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Relevance
The application of machine learning (ML) techniques to the study of phase transitions
has become a promising tool. Machine learning algorithms can solve problems with large
amounts of data. Neural networks (NN) are widely used in natural language processing
(NLP), computer vision (CV) tasks for object recognition, time series analysis and
engineering applications. To solve problems in various domains, algorithms do not
require an a priori understanding of the nature of the data, only a sufficient number of
training examples. For instance, in order to understand natural language, a NN do not
need to know the principles of morphology and semantics of the language.

An analysis of the number of scientific publications from 2015 to 2023, according to
Google Scholar, shows the growing interest in ML tools in condensed matter physics.
The application of machine learning to the study of phase transitions will make it
possible to combine classical methods of statistical physics and advanced approaches
to modeling complex processes. The interdisciplinary approach will enrich the current
theoretical framework with new methods for a deeper understanding of the complex
dynamics of phase transitions and the interpretation of physical systems.

In addition to the theoretical significance, the practical value consists in the devel-
opment of new tools, software packages and methods for dealing with phase transitions
in real systems. The widespread adoption of ML methods create an opportunities for
new applications in materials science, particle physics, and other related fields.

Degree of problem development
Paper [1] proposes an approach to analyze phase transitions by the supervised ML
method. The critical temperature T ⇤

c
= 2.266(2) and critical exponent ⌫ = 1.0(2)

are numerically extracted through the collapse of the NN output data, by solving the
phase classification problem for the Ising model on a square lattice. Transfer learning
approach on the square lattice allows to extract T ⇤

c
= 3.65(1) and ⌫ = 1.0(3) for Ising

model on the triangular lattice [2]. The phase transition is transferred from the Ising
model to the q-state Potts (q 2 [2; 10]) model with the accuracy of T ⇤

c
estimation to

3 decimal places, by solving the regression problem for predicting the temperature of
spin configurations [3].

Generative-adversarial networks (GAN) are used [4] to generate new examples on
the lattice while preserving the distribution of thermodynamic quantities statistics. The
critical temperature T ⇤

c
= 2.266(4) in the Ising model is extracted [5] using unsupervised

dimensionality reduction ML methods. ML methods are used [6–9] to study the phase
transitions in percolation problem and the BKT transition in the XY model and q-state
clock model.

In order to compare the accuracy of methods for extracting W values, let us in-
troduce the relative error ✏, % of the method (equation 1). For example, if the
numerical estimate of the critical temperature T̂c = 2.258(5) for the exact solution
Tc = 2.269, then relative error is ✏ = 100 · max (|2.269� 2.258|, 0.005)/2.269 = 100 ·
max (0.011, 0.005)/2.269 = 0.5%.

✏ = 100 ·max (|W � Ŵ |,We)/W. (1)
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Numerical extraction of the critical temperature T ⇤
c

using ML methods has been
repeatedly reported in various papers. The relative error of T ⇤

c
extraction (see eq. 1)

is less than 1% in the majority of published papers. The correlation length critical
exponent ⌫ is extracted less consistently and with larger relative error. The numerical
estimates of ⌫ in the original paper [1] have a relative error of 20% for the square
lattice and 30% for the triangular lattice of the Ising model. Various works use the
data collapse method, for which the numerical solution of ⌫ lies in a wide range. In the
paper [9] a different method to extract the critical exponents is applied, but there is no
independent confirmation of the obtained results.

A number of questions arise: with what accuracy NN can extract critical behaviour
of spin lattice models; what factors affect the accuracy of critical properties estima-
tion; and whether it is possible to create a method that works for models in different
universality classes.

Aims of the study
Development of a method for analyzing phase transitions in lattice spin models using
supervised machine learning methods.

Tasks of the study
• Development of a method for analyzing phase transitions in lattice spin models

using neural network supervised machine learning methods.

• Development of a software for the study of phase transitions in lattice spin models
using classical methods and neural networks.

• Application of the method to study phase transitions in lattice spin models which
belongs to the Ising model and 4-state Potts model universality classes.

• Measurement of the developed method accuracy and investigation of the factors
influencing the accuracy.

• Development of a transfer learning method for analyzing phase transitions in
lattice spin models.

The scientific novelty of the study
1. A method for analyzing phase transitions in lattice spin models is proposed, which

is based on the variance output scaling of the neural network trained to solve
supervised binary classification problem. From the output data of the neural
network, an estimate of the critical temperature and the critical correlation length
exponent are systematically extracted with high accuracy.

2. The proposed method was used to extract the critical correlation length exponent
and critical temperature for the Ising, Baxter-Wu, and 4-state Potts models. For
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the latter two models, the critical exponents are extracted for the first time using
ML methods.

3. The influence of neural network architectures, hyperparameters of training and
methods of input data encoding on the accuracy of extracted critical exponents
of lattice spin models were investigated for the first time.

4. A new method of input data encoding is proposed for transfer learning of the phase
transitions between the Ising and the 4-state Potts model universality classes.

Methodology and methods
Markov chain Monte Carlo methods and finite-size scaling analysis have been applied
to investigate lattice spin models by conventional approaches. The developed modeling
method applies deep machine learning, computer vision, neural networks, supervised
learning, and optimization methods. The general research methods are statistical anal-
ysis and numerical approximation methods.

Summary
The first chapter describes two-dimensional lattice spin models: the Ising [10] model
on a square lattice, the Baxter-Wu model on a triangular lattice, and the 4-state Potts
model on a square lattice. A second order phase transitions is between the ordered
ferromagnetic and disordered paramagnetic phases at the critical point Tc. There are
exact analytical solutions: the Ising model is solved by L. Onsager [11] in 1944, Tc ⇡
2.269, the Baxter-Wu model is solved by R.Baxter and F.Wu [12] in 1973, Tc ⇡ 2.269,
4-state Potts model is solved by R.Potts [13] in 1952, Tc ⇡ 0.91.

The models have different Hamiltonian, lattice topology, and ground state symme-
try. Models can be categorized into two classes of universality: the Ising model, which
belongs to the universality class named after itself, the Baxter-Wu and 4-state Potts
models belonging to the 4-state Potts model universality class. The universality class is
defined by a set of critical exponents of heat capacity ↵, magnetization �, susceptibility
�, correlation length ⌫, and others.

A number of relations [14–16] between critical exponents follow from the scaling and
universality hypotheses [17, 18]

2� + � = 2� ↵ = d⌫, (2)

where d is space dimensionality. The Ising model universality class: ↵ = 0, � = 1/8, � =
7/4, ⌫ = 1, the 4-state Potts model universality class: ↵ = 2/3, � = 1/12, � = 7/6, ⌫ =
2/3. Critical exponent ⌫ reflects the dependence of the correlation length on the linear
lattice size L. The critical exponent ⌫ and the critical temperature Tc will be further
determined by analyzing NN output.

The conventional method of phase transitions investigation is Markov chain Monte-
Carlo (MC) methods. Images of instant spin configurations (“snapshots”) are simulated

4



by the MC method according to the recommendations [19]. The MC simulation param-
eters are selected in order to generate the uncorrelated snapshots of the spin configu-
rations: i) relaxation time at “hot start” to minimize systematic error, ii) correlation
time ⌧corr at thermodynamic equilibrium to minimize the statistical error. Consider two
classes of algorithms: Metropolis [20, 21] with single spin-flip updates and Swendsen-
Wang [22], Wollf [23] with cluster updates. In the Metropolis algorithm, a decision is
made at each step to choose a new spin orientation, and for cluster algorithms – a new
orientation for the group (cluster) of spins. The Swendsen-Wang and Wollf algorithms
have different clustering algorithms and efficiency. It is known that all algorithms suffer
from critical slowing down in the critical region, in which the correlation time grows
rapidly ⌧corr ⇠ min(L, ⇠)d+z, where ⇠ is a correlation length, z is a dynamic critical
exponent. Wollf’s algorithm is the most efficient, but its implementation in the Baxter-
Wu model leads to a shift of the cluster percolation from the critical point to the
low-temperature region and thereby distort the critical behavior [24]. The Metropolis
algorithm, which is the least efficient, was chosen to retain a unified approach to data
generation.

The second chapter focuses on machine learning methods. A general formulation
of the binary classification problem in terms of ML – for each object xi 2 X predict
a discrete value yi called a class label: F (xi) ! yi, where yi 2 {0, 1}, F is a decision
function. The quality of the trained classifier can be measured by the set of metrics:
precision, recall, f-score and area under the ROC curve (AUCROC).

The decision function F is a neural network. The NN consists of consecutive blocks
called layers. The number and order of layers in the NN determines its architecture.
Each layer is a differentiable function. A layer has an input, an output and can consist
of linear and nonlinear operators. Common types of NN building blocks are fully con-
nected, convolutional, pooling layers and activation functions. Three NN architectures
are proposed: fully connected NN (FCNN), convolutional network (CNN) and deep
convolutional network ResNet [25].

Not only the basic building blocks of NN are described, but also the mechanisms
to adjust network parameters, the stages of training, validation and testing, as well
as heuristics affecting the quality of training. The NN is trained using optimization
methods based on gradient descent [26] and the backpropagation of errors [27, 28]
to update NN adjustable weights. The NN training process includes the stages of
splitting the data, feature encoding, training protocol analysis, and metrics evaluation.
To improve quality metrics and speed up the learning process, heuristic approaches are
used: random weights initialization, batch learning, regularization of the input data
(augmentation).

The third chapter describes the developed method for analyzing phase transitions
in lattice spin models. We solve a supervised ML binary classification problem. To in-
vestigate the critical behavior of lattice spin models, spin configurations are generated
for different linear lattice sizes using the Monte Carlo method by the Metropolis algo-
rithm, with 1500 images per temperature point. The output layer of NN is represented
by two neurons for the ferromagnetic and paramagnetic phases. Separate NN is trained
for each lattice size L of spin model. Loss function is a binary cross-entropy (BCE),
and the quality of the training process is evaluated at multiple epochs using plots of the
training and validation curves. To analyze critical behaviour of the lattice spin model,
test set of data (dataset) is used on the inference stage of the NN weights state after
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the first epoch of training.
The NN output variance function V (T ) of the ferromagnetic neuron fT

i
is measured

for each linear size L, the function is defined at each temperature point T

V (T ) =
1

N

NX

i=1

⇣
fT

i

⌘2
�
 
1

N

NX

i=1

fT

i

!2

, (3)

where i 2 {1, 2, ..N} are uncorrelated snapshots of spin configurations at T . We study
the dependence of lattice size L of the variance V (T ).

We use fitting procedure of the function V (T ) for each value of lattice size L. The
approximation of V (T ) vs T is performed with an unnormalized Gaussian-like ansatz
V (T ) ⇠ exp (�(T � T⇤)2/2�2) to extract parameters � and T⇤. Width � of the variance
curve V (T ) is then fitted with power-law ansatz �(L) ⇠ 1/L1/⌫ to extract the critical
exponent ⌫. Peak position T⇤ of the variance curve V (T ) is fitted with Ferdinand-Fisher
ansatz [29] T⇤(L) � Tc ⇠ 1/L1/⌫ with fixed value of ⌫ to extract critical temperature
T̂c of the infinite volume system L ! 1. For the Ising, Baxter-Wu, and 4-state
Potts models, numerical extraction is performed to estimate critical temperature T̂c

and critical exponent ⌫.
The remainder of the chapter is devoted to three groups of experiments. In the first

one, the influence of the size of training dataset on the accuracy of the extracted values
T̂c, ⌫ is conducted by reducing the training sample size by a factor of two and a factor
of four. In the second, the effect of the number of NN training epochs is investigated.
As long as training continues, NN is better at solving the classification problem, which
is reflected in the accuracy of the extracted critical exponents. In the third, a numerical
extraction of the critical temperature estimation T̂c and critical exponent ⌫ is performed
using transfer learning between lattice spin models.

In chapter four, the influence of input data encoding methods is investigated on
the accuracy of extracted critical behaviour. In contrast to the previous chapter, where
the NN is trained in the space of spin configurations, two other approaches of encoding
are applied: into the space of spin correlators and into the space of bond energies.

To encode spin configuration into the correlator space, a matrix of size L ⇥ L is
created, each cell contains spin correlator. A priori knowledge of the lattice topology
is used to fill the matrix. Each spin in a lattice vertex interacts with other spins at
distance L/2 according to equation

gx,y(L/2) =
1

D

DX

d=1

sx,ys⇤, (4)

where gx,y(L/2) is a value of correlator in the vertex (x, y), sx,y is a spin value at the
same vertex, s⇤ is a spin value located at a distance L/2 from the spin sx,y along axis
d, D is the total number of the directions of spin interactions.

To encode spin configuration into the bond energies space, two matrices of size L⇥L
is created to store vertical {�V } and horizontal {�H} bonds. A priori knowledge of the
interactions between spins is used to fill the matrices:

{�H} = {�i,j�i,j+1, �i,j+1�i,j+2, ..., �i+L�1,j+L�1�i+L�1,j},
{�V } = {�i,j�i+1,j, �i+1,j�i+2,j, ..., �i+L�1,j+L�1�i,j+L�1}. (5)
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Numerical extraction from output variance V (T ) scaling is performed to estimate
critical temperature T̂c and critical exponent ⌫ in the spaces of correlators and bond
energies. Transfer learning is conducted between every combination of lattice spin
models in the space of bond energies.

Thesis statements submitted for defense
• A method for analyzing phase transitions in lattice spin models is introduced,

which is based on the variance output scaling of the neural network trained to solve
supervised binary classification problem. The following aspects of the method are
described: the neural network training process, the parameters influencing the
accuracy of extraction of critical exponent ⌫ and estimation of critical temperature
T̂c, recommended values of training hyperparameters.

• It was established that the variance function of the output of the NN trained
using the method developed in the thesis carries information about the critical
correlation length exponent ⌫ and the critical temperature T̂c of lattice spin model.
Relative error of T̂c extraction is 0.1-0.2%, ⌫ is 1-3%.

• The proposed method was used to extract the correlation length critical exponent
⌫ and the estimation of critical temperature T̂c for the Ising 1/⌫ = 1.02(1), T̂c =
2.270(5); Baxter-Wu 1/⌫ = 1.49(2), T̂c = 2.2691(1); and 4-state Potts 1/⌫ =
1.49(4), T̂c = 0.9101(1) models.

• The method for analyzing the critical properties of lattice spin models is veri-
fied using several neural network architectures. The method works for a fully
connected network with a single hidden layer, a shallow convolutional network,
and a deep convolutional architecture ResNet. The accuracy of each architec-
ture depends on the properties of the lattice spin model and hyperparameters of
training.

• The method for analyzing the critical properties of lattice spin models is sensitive
to hyperparameters of training. Growth in the number of iterations of NN training
leads to an improvement in the quality of classification, but worsens the accuracy
of critical exponent ⌫ extraction. Increasing the size of the training set of data
does not affect the accuracy of the extracted critical properties when a certain
level of classification quality metrics is reached. Input data encoding method
affects the accuracy of the extracted critical properties ⌫ and T̂c.

• A new method of input data encoding based on the lattice spin model bond ener-
gies is proposed for transfer learning of the phase transitions. Extraction of ⌫ and
T̂c was performed for Ising, Baxter-Wu and 4-state Potts models by learning with
knowledge transfer within and outside of the native universality class. The results
agree with the exact solution, however the method is unsystematic and sensitive
to the parameters of lattice spin models, NN architectures and hyperparameters
of training.
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Personal contribution of the author
The hypotheses, ideas and method were developed jointly with the academic super-
visor. The stages of data generation by Monte Carlo method, network training and
testing, analysis of neural network modeling results, validation and comparison with
classical methods were made personally by the author. In the publications the author’s
contribution is determinant. Sectional reports at conferences were made personally by
the author.

General findings of the study
• A method for analyzing phase transitions in lattice spin models is developed,

which is based on the variance output scaling V (T ) of the neural network. NN
is trained with supervised learning to solve binary classification problem. The
proposed method was used to extract the correlation length critical exponent ⌫
and the estimation of critical temperature T̂c for the Ising, Baxter-Wu and 4-
state Potts models. Relative error of T̂c extraction is within 0.2%, ⌫ is within
3%, which outperforms other ML approaches in lattice spin models. The values
of ⌫ and T̂c within statistical error coincide with the exact analytical solutions for
these models in the Ising and 4-state Potts universality classes.

• The analysis of NN architectures, from shallow to deep ones, has shown that
the method works systematically. However, it is impossible to choose the best one
among the architectures, due to their differences in accuracy which depends on the
properties of the studied lattice spin models, approaches of input data encoding,
and the method of critical behaviour analysis (with or without transfer learning).
When trained in the space of spin configurations, shallow architectures FCNN
and CNN provide more accurate results of T̂c, ⌫ extraction, which is consistent
with the observations of [30]. The FCNN architecture faces underfitting, when
the input data is encoded into the space of bond energies, while the accuracy of
CNN and ResNet does not differ from each other.

• Influence of the training number of epochs shows that growth in the number
of iterations is leading to an improvement in the quality of classification, but
worsens the accuracy of critical exponent extraction. At later epochs NN turns
into a perfect classifier without the ability to extract ⌫. The size of the training
set of data in NN can affect the accuracy of the extracted critical properties
T̂c, ⌫ until a certain level of classification quality metrics is reached. The Ising
model FCNN when trained on a quarter of the original training dataset size, faces
underfitting on the AUCROC metric, resulting in a worsening of ⌫ extraction.

• Extraction of T̂c and ⌫ was performed for Ising, Baxter-Wu and 4-state Potts
models by learning with knowledge transfer within and outside of the native
universality class. The transfer learning method is less systematic then native
inferencing. The critical temperature T̂c is extracted systematically for all combi-
nations of lattice spin models, except for the knowledge transfer from the square
lattice to the triangular lattice in the space of spin configurations. Relative er-
ror of T̂c extraction is 0.1-1.5% in the space of spin configurations, and 0.1-5%
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in the space of bond energies. The largest relative error of extraction T̂c occurs
when transferring knowledge from the 4-state Potts model: 0.3-4% within the
class of universality, 7-16% outside the universality class. The critical exponent
⌫ is extracted less systematically. In the space of spin configurations, knowledge
transfer is possible only from the 4-state Potts universality class to the Ising uni-
versality class, and is not possible from a square lattice to a triangular lattice.
Encoding into the space of bond energies provide knowledge transfer of the phase
transitions from the Ising model to the Baxter-Wu model with the same level of
accuracy as from native model extraction. When moving from the spin configu-
rations space to the space of bond energies, NN do not need to “understand” the
spatial arrangement of spins on the lattice, a problem encountered by networks
when transferring knowledge from a square lattice to a triangular lattice. The
encoding of spin configurations into the space of correlators and bond energies
involves incorporating additional information into the NN regarding the lattice
topology and the Hamiltonian governing the interactions within the model.

Approbation of the results
The list of articles:

• Chertenkov V .I. Universality classes and machine learning / Shchur L.N. //
Journal of Physics: Conference Series. 2021. N 1740. P. 1-5. (Scopus Q4)

• Chertenkov V .I. Deep machine learning investigation of phase transitions /
Burovski E.A., Shchur L.N. // Lecture Notes in Computer Science. 2022. N
13708. P. 397-408. (Scopus Q2)

• Chertenkov V .I. Finite-size analysis in neural network classification of critical
phenomena / Burovski E.A., Shchur L.N. // Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics. 2023. T. 108. N 3. P. 1-5. (Scopus Q1)

• Sukhoverhova D.D. Validity and limitations of supervised learning for phase tran-
sition research / Chertenkov V .I., Burovski E.A., Shchur L.N. // Lecture Notes
in Computer Science. 2023. N 14389. P. 314-329. (Scopus Q2)

The list of conferences:

• IV International Conference "Computer Simulation in Physics and beyond", Rus-
sia, Moscow, 12-16 October 2020, “Universality classes and machine learning”.

• International Conference �Russian Supercomputing Days�, Russia, Moscow, 26-
27 September 2022, “Deep machine learning investigation of phase transitions”.

• Annual Interuniversity Scientific and Technical Conference of students, postgradu-
ates and Young specialists named after E.V.Armensky, Russia, Moscow, 27 Febru-
ary – 7 March 2023, “Investigation of spin models using machine learning meth-
ods”.
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• National Supercomputing Forum NSCF-2023, Russia, Pereslavl-Zalessky, 28 Novem-
ber – 1 December 2023, “Influence of learning protocols on deep learning studies
of phase transitions”.

• Research Seminar Computational Wednesdays, Moscow, HSE, 14 November 2023,
“Unsupervised learning of phase transitions via modified anomaly detection with
autoencoders”.

• International Conference �Russian Supercomputing Days�, Russia, Moscow, 23-
24 September 2024, “Supervised and Transfer Learning for Phase Transition Re-
search”.

Certificate of state registration of software:

• “A system for studying phase transitions in lattice spin models”.
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