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Relevance of the topic
The development of the supercomputers hardware base, in general, is ahead

of the parallel algorithms development that can most effectively solve mathematical
modeling problems on new types of computing equipment [1]. One of the most
actively developing types of high-performance servers are ones with several (4, 6, 8,
16) GPU accelerators connected by fast communication channels. The first server
of this type, DGX-1, with NVLink interconnect was released in 2016 by Nvidia;
currently, similar servers were started to be produced by AMD (with Infinity Fabric
interconnect) and Intel (with Xe Link interconnect). Using such servers with several
GPU accelerators as a single computing tool is not a trivial task and requires the
development of parallel algorithms with an optimal structure of data exchanges
between GPU accelerators. This can be achieved by overlapping data exchanges
and calculations (the “overlapping computation and communication” principle). The
relevance of the dissertation work lies in the development of similar algorithms for
matrix multiplication and for calculating the matrix exponent. In addition, the
work demonstrates how, based on the developed computational algorithms, it is
possible to use the colossal computing performance of servers with several GPU
accelerators for the molecular dynamics mathematical modeling of the simplest
molecular ion H+

2 based on solving the non-stationary Schrödinger equation in a
formulation with a minimum number of simplifying assumptions, which opens up
the possibility of modeling in the hitherto insufficiently studied area of nonadiabatic
molecular dynamics.

Formulation of the problem
The goal of the work is to develop a parallel algorithm for the matrix

multiplication and the matrix exponent on several graphics accelerators using high
performance communication links asynchronously to achieve maximum performance,
and its application to solve the non-stationary Schrödinger equation.

To achieve the set goal, it was necessary to solve the following tasks:
1. Development of an asynchronous parallel program for an efficient matrix

multiplication algorithm that performs calculations on several GPUs, and
the program performance study.

2. Derivation of a theoretical model to set the optimal tile size, in which the
program will be executed with the best performance.
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3. Development and research of a program for the matrix exponential
algorithm on GPUs based on the use of the developed matrix multiplication
algorithm.

4. Solution of the time-dependent Schrödinger equation using the resources of
high computing power GPUs and analysis of the wave function behavior in
a time-varying potential for a molecular H+

2 ion.
Degree of the research topic development
A review of the literature shows that the first published matrix multiplication

algorithm that implemented the principle of asynchronous data exchanges between
GPUs to improve performance was the BLASX algorithm described in the paper
by Wang et al [2]. Somewhat later, the PaRSEC [3] software framework appeared,
aimed at systems with IBM Power processors that have fast NVLink communication
channels between the CPU and GPU, due to which the task of matrix multiplication
can be effectively divided between the CPU and GPU. Nvidia provides a closed
source cuBLAS-XT solution for calculating matrix multiplication on multiple GPUs
and CPUs simultaneously (cuBLAS-XT is used as a reference in this work, and
the proposed matrix multiplication algorithm for multiple GPUs has been shown
to provide higher performance). One of the most universal frameworks for matrix
multiplication, combining various types of parallel algorithms, is the COSMA
project [4]. Methods for dividing calculations in COSMA are based on optimal
combinations of matrix dimensions, the number of processors and memory sizes,
when choosing which the key characteristic is the optimality of providing a read-write
operation through the combinatorial model of the “red-blue game with pebbles”.
Within the framework of the COSMA project, the Tiled-MM project is being
developed, which is the closest analogue of the parallel matrix multiplication
algorithm proposed in this dissertation work (however, Tiled-MM was published
much later than the first article with the results of this dissertation).

The matrix product algorithm is used in various computational problems, for
example, in the algorithm for calculating the matrix exponent. The problem of
calculating the matrix exponent is a computationally very complex task, therefore,
to solve it, various kinds of simplifications are used that are associated with the
special characteristics of the matrices. On the other hand, the computing power
of supercomputers is growing quite rapidly these days. As a result, it is no longer
something completely impossible to consider the problem of calculating the matrix
exponential in the most general case. There are quite a lot of options for methods
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for finding the matrix exponent. They can be divided into the following categories:
representation as a sum of a series, solution of differential equations, polynomial
methods, various types of matrix decompositions (including spectral) or separation
methods [5; 6]. As the authors of the cited reviews note, it is difficult to say which
of the presented methods is “best”. In the case of normal matrices, many problems
automatically disappear due to the properties of normality, but in an arbitrary case
it is necessary to deal with rounding errors.

Solving the time-dependent Schrödinger equation (TDSE) requires numerous
matrix exponential calculations, making the problem difficult to handle in the
general case. Solutions to particular TDSE problems can be found in various
works. For example, the work of Lugovskoy and Bray considers the almost sudden
perturbation of a quantum system by an ultrashort pulse [7]: the analytical theory
is compared with the numerical solution of TDSE. Various He ionization scenarios
were considered by numerically solving one-dimensional TDSE in the work of Yu
and Madsen [8; 9]. Nonadiabatic quantum dynamics of molecular ions H+

2 and HD+

excited by single laser pulses linearly polarized along the molecular axis was studied
within the framework of a three-dimensional model in the work of Paramonov et al.
[10]. The interaction of strong laser fields with He, H+

2 and H2 was modeled based
on the TDSE solution in Majorosi et al. [11]

Main provisions submitted for defense:
1. The matrix multiplication algorithm has been developed that uses

asynchronous data exchanges between several GPUs within one server.
2. The theoretical model has been constructed to determine the optimal tile

size for the proposed matrix multiplication algorithm and verified by testing
on the servers with different connections between GPUs.

3. The algorithm has been developed for calculating the matrix exponent
based on the proposed matrix multiplication algorithm, using several GPUs.

4. Described that the numerical solution of the time-depended 1D Schrödinger
equation using the proposed algorithm for calculating the matrix
exponential makes it possible to illustrate nonadiabatic transitions in
models of bi-nuclear molecules with one electron.

Scientific novety: The parallel algorithm for matrix multiplication for
several GPUs has been developed, the efficiency of which is higher than that of
analogues included in standard libraries (cuBLASXt). An analytical model of the
algorithm performance is proposed. The predictive power of the model is verified by
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numerical experiments on various hybrid platforms. Based on the developed matrix
multiplication algorithm, the algorithm for calculating the matrix exponent has
been developed. Using that a program was created to solve the time-dependent
Schrödinger equation and calculations of the molecular hydrogen ion were carried
out. The possibility of describing the process of nonadiabatic transition of the
electronic subsystem from the ground to the excited state is shown.

Methodology and research methods
Programming tools (Nvidia CUDA SDK, AMD ROCm), optimization

methods, profiling tools (Nsight, rocprof), programming-related methods for
program composition, and external mathematical libraries were used. The model
of the optimal adjustable parameter of the algorithm (tile size) was obtained
analytically. Difference methods were applied to construct an algorithm for solving
the time-dependent Schrödinger equation.

Main results of the study
Asynchronous multi-GPU algorithm for matrix multiplication and

matrix exponent
A general matrix product algorithm program has been developed

𝐶 = α𝐴𝐵 + β𝐶, (1)

which uses only GPUs for calculations and data storage. The algorithm provides the
possibility to store all data of matrices as in the memory of one device, providing
the rest of the GPU with data for calculations, as in different GPUs, reducing the
load on the memory access process.

The general scheme of the algorithm is as follows:
– devices storing matrices 𝐴 and 𝐵 send bands of 𝐴𝑖 and 𝐵𝑖 to other GPUs,
– GPUs perform matrix multiplication with α using the obtained data, and

calculate tiles 𝐶 ′
𝑖𝑗, which are then assembled into a band 𝐶 ′

𝑖,
– a device in which the matrix 𝐶 is stored, collects the stripes 𝐶 ′

𝑖 and sums
the resulting matrix with β𝐶.

A more detailed diagram of the algorithm’s operation is shown in Fig. 1.
The algorithm running on accelerators that perform the calculations has the

following form (see. Alg. 1):
A detailed algorithm for working in GPUs is given in Alg. 2.
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Figure 1 — Graphic diagram of the algorithm. The entire algorithm works within
the outer loop. Data transfer commands may be called in a different order if full
data usage is verified before overwriting.

Algorithm 1 Schematic flow of the Multi-GPU GEMM algorithm in an arbitrary
worker GPU, 𝑚 is the number of bands in a row (column).

for outerloop = 0 to m/NumOfGPUs do
receive (bandA);
for innerloop = 0 to m do

recieve (bandB);
GEMM (bandA, bandB, alpha, tileC);
write_TileToBand (tileC, bandC);

end for
send (bandC);

end for

In general, the exponent of the matrix 𝐴 is represented as a Taylor series
expansion

exp𝐴 =
∞∑︁
𝑖=0

𝑎𝑖 =
∞∑︁
𝑖=0

1

𝑘!
𝐴𝑘 = 𝐼 +

1

1!
𝐴+

1

2!
𝐴2 +

1

3!
𝐴3 + . . . , (2)
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Algorithm 2 Complete Multi-GPU GEMM algorithm taking into account
command changes and data transfer operations for different devices.

if (device ̸= device_withA) then
receive (bandA);

end if
for outerloop = 0 to m/NumOfGPUs do

for innerloop = 0 to m do
if (innerloop < m - 1) and (device ̸= device_withB) then

recieve (bandB);
end if
GEMM (bandA, bandB, alpha, tileC);
if (innerloop = 0) then

if (device ̸= device_withB) then
recieve (bandB);

end if
if (outerloop < m/NumOfGPUs - 1) and (device ̸= device_withA) then

Receive (bandA);
end if

end if
end for
send (bandC);
if (device == device_withC) then

AddbetaC (C, beta, bandC);
end if

end for

where 𝐼 is the identity matrix. Each 𝑘-th element of 𝑎𝑘 is expressed as

𝑎𝑘 =
1

𝑘
𝐴𝑎𝑘−1, (3)

that is, to find the 𝑘-th term, the algorithm (1) can be applied with matrices 𝐴

and 𝑎𝑘−1 and constants α = 1/𝑘,β = 0.
In complex space, the multiplication of two complex matrices can be split into

four separate matrix multiplications with real numbers{︃
𝑅𝑒(𝐶) = α(𝑅𝑒(𝐴) *𝑅𝑒(𝐵)− 𝐼𝑚(𝐴) * 𝐼𝑚(𝐵)) + β𝑅𝑒(𝐶),

𝐼𝑚(𝐶) = α(𝑅𝑒(𝐴) * 𝐼𝑚(𝐵) + 𝐼𝑚(𝐴) *𝑅𝑒(𝐵)) + β𝐼𝑚(𝐶).
(4)
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In the matrix exponential algorithm, β = 0 (3), therefore, at each iteration it is
simply necessary to find the products of real and imaginary parts with the coefficient
α and separately perform the operations of adding or subtracting matrices. To
maximize memory utilization, whenever possible, each real and imaginary part of
the matrices is stored in separate graphics accelerators as separate matrices.

Theoretical model for finding the optimal tile size
The arithmetic intensity has been determined for the case of square matrices,

in which the calculation speed will be limited by the computing capacity of the
accelerators, and not by the memory bandwidth{︃

𝐵𝑊𝑚𝑎𝑡ℎ/𝐵𝑊𝑚𝑒𝑚 = 𝑘𝐵𝑊 ,

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑁2
𝑖 𝑁

2(𝑁𝑖𝑁+𝑁𝑖𝑁+𝑁2
𝑖 )

= 𝑁𝑖𝑁
4𝑁+2𝑁𝑖

> 𝑘𝐵𝑊 .
(5)

where 𝐵𝑊 is the processing capacity of the processor (math) or memory bandwidth
(mem), respectively. From this we obtained the condition for the tile size

𝑁𝑖 > 4𝑘𝐵𝑊𝑁/(𝑁 − 2𝑘𝐵𝑊 ), 𝑇𝑚𝑎𝑡ℎ > 𝑇𝑚𝑒𝑚. (6)

The work considers fairly large matrices that require large computing power.
In this case, the time of data transfer between devices is obtained as

𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 = 4𝑁𝑖𝑁/𝐵𝑊𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟. (7)

If the task depends on the computing power of GPUs, for tile sizes

𝑁𝑖 > 2(𝑁𝑢𝑚𝐺𝑃𝑈𝑠 − 1)𝐵𝑊𝑚𝑎𝑡ℎ/𝐵𝑊𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟, (8)

the calculation speed should be greater than the data delivery speed, and no waiting
should occur. Here 𝑁𝑢𝑚𝐺𝑃𝑈𝑠 is the number of graphics accelerators used in the
calculation. The calculation time depends linearly on the tile size, so for optimal
calculation the following conditions are imposed:⎧⎪⎨⎪⎩

𝑁𝑖 > 4𝑘𝐵𝑊𝑁/(𝑁 − 2𝑘𝐵𝑊 ), 𝑁 > 2𝑘𝐵𝑊 ,

𝑁𝑖 > 2(𝑁𝑢𝑚𝐺𝑃𝑈𝑠 − 1)𝐵𝑊𝑚𝑎𝑡ℎ/𝐵𝑊𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,

𝑁𝑖 → min .

(9)

The developed optimal tile size model was analyzed and observed with a profiler.
The predicted tile sizes were validated for a square matrix multiplication algorithm
that distributes tasks evenly across accelerators.
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Computational experiments on different hardware environments
Results were collected on platforms with 4 V100s linked by NVLink 2.0, 8 A100

connected by NVLink 3.0, 4 GTX 1070 by PCIe 3.0, and 4 RX 6900 XT by PCIe 4.0.
On platforms with four V100 and four GTX1070, satisfaction of the optimal

parameter model were shown.
When working with consumer-level graphics accelerators (AMD RX 6900 XT),

performance losses and delays between data transfers were noticed (see Fig. 2).
Using an example with significantly influencing factors, such as uneven

balancing of the computing load on each GPU, which may arise depending on
the considered parameters of the problem, the possible deviation of the empirically
optimal parameters from the predicted ones is demonstrated for a server based on

Figure 2 — Multi-GPU GEMM performance profiles on 4 A100 GPUs without tensor
cores (above) and 4 RX 6900 XT GPUs (below). The number of elements (𝑁 =

32768) in a row (column) of matrices and the size of tiles (𝑁𝑖 = 1024) in the case
of the A100 GPU and (𝑁𝑖 = 8192) in the case of the RX 6900 XT GPU. Matrices
A, B, and C are stored in devices 2, 1, 0, respectively. Green columns (above, below
omitted) are the data transfer from the host to the GPUs for calculations, red
columns (above, below omitted) are the resulting data transfer from the GPUs to
the host, blue columns (above) and purple columns (below) are calculations in the
GPU, and the brown columns (above) and pink columns (below) are data transfer
operations between peer-to-peer accelerators.
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eight A100 with NVLink. Using the same platform as an example, we show how the
use of tensor cores changes the balance between communication and computation
(see Fig. 3).

Figure 3 — Profiles of Multi-GPU GEMM work on 8 A100 GPUs without tensor
cores (above) and with tensor cores (below). The number of elements (𝑁 = 90000)
in a row (column) of matrices, the size of tiles (𝑁𝑖 = 1024) in the case without
tensor cores and (𝑁𝑖 = 4096) in the case with tensor cores. Matrices A, B, and C
are stored in devices 2, 1, 0, respectively. Green columns are the transfer of data
from the host to the accelerators for calculations, red columns are the transfer of
the resulting data from the accelerators to the host, blue columns are calculations
in the GPU and brown columns are data transfer operations between peer-to-peer
accelerators.

Using the developed algorithm to solve the 1D time-dependent
Schrödinger equation

The algorithm for solving one-dimensional time-dependent Schrödinger
equation has been developed as follows (Alg. 3).

The solution has been found for the stationary case of the molecular hydrogen
ion model (two protons and one electron) with a soft-core Coulomb potential, see
Fig. 4.

𝑉 (𝑟) =
−𝑍√
𝑟2 + 𝑎

. (10)
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Algorithm 3 Scheme of the algorithm for solving the time-dependent Schrödinger
equation executed on GPUs in one time iteration, ψ is the wave function, 𝐻

is the generated Hamiltonian matrix, exp𝐴 is the resulting matrix exponential.
All operations are performed separately for real and imaginary matrices.
Communication between graphics accelerators is not shown.

receive (potential 𝑉 );
build Hamiltonian matrix (𝐻 = 𝑇 + 𝑉 ), 𝐴 = 𝑖𝐻∆𝑡;
exp𝐴 = 𝐼 + 𝐴;
for 𝑘 = 2 to rank do
α = 1/𝑘;
Multi-GPU GEMM (𝐴𝑘 = α𝐴𝐴𝑘−1);
exp𝐴 = exp𝐴+ 𝐴𝑘;

end for
GEMV (ψ𝑗 = exp𝐴 ψ𝑗−1);
send (ψ𝑗); //for output in file

Figure 4 — An example of the electron density distribution |ψ𝑛(𝑟)|2 for several
bound states at the corresponding positions of energy levels in the soft-core Coulomb
potential of two ions (10) (𝑍 = 30, 𝑎 = 0.1).

To simulate ion vibration, we implemented the movement of ion centers.

𝑉 (𝑟,𝑡) =
−𝑍√︀

(𝑟 − α sin (β𝑡))2 + 𝑎
, (11)



12

Figure 5 — The behavior of the function
∑︀
𝑛

(8𝑖)𝑛

𝑛! , illustrating the typical convergence

of elements of the matrix exponent.

where 𝑍 is the strength of the Coulomb interaction of the soft core, 𝑎 is the softening
parameter [8], α and β are some constants.

When calculating the complex matrix exponential we should pay attention
to the increasing error effect (Fig. 5). To eliminate this problem, it is necessary to
maintain the ratio of time and distance steps ∆𝑟 ∼ ∆𝑡2.

The results of experiments with stationary and sinuously moving ions
(potential centers) of the molecular hydrogen ion were obtained. In the considered
non-stationary case a non-adiabatic transition of the electronic subsystem from the
ground to the excited state was observed (Fig. 6).

Summary
The main results of the work are as follows.
1. The asynchronous Multi-GPU GEMM algorithm has been developed for

several GPUs using only devices for computation and communication
without accessing the memory of the central processor.

2. The matrix exponential algorithm has been developed for real and complex
number versions based on the Multi-GPU GEMM algorithm.

3. The theoretical model is derived that predicts the optimal variable tile
size parameter for which the Multi-GPU GEMM algorithm shows the best
performance. It has been established that the optimal size depends on
platform-dependent parameters.
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Figure 6 — Behavior of the complex wave function (ψ) in a sinuously moving
double-well soft-core Coulomb potential (11) (initial distance between wells is 2,
𝑍 = 30, 𝑎 = 0.1, ∆𝑡 = 0.002, ∆𝑟 = 0.1, 𝑘 = 10, α = 0.5 and β = 3). The dots
indicate the nodes of the wave function that arise after excitation from the ground
state.
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4. The HIP version of the Multi-GPU GEMM algorithm has been
implemented to work with AMD GPUs.

5. The Multi-GPU GEMM algorithm has been successfully launched and
tested on different computing platforms. High performance has been
achieved, over 80% of peak performance for server-level accelerators and
approximately 40% for consumer-level accelerators.

6. The predicted values of the varied parameters by the proposed model were
verified using empirical results. Factors influencing possible discrepancies
for real cases of working with the algorithm are described.

7. A parallel algorithm has been developed on several graphics accelerators for
solving the one-dimensional time-dependent Schrödinger equation based on
the algorithms described above.

8. Nonadiabatic energy transfer from moving nuclei to single-electron
excitation of a hydrogen ion was simulated H+

2 .
Approbation of work.
The results of the work were reported at the following conferences.
1. 2020 Global Smart Industry Conference (GloSIC), Russia, Chelyabinsk,

17-19 November, 2020. «Matrix-Matrix Multiplication Using Multiple
GPUs Connected by Nvlink».

2. 20-th Mathematical modeling and supercomputer technologies
(MMST2020), within the International Congress Russian Supercomputing
Days Lobachevsky State University of Nizhny Novgorod, Russia, Nizhny
Novgorod, 23-25 November, 2020. «Алгоритм матричного умножения
для нескольких GPU, объединенных высокоскоростными каналами
связи».

3. 9-th "Distributed Computing and Grid Technologies in Science and
Education"(GRID’2021), Russia, Dubna, 5-9 July, 2021. «Overlapping
Computation and Communication in Matrix-Matrix Multiplication
Algorithm for Multiple GPUs».

4. Parallel computational technologies (PCT) 2022, Russia, Dubna, 29-31
March, 2022. «The Tuning of Matrix-Matrix Multiplication Algorithm for
Several GPUs Connected by Fast Communication Links».

5. «Extreme-scale big data analytics and scientific computing on
heterogeneous platforms», Lake Como School of Advanced Studies, Como,



15

Italy, 26-30 September, 2022. «Multi-GPU GEMM algorithm: maximizing
efficiency on different platforms».

6. 22-th Mathematical modeling and supercomputer technologies (MMST
2022), within the International Congress Russian Supercomputing Days
Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 14-17
November, 2022. «Multi-GPU GEMM algorithm performance analysis for
Nvidia and AMD GPUs connected by NVLink and PCIe».

7. The Conference on Computational Physics (CCP2023) – 34th International
Union of Pure and Applied Physics (IUPAP) Conference on Computational
Physics, Kobe International Conference Center, Kobe, Japan, 4-8 August,
2023. «Multi-GPU GEMM for 1D Time-Dependent Schrodinger Equation».

8. «Russian Supercomputing Days 2023», Russia, Moscow, 25-26 September,
2023. «GPU-accelerated matrix exponent for solving 1D time-dependent
Schrodinger equation».

Personal contribution.
Under the supervision of the supervisor at the overall picture and structure

of the work, the applicant compiled all the given algorithms and wrote the
corresponding programs. The applicant conducted computational experiments on
different platforms, access to which was provided by the supervisor. With the help
of the supervisor, the results of numerical experiments were analyzed, and ideas
were jointly developed to eliminate vulnerabilities and modify the program for the
better, which were then implemented into the code by the applicant. The applicant
personally gave all presentations at conferences of various formats. The applicant
provided the data presented in the publications, and wrote the main part of the first
article, and most, including the main part, of the remaining articles, which were
then examined and corrected by the scientific supervisor.

Publications The main results on the topic of the dissertation are presented
in 4 printed publications, 4 — in periodical scientific journals indexed by Web
of Science and Scopus.
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