, image processing and computer 

vision, processing and analysis of audio signals, Signal processing from radars and 

sanaras, cryptography, time series prediction, associative memory, wind prediction, 

robotics, traffic control, spam detection, predictions in agroculture and others. 

The author B. Widrow was one of the first to propose a complex LMS algorithm and 

showed its efficiency in comparison with real ones [6]. In the work of A. Hirose on radio 

signal processing [7] compares the generalization characteristics of complex-valued and 

real-valued neural networks in terms of coherence of processed signals. The problem of 

function approximation (temporal signal interpolation) is studied. Simulations and real 

experiments show that complex-valued neural networks with the amplitude-phase 

activation function show a smaller generalization error, than really significant networks, 
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such as bivariate real-valued neural networks. Also, the following authors have also made 

significant contributions to the application of the ideas of complex neural networks in the 

processing of radio signals: B. Widrow, T. Kim, S. Scardapane, Y. Quan, M. Catelani, A. 

Marseet, I. Cha, S. Chen, D. Jianping, W. Gong, A. Uncini, M. Scarpiniti, R. Huang, M. 

Solazzi, N. Benvenuto, A. B. Suksmono, A. Hirose, Y. Chistyakov, A. Minin, J. Zhang, 

S. Liu, M. Peker, S. Hu, Y. Suzuki, T. Ding [6]-[34]. 

A significant contribution to the development of complex networks for computer 

vision was made by the authors: M. Arjovsky, C.-A. Popa, M. Matlacz, J. N. Eisenberg, 

P. Virtue, E. Eisenberg, R. S. Zemel, C. Trabelsi, S. Amilia, M. Miyauchi, A. Hirose, Y. 

Liu, R. F. Olanrewaju, R. Hata, Y. Kominami, C.-A. Popa, L. Li, [1], [35]-[56]. Complex 

deep neural networks had been limited for some time in application to computer vision 

problems due to the lack of necessary building blocks. A landmark work by C. Trabelsi 

[45] provides key components for complex deep neural networks and demonstrates their 

application to convolutional neural networks and LSTM. C. Trabelsi proposed complex 

convolutions and several variants of algorithms for complex packet normalization, a 

strategy for initializing weights for complex neural networks, and also showed advantages 

over real analogs in computer vision problems. In the work of the author S. Gu [57] 

proposes a complex analogue of VGG, a complex analogue of a fully-connected layer, 

and shows the advantage of such an architecture for recognition problems, achieving 

better quality in a similar class of architectures for the time. 

Many researchers expanded the use of complex neural networks to other tasks: 

processing and analysis of audio signals - C. Trabelsi, D. Hayakawa, M. Kataoka, M. 

Kinouchi, A. Y. H. Al-Nuaimi, Y.-S. Lee, C. S. Tay [45], [58-63], processing signals 
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from radars and sanaras - J. Gao, M. Wilmanski, I. N. Aisenberg, K. Oyama, X. Yao [64]-

[69], cryptography - T. Dong [70], time series prediction – I. N. Aisenberg [66], 

associative memory - S. Jankowski, T. Miyajima [71-72], wind prediction - H. H. Cevik, 

T. Kitajima, D. P. Mandic [73-75], robotics - Y. Maeda [76], traffic flow control - I. 

Nishikawa [77-78], spam detection - J. Hu [79], predictions in agriculture – I. N. 

Aisenberg [37]. 

These stunning results inspired a further generalization of neural networks to other 

hypercomplex numbers, in particular to dual numbers. Dual numbers are already have 

application in screw theory (F. M. Dimentberg) [80], also dual numbers allow automatic 

derivatives (A. Güneş Baydin, R. Kiran) [81-82]. At the same time, there is only one basic 

attempt to apply dual numbers in neural networks (Y. Okawa) [83], which used the 

properties of dual numbers for input data. This area deserves further study. 

The aim of the dissertation is to generalize neural networks to the algebra of dual 

numbers in order to achieve a better ratio of quality-speed calculations. 

To achieve this goal, the following tasks were solved: 

1) To develop a mathematical basis for neural networks on hypercomplex algebras. 

2) To develop a methodology for constructing neural networks on hypercomplex 

algebras. 

3) Conducting computational experiments to demonstrate the benefits of the new 

approach. 

The object of the study is neural networks. 

The subject of research is mathematical and algorithmic support of the generalization 

of neural networks to hypercomplex algebra. 
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The scientific novelty of the work consists in the following: 

1) The formula of hypercomplex norm and the algorithm of batch normalization based 

on this norm are defined. A derivative formula for functions of second-order 

hypercomplex variables is also defined. 

2) Fifteen neural network operators on hypercomplex algebra are defined, including 

basic (convolution, linear, group batch norm, pooling, linear rectification block), dual 

holomorphic operators are defined. Computational experiments on construction of 

hypercomplex neural networks were carried out. A procedure for transferring 

knowledge from real to hypercomplex networks has been developed. 

3) The advantages (performance and accuracy) of the developed approach to solving a 

number of problems (computer vision, detection of gravitational waves and music 

transcription) are shown, due to the identification of dual-type features that have not 

been considered previously. 

Practical value. The possibility of applying the developed approach to solving 

practical problems is shown (basic realizations of hypercomplex networks, classical 

problems of computer vision, detection of gravitational waves, music transcription task, 

as well as improvements with application of dual holomorphic neural networks). The 

software implementation in the MindSpore open access product was completed. 

Implementation of the results of work. The results of the study were introduced into 

the educational process at the Department of Applied Mathematics and Informatics. 

Hypercomplex operators and networks added to Open Access Product MindSpore. 

Methods of research. Modern methods of machine learning, deep neural network 

theory, hypercomplex number algebra are used. 
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Key results to be presented: 

1) A hypercomplex norm formula and a batch normalization algorithm based on this 

norm. Derivative formula for functions of second-order hypercomplex algebras. 

2) Development of neural network architecture for hypercomplex algebras. Development 

and software implementation of neural network operators on hypercomplex algebras. 

3) Results for assessing the effectiveness of various strategies for transferring knowledge 

from real neural networks to hypercomplex ones. 

4) Efficiency (in terms of speed and accuracy) of hypercomplex neural networks 

application in tasks of classical computer vision, detection of gravitational waves and 

transcription of music and others. 

Results reliability. The reliability of the results is ensured by the correct development 

of the mathematical apparatus and the conduct of experimental researches. 

Work approbation. The main provisions and results of the dissertation were reported 

and discussed at the following scientific and technical conferences and seminars: 

1) IEEE International Conference on Advanced Video and Signal Based Surveillance 

(AVSS, Madrid, Spain, November’ 29 – December’ 2 2022), talk «Dual-valued 

Neural Networks». 

2) IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 

Rhodes Island, Greece, June’ 4 – June’ 10 2023), talk "Learning Properties of 

Holomorphic Neural Networks of Dual Variables". 

3) Scientific seminar at the Applied AI Center, Skolkovo Institute of Science and 

Technology (November 12, 2023), talk “Generalization of neural networks to the 

algebra of dual numbers.” 
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4) Extended scientific seminar of the laboratory of Algorithms and Technologies for 

Networks Analysis of the National Research University Higher School of Economics 

(December 20, 2023), talk “Generalization of neural networks on the dual numbers 

algebra.” 

Publications. On the topic of the dissertation were published 3 papers.  

Personal contribution: the author developed the key idea of generalizing neural 

networks to the algebra of dual numbers, mathematical apparatus and algorithmic part, 

carried out experiments and made conclusions. 

Publications of higher level: 

1） Pavlov, S.; Kozlov, D.; Bakulin, M.; Zuev, A.; Latyshev, A.; Beliaev, A. 

Generalization of Neural Networks on Second-Order Hypercomplex Numbers. 

Mathematics 2023, 11, 3973. https://doi.org/10.3390/math11183973. Scopus Q1 

journal, Q2 in base scimagojr.com. Personal contribution: the author developed the 

key idea of generalizing neural networks to the algebra of dual numbers, developed 

basic concepts and approaches, the mathematical apparatus (including the dual 

derivative and dual gradient) and the algorithmic part (including dual architectures 

and neural network operators), conducted training experiments, made 

optimizations and conclusions. 

Standard level publications: 

2） Dmitry Kozlov; Stanislav Pavlov; Alexander Zuev; Mikhail Bakulin; Mariya 

Krylova, Igor Kharchikov. Dual-valued Neural Networks. 2022 18th IEEE 

International Conference on Advanced Video and Signal Based Surveillance 

(AVSS, Madrid, Spain). DOI: 10.1109/AVSS56176.2022.9959227. Core B, IEEE 

https://doi.org/10.3390/math11183973
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Xplore, WoS. Personal contribution: the author developed the key idea of 

generalizing neural networks to the algebra of dual numbers, the mathematical 

apparatus (including the dual norm) and the algorithmic part (including the dual 

operators of neural networks), conducted training experiments and made 

conclusions. 

3） Dmitry Kozlov; Mikhail Bakulin; Stanislav Pavlov; Aleksandr Zuev; Mariya 

Krylova, Igor Kharchikov. Learning Properties of Holomorphic Neural Networks 

of Dual Variables. ICASSP 2023-2023 IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP, Rhodes Island, Greece). DOI: 

10.1109/ICASSP49357.2023.10095457. Core B, IEEE Xplore, WoS, and 13th 

conference by Impact Factor https://research.com/conference-rankings/computer-

science. Personal contribution: the author developed the key idea of generalizing 

neural networks to the algebra of dual numbers, the concept of holomorphic dual 

networks, the mathematical apparatus (including the concept of dual holomorphic 

functions) and the algorithmic part (including dual holomorphic operators of neural 

networks), conducted training experiments, made optimizations and conclusions. 

Structure and scope of work. The dissertation consists of an introduction, two 

chapters, a conclusion, a list of references and appendices. Totally 97 pages of text 

containing 14 figures, 10 tables and 58 formulas. References contain 118 sources. 

MAIN CONTENT OF WORK 

The introduction substantiates the relevance of the dissertation work, formulates the 

purpose and objectives of the research, explains the scientific novelty and practical value 

of the obtained results, presents the submitted for the protection of the position, and gives 

https://research.com/conference-rankings/computer-science
https://research.com/conference-rankings/computer-science
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the general characteristics of the work. 

The first chapter describes the theory of dual numbers in neural networks: the 

problem is set, the generalization of neural networks to all hypercomplex numbers of the 

second order, the representation of data in hypercomplex algebra, hypercomplex 

operations, norm of hypercomplex numbers, hypercomplex batch normalization, and 

backpropagation of the loss function gradient, hypercomplex converter. 

In this study of dual operators and neural networks, author founds that many aspects 

of this problem are very similar (in some cases coincide) to complex and double numbers. 

All these algebras (dual 𝔻, complex ℂ, and double 𝕊 or complex-split) are second-

order hypercomplex algebras. 

By definition, the set of dual numbers is a commutative ring < 𝔻,+,×>，which is a 

superset of the real number field < ℝ,+,×>，and has a special element ε so that each 

element 𝔻 can be represented as a + εb for a, b ∈ ℝ, and ε2 = 0, ε ≠ 0. Similarly, a 

set of double numbers < 𝕊,+,×> is a superset < ℝ,+,×>  with a special element j  

so that each element of 𝕊 can be represented as a + jb for a, b ∈ ℝ, and j2 = 1 (but 

j ∉ ℝ). Dual-, double-, and complex rings are isomorphic of a special Clifford algebra 

including one, e0, e1, and e0e1, where e0
2 = −1, e1

2 = σ ∈ {0,1, −1} and −e0e1 =

e1e0 = τ, which is equivalent to ε, j or i, respectively. In each case τ2 = σ, according 

to the definition of the corresponding numbers ring. This mathematical unity allows us to 

generalize all hypercomplex algebras of the second order and to deal with them in the 

same way. 

The basic mathematical operations for these numbers are: 

(x1 + τy1) ± (x2 + τy2) = (x1 ± x2) + τ(y1 ± y2)  
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(x1 + τy1) ⋅ (x2 + τy2) = (x1x2 + σ y1y2) + τ(x1y2 + y1x2) 

x1 + τy1
x2 + τy2

=
x1x2 − σy1y2
x2
2 − σy2

2 + τ
x2y1 − x1y2
x2
2 − σy2

2  

(x + τy )∗  =  x − τy 

Author links the imaginary part of the original input to the dual component 

x +  iy ⇒  x +  εy or x +  jy  

To explain convolution in hypercomplex algebra, author uses a matrix representation 

of second-order hypercomplex numbers that uses real numbers. It is known that the 

algebras of complex, dual, and double numbers u=x+τy are isomorphic to the algebras of 

the second-order real matrices of the form (
x y
σy x) . Thus, the convolution of the 

hypercomplex filter W = Wx + τWy and the hypercomplex value input u=x+τy can be 

expressed as follows: 

W ∗ u = (
Wx Wy

σWy Wx
) ∗ (

x y
σy x)

= (
Wx ∗ x + σWy ∗ y Wx ∗ y +Wy ∗ x

σ(Wx ∗ y +Wy ∗ x) Wx ∗ x + σWy ∗ y
). 

 

Linear layer. To generalize the linear layers for two-dimensional algebras, author uses 

the matrix representation of second-order hypercomplex numbers. A linear layer with 

hypercomplex inputs and weights is equivalent to the superposition of real linear layers: 

ℍL(W, B, u) = ℝL(Wx, Bx, ux) + τ
2ℝL(Wy, 0, uy)

+ τ (ℝL(Wx, 0, uy) + ℝL(Wy, By , ux)), 
 

where ℝL(w,b, x) denotes a linear layer with a real value, with w, b and x for weights, 

offsets and input data respectively. 

The average pool operation involves calculating the arithmetic average for each block 

of elements. This means collapsing each n×n element block by its average value. This is 
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equivalent to convolution when the pitch is equal to the size of the kernel, where the 

weight of the kernel is equal to the real numbers 
1

n2
. Since the kernel W = Wx + τWy in 

this case is completely real, Wy = 0, and convolution formula can be simplified: 

W ∗ u = W(x + τy) = Wx ∗ (x + τy) = Wx ∗ x + τWx ∗ y. 

Based on this expression, the average pooling is equivalent to two real average 

pooling operations: each of them is applied independently to each component of the input 

data u = x + τy: 

ℍAvgPool(u) = ℝAvgPool(x) + τℝAvgPool(y)  

Activation functions are used to introduce nonlinearity into neural networks. There 

are many activation functions based on real numbers, and a greater variety of them is 

based on hypercomplex numbers. Among real-valued activations, there is a family of 

ReLU-type functions that help solve the problem of damping gradient. Functions of this 

type are also used in complex algebra. For example, we already know the application of 

ReLU to real and imaginary parts separately [45]. In this study author extends this 

definition and apply it to other algebras: 

ℍRelu(u) = ℝRelu(x) + τℝRelu(y).  

Norm 

Traditionally, in mathematical and physical literature, the modulus of a complex 

number is defined as 

ℂ|z|  = √zz∗ = √(x + iy)(x − iy) = √x2 + y2.  

However, generalization of this method to other types of hypercomplex numbers does 

not work very well: 

ℍ|z|  = √uu∗ = √(x + τy)(x − τy) = {
|x|, u ∈ 𝔻

√x2 − y2, u ∈ 𝕊
.  
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This result is hardly applicable to objective. The dual norm does not depend on the 

dual part. In the case of double numbers, the function is not defined for half of the 

elements. It is therefore necessary to develop another formula that extends the standard 

norm of complex numbers to dual and double algebras. 

To define the expression, turn to the matrix representation A = (
x y
σy x)  of the 

hypercomplex number u= x+τy. Then author connects the norm of this matrix to the norm 

of the original dual number. There are several ways to define a matrix norm. First, define 

ℝm×n as a vector space of matrices with m rows and n columns of records in a real field  

ℝ. Author uses the norm of the matrix caused by the norm of the vector ‖∙ ‖2 on ℝ2×2 

and vector of the norm ‖∙ ‖2 on ℝ2×1 and author sets dual norm: 

‖u‖2 = sup{‖At‖2
2: t ∈ ℝ2×1, ‖t‖2

2 = 1}.  

For a matrix that corresponds to the hypercomplex number u = x+τy, the norm 

expression is as follows: 

‖At‖2
2 = ((

x y
σy x) (

t1
t2
))

T

(
x y
σy x)(

t1
t2
)

= (xt1 + yt2)
2 + (xt2 + σyt1)

2 = [
t1
2 + t2

2 = 1
t1 = sinφ
t2 = cosφ

]

= x2 + y2(cos2φ + σ2 sin2 φ) + xy sin 2φ (1 + σ). 

 

  
 

 

In order to find the extremum of this function, equates the derivative to zero and solve 

for φ 

f ′(φ) = y2 sin 2φ (σ2 − 1) + 2xy cos 2φ (1 + σ) = 0  
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tan2φ = −
2x

y(1 − σ)
⟹

cos 2φ = ∓
y(1 − σ)

√4x2 + y2(1 − σ)2

sin 2φ = ±
2x

√4x2 + y2(1 − σ)2

 

In the end, author gets the maximum function: 

‖u‖2 = x2 +
y2(1 + σ2)

2
+ |y|(1 + σ)√x2 + y2 (

1 − σ

2
)
2

. 

 

From this it is easy to see that 

‖z‖ =
|y|(1 + σ)

2
+ √x2 + y2 (

1 − σ

2
)
2

. 

  

Special cases of complex, dual, double numbers (σ=-1,0,1) lead to the following 

formula for the norm of hypercomplex numbers: 

ℍ‖u‖ = ℍ‖x + τy‖ =

{
 
 

 
 √x2 + y2, u ∈ ℂ

|
y

2
| + √x2 + (

y

2
)
2

, u ∈ 𝔻

|x| + |y|, u ∈ 𝕊 

 

 

 

Hypercomplex batch normalization. 

Known formula for batch normalization [84]: 

x̂(k) =
x(k) − E[x(k)]

√V[x(k)]
,  

where the covariance matrix V[x(k)] is defined as: 

V[x(k)] = (
Cov (xr

(k)
, xr
(k)
) Cov(xr

(k)
, xi
(k)
)

Cov (xi
(k)
, xr
(k)
) Cov(xi

(k)
, xi
(k)
)
).  

Similar to the real-value approach, complex packet normalization also has an 

additional linear transformation with two parameters γ̂(k), β̂(k)  with real-valued 

parameters [45]: 
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γ̂(k) = (
γ̂rr
(k) γ̂ri

(k)

γ̂ir
(k) γ̂ii

(k)
) , β̂(k) = (

β̂r
(k)

β̂i
(k)
).  

That is, complex batch normalization: 

ℂBN[x̂(k)] = γ̂(k)x̂(k) + β̂(k).  

Author generalizes the batch normalization process for dual and double tensors. To 

achieve this, use the rule proposed above. We cannot use the same procedure as for 

complex batch normalization (from [45]) for double entry for the following reason: 

μ(k) = E[x(k)] = μr
(k) + εμd

(k),   

Г(k) = E [(x(k) − μ(k))
2
]

= E [(xr
(k) − μr

(k))
2
]

+ εE [(xr
(k) − μr

(k)) (xd
(k) − μd

(k))], 

  

C(k) = E[(x(k) − μ(k))(x(k) − μ(k))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] = E [(xr
(k) − μr

(k))
2
]. 

  

Here we see that both the covariance Г and the pseudo-covariance С do not 

independent from E [(xd
(k) − μd

(k))
2
]. This problem is analogous to the independence of 

the dual number norm from its dual part. Therefore, we must find an alternative way to 

generalize packet normalization for all types of second-order hypercomplex algebras. 

In this study, author presents a method based on the concept of norm for 

hypercomplex numbers derived above. 

First, define the mean by the traditional channel method, which is the same for all 

algebras: 

μ(k) = E[u(k)] = μx
(k) + τμy

(k).  

Then determine the dispersion specific to the type of hypercomplex algebra: 
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Var[u(k)] =
1

m − 1
∑‖ui

(k) − μ(k)‖
2

m

i=1

,  

where ‖∙ ‖ defined above. Convert the input data as: 

û(k) =
u(k) − μ(k)

√Var[u(k)] + δ
,  

where δ is a small number needed to avoid dividing by zero. The final step is 

hypercomplex channel scaling and offset: 

ℍBN[û(k)] = γ̂(k)û(k) + β̂(k),  

where γ̂(k) and β̂(k) are hypercomplex weights and bias, respectively. In the special case 

of complex numbers: 

ℂVar[z] = E[(z − μ)(z − μ)∗]

= E[(x − μx)
2] + E [(y − μy)

2
] = Γ(z). 

 

 

So divide the centered input by √ℂVar[z], which gives the covariance Γ(ẑ) = 1. 

Note that in general the pseudocovariance is not equal to zero: 

C(ẑ) = E[ẑ2] = E[(x̂ + iŷ)2] = E[x̂2 − ŷ2] + 2iE[x̂]E[ŷ]

≠ 0. 
 

Backpropagation of the loss function gradient. An important part of neural network 

training is gradient computation. The calculation of the loss function gradient relies on a 

back-propagation algorithm that uses a chain rule. 

In this study, author studies the problem of gradient propagation in the algebra of 

hypercomplex numbers. Classical definition of the derivative of a function f(u) =

f(x + τy) = v(x, y) + τw(x, y) of a hypercomplex element u = x + τy, where v and 

w are real functions: 

f ′(u) = lim
∆u→0

f(u + ∆u) − f(u)

∆u
. 
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This limit can only exist if it is defined at ∆u approaches to zero along the real axis 

∆u = x or imaginary axis ∆u = τ∆y. In both cases, it should produce the same result. 

Leveling these special cases, author obtains the generalized equivalents of the 

Cauchy-Riemann equations: 

∂v

∂x
=
∂w

∂y

∂v

∂y
= τ2

∂w

∂x
= σ

∂w

∂x
. 

 

The functions satisfying these equations are called holomorphic. In practice, this is a 

strong constraint, and most existing operators do not meet the Cauchy-Riemann criteria. 

To overcome this, use the approach invented by Wirtinger for complex numbers. It 

uses variable substitution to rewrite the function of a complex variable f(z) as 

holomorphic functions of two variables f(z, z∗). Author extends this approach to all 

second-order algebras: 

x =
u + u∗

2
y =

u − u∗

2τ
. 

  

For complex and double numbers we can easily eliminate 
1

τ
 by multiplying the 

numerator and the denominator by τ and with τ2 = σ ∈ ℝ in the denominator. 

First, author explains what should be calculated. In the case of complex networks, 

researchers usually use real xn  and the imaginary yn parts of the weights zn  as 

separate real channels, and update them using the real derivative of the loss function: 

xn+1 = xn − α
∂L

∂x

yn+1 = yn − α
∂L

∂y

→ zn+1 = zn −α(
∂L

∂x
+ i

∂L

∂y
). 

 

 

Here author generalizes these calculations for all second-order hypercomplex 

numbers, considering: 
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un+1 = un − α(
∂L

∂x
+ τ

∂L

∂y
). 

 

Author defines the expression inside the parentheses as a hypercomplex gradient and 

calculate it through the gradient of the hypercomplex operator f as: 

∂L

∂x
+ τ

∂L

∂y
=
∂L

∂f
(
∂f

∂x
+ τ

∂f

∂y
) + (

∂L

∂f
)
∗

(
∂f

∂x
− τ

∂f

∂y
)
∗

. 
 

It is worth noting that  
∂L

∂x
+ τ

∂L

∂y
 can be expressed in u and u∗: 

∂f

∂x
+ τ

∂f

∂y
=

{
 
 

 
 2

∂f

∂u∗
u ∈ ℂ

2
∂f

∂u
u ∈ 𝕊

∂f

∂u
+
∂f

∂u∗
+ ε2 (

∂f

∂u
−
∂f

∂u∗
) u ∈ 𝔻

 

Author implemented this formula for dual algebra. This approach shows the same 

result as the calculation of two real derivatives. Experiments show that the training time 

is also roughly the same. 

Conversion to hypercomplex networks. 

The challenge is to transform existing real number-based neural network architectures 

into networks that use hypercomplex values. This transformation is designed to represent 

the neural network in a more general way and achieve higher accuracy by using more 

parameters. The following steps should be taken as a starting point: 

1. Load real-valued model with pre-trained weights. The model accuracy is 

expected to be the best for the chosen architecture on a certain dataset. 

2. Convert the model into the hypercomplex one. The real part of the weights 

is initialized as the original loaded weights and the imaginary part is filled 

with zeros. This approach yields a hypercomplex model with the same 

accuracy metric as the original model. 
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3. Train the resulting model. Starting from the checkpoint that gives 

relatively high accuracy, the model uses its increased generalization ability 

(due to the addition of the imaginary channel for data) to receive higher 

results than the source model. 

Central Kernel Alignment (CKA) Metrics 

In this section author conducts a comparative analysis of features generated by real 

and hypercomplex (dual, complex) models. Main hypothesis is that hypercomplex neural 

networks extract features that are different from features generated by a real model with 

the same architecture. To test this hypothesis, author introduces several similarity metrics. 

Author uses several standard methods, such as: 

 Correlations (Kendall coefficients τ and Pearson r) between distributions for the 

classification problem obtained from different networks; 

 Analysis of vector positions for embeddings of the last layer of networks working 

in different algebras; 

 Difference between CAMs generated by neural networks for the same samples. 

These methods have been shown to be statistically unstable and difficult to interpret, 

so the Central Kernel Alignment (CKA) metric is used. It is represented as a matrix, 

each element of which denotes the Hilbert-Schmidt independence criterion (HSIC) 

for the layers of two different networks: 

HSIC(K,  L) =
1

b(b − 3)
(tr(K̃L̃) +

∑ Kij
b
i,j=1 ∑ L̃ij

b
i,j=1

(b − 1)(b − 2)

−
2

b − 2
∑ (KL̃)ij

b

i,j=1
), 
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where 
K̃ij = Kij − δijKij

L̃ij = Lij − δijLij
, b is the size of the packet, and all tensors are smoothed out b ×

c × h × w to 2D matrices b × c ∗ h ∗ w.. 

CKAi,j(X, Y)

=

1
n
∑ HSIC (Xi

(k)
Xi
(k)T

, Yj
(k)
Yj
(k)T

)n
k=1

√1
n
∑ HSIC (Xi

(k)
Xi
(k)T

, Xi
(k)
Xi
(k)T

)n
k=1

√1
n
∑ HSIC (Yj

(k)
Yj
(k)T

, Yj
(k)
Yj
(k)T

)n
k=1

. 
 

  

 Author tested this metric on real ResNet18 models trained on the CIFAR-100 

dataset from scratch for two different initial values. To do this, author calculated a metric 

for pairs of layers taken from different models. Author expected the hidden 

representations of these models to be close because they are the same model trained on 

the same data set. 

 

 Figure 6. The value of the CKA metric for ResNet18 models trained with 

different initial values. 

As expected, CKA is close to 1 for diagonal features because both models with the same 

layer number must have the same representation. The original metric CKA is defined for 

sets of real numbers, so author extends this approach to the cases of hypercomplex 
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algebras. Author tried the following methods: 

 Matrix representation of complex and dual numbers; 

 The norm of complex and dual numbers; 

 Combining double/imaginary components with real ones; 

 Compute separately real and hypercomplex parts. 

The proposed methods yielded similar results, so the latter approach was chosen as 

more demonstrative. 

 

 

 

 

 

 

 Figure 7. CKA metric values calculated separately for real and hypercomplex 

parts for a pair of ResNet18 models from different algebras. 

 

  Figure 8. Diagonal values of CKA metrics (left) between output real NS and 

real/dual/complex part of hypercomplex NS (right) some special cases. 
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Figure 8 shows that the characteristics of models based on different algebras are quite 

close. Thus, author makes a conclusion about the possibility of transfer of knowledge for 

real neural networks into hypercomplex and vice versa. Further knowledge distillation 

results also support this assumption. 

At the same time, the average CCA values for Re ℝ and Re 𝔻 is 0.555 and for 

Re ℝ and Du 𝔻  is 0.573, so dual-value neural networks have some new features 

(features) that are not represented in models with valid values. This metric also shows 

that the dual and complex values are quite close, Im ℂ and Du 𝔻 0.699. 

Knowledge Transfer (KT) from Neural Networks with Real Values 

The previous subsection shows that the hidden data representation for real and 

hypercomplex models is close. This prompted us to test the possibility of transferring 

knowledge from real-valued models to hypercomplex models. 

To do this, author used ResNet model weights with valid values, pre-trained on the 

ImageNet dataset from PyTorch, and initialized the real part of the hypercomplex model 

weights with these values. The imaginary part of the scales is zero. 

The results of the experiments are presented in Table 2. It is evident that the use of 

pre-trained scales leads to an increase in the accuracy of the models. A remarkable fact is 

that even after knowledge transfer, hypercomplex (dual and complex) models show better 

accuracy than real ones. 

Table 2. The result (accuracy, %) of training of hypercomplex ResNet18 models with 

loaded weights, on Dataset CIFAR-100, classification task 
 

Without KT, % With KT, % 
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Real 75.9 79.9 

Dual 78.3 82.1 

Complex 78.2 81.9 

Based on the results of the experiments, it is concluded that knowledge transfer 

contributes to increasing the convergence of dual models (Fig. 9) 

The second chapter presents realizations of hypercomplex networks, classical 

problems of computer vision, detection of gravitational waves, the music transcription, 

as well as dual holomorphic neural networks. 

Hypercomplex Toy Net 

Before proceeding to deep learning models, author starts with a demonstrative neural 

network designed for predicting values of noised functions of a hypercomplex argument. 

This architecture remains the same for all algebras, but for each algebra author uses own 

implementation of operators. To show the advantage of models based on hypercomplex 

operators, author compares their results with the result of a real model of the same 

architecture. The mean standard deviation is used as a loss function. Author trains these 

four models over 1000 epochs with the same number of parameters to predict the values 

of two functions: Ai(u) - Airy function of the first kind and J3(u) - Bessel function of 

the first kind of the third order. Author also adds noises with normal distribution to the 

values of the training sample (and test sample) functions. 

Table 3. Toy Net - value of loss function. 

Function Ai(u) J3(u) 
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Algebra u ∈ ℂ u ∈ 𝔻 u ∈ 𝕊 u ∈ ℂ u ∈ 𝔻 u ∈ 𝕊 

Real 0.026 0.045 0.013 0.018 0.017 0.015 

Complex 0.008 0.015 0.015 0.009 0.012 0.011 

Dual 0.017 0.009 0.017 0.013 0.009 0.012 

Double 0.023 0.050 0.010 0.017 0.018 0.010 

Table 3 shows that the smallest mean square error (RME) between the hypercomplex 

value of the function and the two-component (hypercomplex) model prediction is 

achieved by a neural network, belonging to the same type of hypercomplex numbers as 

the original function (and its argument). For example, a complex-valued function is best 

predicted by a complex-valued model, and so on. Thus, author concludes that networks 

based on hypercomplex numbers can learn the dependencies or regularities underlying 

the corresponding algebra. 

Classical Computer Vision CV Problems 

The process of data preparation needs to be clarified before CV classification can be 

tackled. To convert a real image into a hypercomplex format, let's use a more general 

method than the one already proposed (not us), where the authors convert a real image 

into a complex form using [R, G, B] ⟹ [R + iG, G + iB] , claiming, that this type of 

encoding captures channel correlations and tint changes. 

In this study, author generalizes this idea and use two types of preprocessing. The first 

one [R, G, B] ⟹ [R + τG, G + τB, B + τR], which author calls color combination (CC). 

The second variant is a linear transformation (LT) with learnable parameters that convert 
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[R, G, B] into six real channels, which are later converted into three hypercomplex 

channels. This type of preprocessing seems to be preferable because it allows model to 

determine the best color space for the task. In addition, CC is a special case of LT where 

the transformation matrix is fixed. 

Author takes the ResNet18 architecture as the basis of model, which is generalized to 

second-order hypercomplex algebras by replacing real operators with their counterparts 

in hypercomplex algebras. Author uses a stochastic gradient descent with a momentum 

of 0.9 to optimize the real sign loss functions, treating the real and the hypercomplex parts 

as separate channels with a real sign. For the transformation of hypercomplex features 

into real ones, author applies the hypercomplex norm associated with the corresponding 

algebra. The cross entropy loss between the input and the target is used as a criterion for 

these problems. The learning rate is planned according to the following rule: 0.1 for the 

first 60 epochs, 0.02 for the 61-120 epochs, 0.004 for the 121-160 epochs, 0.0008 for the 

161-200 epochs. Image classification results for CIFAR-10, CIFAR-100 and SVHN are 

shown in Table 4. 

Table 4. Accuracy (%) of models (real, dual, complex, double) for classification 

problems on CIFAR-100, CIFAR-10, SVNH, with different pre-processing with Color 

Combination (CC) and Linear Transformation (LT). 

Dataset CIFAR-100 CIFAR-10 SVHN 

Real 74.37 93.83 95.95 

Algebra 

Pre-processing 

LT CC LT CC LT CC 
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Dual 76.30 76.12 94.27 94.32 96.35 96.23 

Complex 77.12 76.65 94.56 94.45 96.35 96.04 

Double 75.52 75.76 94.23 94.05 96.30 96.20 

Table 4 shows that all models based on second-order numbers achieve higher 

accuracy than real ones. In addition, the complex-valued neural network shows better 

metric values than other hypercomplex models. 

It can be seen from Table 5 that the transition from a real model to a hypercomplex 

model significantly increases the computational complexity. In addition, linear 

transformation takes longer than combining colors. The network with complex values 

shows the worst performance, but the implementation of the Re-Im representation helps 

to reduce the gap. Table 5 also shows that the use of group convolutions causes the model 

to slow down. The diagonal representation of double numbers reduces the output time by 

more than 1.5 times. However, dual networks are not the optimal model, as they show the 

worst accuracy of all hypercomplex models. 

Table 5. Average inference time (μs) of hypercomplex ResNet-50 models (real, dual, 

complex, double) for CIFAR-100, batch size = 1. 

Algebra 

Inference time, μs 

CPU GPU 

Real 20.07 4.04 

Dual 85.74 12.81 

Complex 114.82 15.85 
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Double 108.95 15.73 

 

From Tables 4 and 5, author concludes that neural networks based on dual numbers 

represent a reasonable balance between increasing computational complexity and 

achieving greater accuracy. 

Detection of gravitational waves 

This part deals with the problem of signal detection using hypercomplex networks for 

the G2Net dataset [84]. The data set consists of simulated noisy signals, similar to 

gravitational waves, recorded by a system of three ground-based laser interferometers: 

LIGO Hanford, LIGO Livingston and Virgo [85-87]. As a rule, gravitational waves are 

emitted during cosmic events, such as black hole fusion [85]. The G2Net dataset contains 

records of emulated events of the same nature. 

To classify the original signal, author preprocess the data for the image and then pass 

it through neural networks. The purpose of preprocessing is to build a representative 

frequency map of the original signal. The CQT algorithm is considered effective for the 

analysis of gravitational waves. 

Table 6. Average values of metrics (%) of models for gravitational wave detection. 

Algebra Accuracy, % AUC ROC 

Real 76.45 0.82 

Complex 78.73 0.84 

Dual 79.24 0.85 



27 
 

Double 77.41 0.84 

This preprocessing translates the time series into a frequency portrait (Figure 13), 

which is treated as an image in subsequent steps. Thus, changes in the frequency 

characteristics of the signal at a certain moment are reflected as visual features, such as 

specific shape and color, in the resulting image. To classify images obtained after the CQT 

algorithm [84], author again uses the ResNet18 model, whose operators change to 

corresponding ones in different algebras. 

The model is optimized using the Stochastic Gradient Descent algorithm with 

momentum of 0.9 and weight decay of 5 ∙ 10−5 for L2 regularization. The regularization 

is enhanced by adding dropout with value of 0.2. The scheduler for learning rate uses 

Cosine Annealing policy with 𝑇𝑚𝑎𝑥 = 6, and initial value of learning rate is set to 5 ∙

10−2. Training lasts for 30 epochs. 

From Table 6, one can see that all models on the hypercomplex algebras outclass the 

real-valued model in both accuracy and AUC ROC. The best result is achieved by a dual-

valued neural network. 

Music transcription task 

In this part author shows the results of automatic transcription of music. Experiments 

are performed with the MusicNet dataset [88]. To improve computational efficiency, 

author resamples the original signal from 44.1 kHz to 11 kHz, based on the algorithm 

from [89]. This allows us to reduce computational overhead without any significant loss 

of information. As in [88], '2303', '2382', '1819' are used as a test subset, and the other 

327 files are used as a training set. author is doing all the experiments with the complex 
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representation of the frequency spectrum. For the real model, consider the real and 

imaginary components of the spectrum as separate channels. 

 

Figure 14. Dual DeepConvNet architecture. 

The structure is the same in a complex case up to the replacement of complex blocks 

with dual analogs. 

Author also uses the DeepConvNet architecture developed in [45] (Figure 14). This 

network consists of six one-dimensional convolutional layers. The first has a filter size of 

six, and the other layers have a kernel size of three. The convolution blocks are followed 

by a real-valued linear layer with 2048 links for the real model or a complex/dual linear 

layer with 1024 links for the complex/dual model and a ReLU activation function. Before 

passing through the last layer, you must change the data representation from complex/dual 

form to real form. To preserve all the information, author combines real and 

imaginary/dual components into one shared channel. Finally, author applies a real-valued 

linear layer with 84 bonds and a sigmoid activation function. The number of units in the 

last statement corresponds to the number of notes present in the data set. For real, dual, 

and complex models, author uses the component activation function of ReLU as 

described earlier. In all experiments, author uses an input window of 4096 samples or its 

FFT (which corresponds to the 8192 window used in the baseline) and predict notes in 
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the center of the window. All networks are optimized with Adam [90]. Author starts with 

a learning rate of 10−3 for the first 10 epochs, and then reduce it by 10 times for each of 

the 10, 100, 120 and 150 epochs. 

The complex network is initialized using the unitary initialization scheme respecting 

the He criterion as it was described in [45]. The dual-valued and real-valued models are 

initialized by the He initialization according to the method proposed in [91], basing on a 

uniform distribution. The results are summarized in Table 7. Precision-Recall dependency 

is depicted in Figure 15. 

 

Figure 15. Precision-recall curve for MusicNet dataset. 

Table 7. Comparison of main metrics of real and hypercomplex DeepConvNet models 

(real, dual, complex) on the music transcription task, on dataset: MusicNet. 

Model: 

DeepConvNet 

Average 

Precision, % 

Parameters, 

MB 

Inference 

time, μs 

Real 68.9 34.2 37 

Dual 73.4 34.2 50 
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Complex 73.2 34.2 64 

It can be seen from Table 7 that the best average precision is achieved by a dual neural 

network. In addition, as will be shown, the dual-valued model has a ×0.8 inference time 

of the complex model. 

Dual holomorphic neural networks 

In this section author defines dual holomorphic layers and show the results of models 

based on them. Holomorphic means that these layers satisfy the Cauchy-Riemann 

conditions for dual values of functions. 

1) Cauchy-Riemann conditions for the function of dual variables 

For a complex-valued function to be differentiable, special equation must be satisfied, 

which are called the Cauchy-Riemann conditions. Originally, the Cauchy–Riemann 

equations are certain criteria needed for a complex function 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) +

𝑖𝑣(𝑥, 𝑦) to be holomorphic (complex differentiable), where 𝑢 and 𝑣 are real-valued 

functions of two variables. These equations impose restrictions for 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦): 

𝜕𝑣

𝜕𝑥
=
𝜕𝑤

𝜕𝑦
           

𝜕𝑣

𝜕𝑦
= −

𝜕𝑤

𝜕𝑥
 

 

There are analogous conditions for a dual-valued function 𝑓(𝑥 + 𝜀𝑦) = 𝑢(𝑥, 𝑦) +

𝜀𝑣(𝑥, 𝑦) to be holomorphic (in sense of dual numbers): 

𝜕𝑣

𝜕𝑥
=
𝜕𝑤

𝜕𝑦
,           

𝜕𝑣

𝜕𝑦
= 0. 

 

Using Taylor series expansion for dual-valued step, one can show that the above 

restrictions imply that a holomorphic function of the dual variable is expanded to the 

following form: 

𝑓(𝑥 + 𝜀𝑦) = 𝑓(𝑥) + 𝜀𝑦𝑓′(𝑥).  
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In this study author considers dual functions and operators as an analytic extension of 

real functions. So author assumes that f(x) is real for any real x. To be clear, this is a 

sufficient, but not necessary, condition for a function to be holomorphic.  

2) Dual-valued Holomorphic Operators 

General formula of dual-valued convolution for the input 𝑍 = 𝑋 + 𝜀𝑌 and weight 

𝑊 = 𝑊𝑟 + 𝜀𝑊𝑑  with bias 𝑏 = 𝑏𝑟 + 𝜀𝑏𝑑 is 

𝑍 ∗ 𝑊 + 𝑏 =  𝑋 ∗ 𝑊𝑟 + 𝑏𝑟  + 𝜀(𝑌 ∗ 𝑊𝑟 + 𝑋 ∗ 𝑊𝑑 + 𝑏𝑑).  

One can see, that general formula of dual-valued convolution in general case of 

weight matrix 𝑊 does not satisfy the analogous conditions for a dual-valued function to 

be holomorphic (in sense of dual numbers). To make sure a dual convolution is 

holomorphic, we must impose a restriction 𝐷𝑢(𝑊) ≡ 0. This condition is based on the 

fact that, for a linear function 𝑓(𝑥 + 𝜀𝑦) =  𝑎𝑟𝑥 + 𝑏𝑟 + 𝜀(𝑎𝑟𝑦 + 𝑎𝑖𝑥 + 𝑏𝑑) the limits of 

its increment, as the argument approaches zero along the real axis or the dual axis, are 

equal if and only if the condition 𝑎𝑑 = 0 is true. So, author yields the following equation 

for holomorphic dual-valued convolution: 

𝑍 ∗ 𝑊 + 𝑏 =  𝑋 ∗ 𝑊𝑟 + 𝑏𝑟  + 𝜀(𝑌 ∗𝑊𝑟 + 𝑏𝑑).  

It has about two times less parameters than general dual convolution, or, in other 

words about the same number of parameters as the real-valued one. 

Author also defined several holomorphic dual activation functions: 

𝑅𝑒𝐿𝑈(𝑑) =  {
𝑥 + 𝜀𝑦, 𝑥 ≥ 0
0 𝑥 < 0

= {
𝑑, 𝑥 ≥ 0
0 𝑥 < 0

, 

𝜎(𝑑) = 𝜎(𝑥) + 𝜀𝑦𝜎(𝑥)(1 − 𝜎(𝑥)), where 𝜎(𝑥) =
1

1+𝑒−𝑥
, 

𝑡𝑎𝑛ℎ(𝑑) = 𝑡𝑎𝑛ℎ(𝑥) + 𝜀𝑦(1 − tanh(𝑥)2),  where 

𝑡𝑎𝑛ℎ(𝑥) =  
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
. 

 

3) Dual-valued input generation 

As complex numbers, dual numbers are essentially pairs of real values. Based on this 
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similarity, author proposes to use complex-valued input in both dual and complex neural 

networks. In this work, author uses two methods to convert real input data into a complex 

format: the Fourier transform for the MusicNet dataset and the Q constant transform 

(CQT) for the G2Net dataset. 

Author also developed an alternative variant of transformation. Author notices that 

𝐷𝑢(𝑓(𝑥 + 𝜀𝑦)) is mainly determined by the derivative of the function at the same point 

as 𝑅𝑒(𝑓(𝑥 + 𝜀𝑦)) = 𝑓(𝑥). Basing on this, author proposes to transform real-valued 

numbers of input to the dual numbers as follows: 

𝐼𝑛𝑝𝑢𝑡 → 𝐼𝑛𝑝𝑢𝑡 + 𝜀(𝐼𝑛𝑝𝑢𝑡)′,  

where (𝐼𝑛𝑝𝑢𝑡)′ is a function of 𝐼𝑛𝑝𝑢𝑡, which in a sense author calls a derivative 

of that input. The specific definition of the derivative depends on the task. For example, 

if input is a time series then it seems natural to define the derivative with respect to time 

as the difference of signal strength at adjacent time points. 

4) Experimental results. 

To test hypothesis, author conducts several experiments with previously used 

datasets: G2Net, MusicNet. Author also tested this approach on the ImageNet 

dataset. 

Table 8. Average precision on the G2Net dataset. 

Model Input BN Average precision, % 

Real |𝐶𝑄𝑇| Real 76.5 

Complex 𝐶𝑄𝑇 Complex 78.7 

Dual 𝐶𝑄𝑇 Complex 73.5 
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Dual 𝐶𝑄𝑇 Dual 79.2 

Dual |𝐶𝑄𝑇| + 𝜀|𝐶𝑄𝑇|′ Dual 51.7 

Holomorphic dual 𝐶𝑄𝑇 Dual 77.0 

Holomorphic dual |𝐶𝑄𝑇| + 𝜀|𝐶𝑄𝑇|′ Dual 77.6 

Holomorphic dual |𝐶𝑄𝑇| + 𝜀|𝐶𝑄𝑇|′ Holomorphic dual 78.4 

Table 9. Average precision on the MusicNet dataset. 

Model Average precision, % 

Real 68.9 

Complex 73.4 

Dual 73.2 

Holomorphic dual 71.2 

Table 10. Average precision on the ImageNet dataset. 

Model Top-1 Top-5 

Real 69.76 89.08 

Dual 70.76 89.58 

Holomorphic dual 70.79 89.63 

Tables 8, 9 and 10 show that, like other networks of second-order algebras, 

holomorphic dual models show better metrics than the corresponding real-valued models, 

only slightly behind the dual models. In practice, the inference speedup depends on the 
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architecture and is 10-25% compared to dual models, which may be worth the trade-off 

with some accuracy. In addition, holomorphic models have about half as many parameters 

as dual models of the same architecture. These advantages make holomorphic dual 

networks a viable option for hardware constraints. 

In conclusion, the main results of the work are formulated.  
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