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Introduction

The thesis is devoted to the study of various combinatorial objects and their invariants. The
objects of interest arise in the framework of problems on the topology of spaces of maps of 1-
dimensional objects over �eld of real and complex numbers, which are mappings of the circle
and complex algebraic curves. In the real case we study invariants of knots in the 3-dimensional
sphere, in the complex case we deal with meromorphic functions on algebraic curves. The corre-
sponding combinatorial objects may be naturally described in terms of algebraic structures, Hopf
algebras, and by considering generating functions in in�nitely many variables. These generating
functions often happen to be solutions of integrable hierarchies of partial di�erential equations,
which arise in mathematical physics. This property not only sheds light on the nature of the
underlying geometric objects, but also provides some e�cient ways for explicitly computing the
generating functions.

The weight system sl2 is a function on chord diagrams, which satis�es the 4-term relation.
For every chord diagram we construct its intersection graph, such that its vertices correspond
to chords of the diagram and the two vertices are connected by an edge if the corresponding
chords intersect. The 4-term relation on chord diagrams corresponds to the 4-term relation on
the intersection graphs. The value of the weight system sl2 on a chord diagram is determined
by its intersection graph [4]. This leads to the natural question (S.K. Lando): is it possible
to extend the weight system sl2 on graphs, which satisfy the 4-term relation (on graphs)? We
developed the algorithms, which imply the positive answer for this question in the case of graphs
with n ≤ 8 vertices.

The sl2-weight system is a specialization of the more general gl-system. There are good
reasons to expect, that the result of averaging the universal gl-system over the permutations is
a τ -function for the Kadomtsev-Petviashvili hierarchy, which may further clarify the nature of
the sl2-weight system.

Recently, S. V. Chmutov, M. E. Kazarian and S. K. Lando [6] introduced a class of graph
invariants called shadow invariants. These invariants are graded homomorphisms from the Hopf
algebra of graphs to the Hopf algebra of polynomials on the in�nite number of variables. They
proved that the result of averaging of almost any such invariant over all graphs, after a suitable
rescaling of the variables, turns into a linear combination of one-part Schur functions and thus
becomes a τ -function of the integrable Kadomtsev-Petviashvili hierarchy. We prove a similar
statement for the Hopf algebra of framed graphs. At the same time, we show that the analogous
statement is not true for a number of other Hopf algebras of similar nature, including Hopf
algebras of weighted graphs, chord diagrams, and binary delta-matroids. Thus, it turns out that
Hopf algebras of graphs and framed graphs play a special role among graded Hopf algebras of
combinatorial nature.

Going back to A. Hurwitz, the theory of complex Hurwitz numbers, which enumerates
branched coverings of the complex projective line with a prescribed branching data became
one of the central areas of mathematics in recent decades. One of the natural directions of devel-
opment of Hurwitz theory is its extension to the case of real branched coverings of a projective
line. The simple real Hurwitz numbers enumerate real meromorphic functions on real algebraic
curves, such that all �nite critical values being simple. M. E. Kazarian, S. K. Lando and S. M.
Natanzon [13] constructed algebras of transition types for which these numbers are structural
constants, and derived the transposition equations for their derivative functions. We study the
structure of transition type algebras and develop approaches to compute the simple real Hurwitz
numbers e�ciently.
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1 Hopf algebras of combinatorial objects

The structure of many invariants of combinatorial objects is closely related to the structures of
the corresponding Hopf algebras. In this section we give descriptions of Hopf algebras of objects
of combinatorial nature, which are the subject of the present thesis.

1.1 De�nition of a Hopf algebra

Our de�nition of a Hopf algebra follows [3]. All vector spaces considered in what follows are over
a �eld F of characteristic 0. For simplicity, we may assume that this is a �eld of C of complex
numbers.

Let A be a vector space. A multiplication ν on a vector space A is a linear map ν : A⊗A→ A.
A multiplication ν is associative if the diagram

A⊗A⊗A

id⊗ν
��

ν⊗id // A⊗A

ν

��
A⊗A ν // A

is commutative. Here and in what follows, id denotes the identity self-map of the vector space.
A unit for ν is a linear map ι : F→ A such that the diagram

F⊗A ι⊗id // A⊗A

ν

��
A

OO

A

is commutative.
A vector space A together with linear maps δ : A→ A⊗A (comultiplication) and ε : A→ F

(counit) is called a coalgebra if the following diagrams are commutative:

A⊗A⊗A A⊗Aδ⊗idoo

A⊗A

id⊗δ

OO

A

δ

OO

δoo

F⊗A

��

A⊗Aε⊗idoo

A A

δ

OO

All algebras and coalgebras considered in this paper are commutative (cocommutative), i.e.,
the following diagrams are commutative:

A⊗A ν // A

A⊗A

τ

OO

ν // A

A⊗A

τ

��

A
δoo

A⊗A A
δoo

where τ : A⊗A→ A⊗A is the transposition of factors in the tensor product, i.e., τ(a⊗b) = b⊗a.
A bialgebra is a vector space A together with an algebra structure (ν, ι) and a coalgebra

structure (δ, ε) such that

1. ε(1) = 1
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2. δ(1) = 1⊗ 1

3. ε(ab) = ε(a)ε(b)

4. δ(ab) = δ(a)δ(b)

A bialgebra A is said to be graded if it decomposes into a direct sum of vector spaces, i.e.,

A =
⊕
k≥0

Ak,

and multiplication and comultiplication in A are compatible with the grading, i.e.,ν(Ak ⊗Al) ⊂
Ak+l for all k, l = 0, 1, 2, . . . and δ(An) ⊂ A0⊗An+A1⊗An−1+· · ·+An⊗A0 for all n = 0, 1, 2, . . . .

A graded vector space A is said to be a vector space of �nite type if all An are �nite-
dimensional.

A graded bialgebra A is connected if ι : F → A is an isomorphism between the �eld F and
A0 ⊂ A.

A graded Hopf algebra is a connected graded bialgebra of �nite type together with a linear
map S : A→ A such that

ν ◦ (S ⊗ 1) ◦ δ = ν ◦ (1⊗ S) ◦ δ = ι ◦ ε.

The map S is called the antipode.

1.2 The Hopf algebra of polynomials

The simplest example of a Hopf algebra we are interested in is the Hopf algebra of polynomials.
Let R be an algebra of polynomials in possible in�nitely many variables, R = C[q1, q2, ...].

The algebra R is graded, R = R0⊕R1⊕..., where Rn is a subspace in R generated by monomials

of degree n. The power n of a monomial
b∏

a=1
qdaa is de�ned as a sum of powers of its variables,

n =
b∑

a=1
da deg(qa). Natural powers of variable deg(qa) are prede�ned, and the set of variables

with powers no greater than n is �nite for every natural number n.
The comultiplication δ of polynomials is a homomorphism of algebras and de�ned as follows:

δ(qi) = qi ⊗ 1 + 1⊗ qi.

The counit is given by the mapping ε : R → C, which puts in correspondence to every
polynomial r ∈ R its free term r(0, 0, ...). Hence the algebra R has a structure of bialgebra.
This bialgebra is commutative and cocommutative, and the multiplication and comultiplication
respect the grading. This turns it into the Hopf Algebra of polynomials.The action of the antipode
is given by the following: S(qi) = −qi.

1.3 The Hopf algebra of graphs

The Hopf algebra of graphs was introduced in [10]. Let G be the vector space over F generated
by simple graphs (graphs without loops and multiple edges). All graphs in this paper considered
up to isomorphism. The space G is graded:

G = G0 ⊕ G1 ⊕ G2 ⊕ ... = 〈∅〉 ⊕ 〈 r 〉 ⊕ 〈 r r , r r 〉 ⊕ ...,
5



where each Gn is the �nite-dimensional vector space generated by all simple graphs on n vertices.
A multiplication ν : G ⊗ G −→ G is de�ned as the disjoint union of graphs; it is extended to

the linear combinations of graph by linearity. A comultiplication δ : G −→ G ⊗ G for graphs is
de�ned as follows: given a graph G,

δ(G) =
∑

J1tJ2=V (G)

G|J1 ⊗G|J2 ;

here the summation is over all ordered partitions of the vertex set V (G) of G into two disjoint
subsets and G|J , where J ⊂ V (G), denotes the subgraph of G induced on the set J of vertices.
The comultiplication is extended to the linear combinations of graphs by linearity.

Note that the multiplication and comultiplication of graphs are compatible with the grading:

ν : Gk ⊗ Gl −→ Gk+l,

δ : Gn −→ G0 ⊗ Gn ⊕ G1 ⊗ Gn−1 ⊕ · · · ⊕ Gn ⊗ G0.

The multiplication and comultiplication operations turn the vector space G into a graded
bialgebra. This bialgebra is commutative and cocommutative; its unit is the empty graph and
counit is the map ε : G → F that takes the empty graph to the identity element of the �eld
and each nonempty graph to the zero element. According to the Milnor�Moore theorem [17],
any graded cocommutative bialgebra is a Hopf algebra; therefore, we can regard the bialgebra of
graphs as a Hopf algebra.

1.4 The Hopf algebra of chord diagrams

Chord diagram D of order n is oriented circle together with a collection of n chords, considered
up to an orientation preserving di�eomorphism of the circles. In the pictures below, we assume
that the circle is oriented counterclockwise The intersection graph Γ(D) of a chord diagram D
is a graph whose vertices correspond to the chords of the diagram D, and there is an edge
connecting two vertices, provided that the corresponding chords intersect. An example of such
correspondence is depicted below.

7−→

In contrast, not each graph is the intersection graph of a chord diagram. All graphs with 0
through 5 vertices are intersection graphs. Two graphs with 6 vertices that are not intersection
graphs, are depicted below. The percentage of such graphs grows rapidly with the number of
vertices.

An arc diagram is a representation of chord diagram, in which the vertices of the chord
diagram are placed along an oriented line with edges drawn as semicircles in one of the two
halfplanes bounded by the line. Each arc diagram corresponds to a chord diagram, which is the
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result of closing a line into a circle. In contrast, a chord diagram with n chords admits up to
2n representations as an arc diagram. Any chord diagram can be made into an arc diagram by
cutting the circle at some point. For example, to the following chord diagram four arc diagrams
are associated.

←→

On the contrary, the closure of a straight line into a circle uniquely associates any arc diagram
with a chord diagram.

Denote by C = C0 ⊕ C1 ⊕ C2 ⊕ ... the graded vector space of chord diagrams; the component
of grading n is the vector space Cn generated by chord diagrams with n chords. Chord diagrams
arise naturally in the theory of V.A. Vasiliev of invariants of knots of �nite order [22]. In this
theory every invariant of knots of order at most n is associated with a function on chord diagrams
with n chords satisfying the following 4-term relation:

− + − = 0

Here and below the punctured line denotes the parts of the circumference of a chord diagram,
where the ends of the �xed set of chords, equal for every diagram, may be placed. The function
acting on the chords is omitted from the pictures.

A product of chord diagrams is the chord diagram corresponding to the arc diagram obtained
by the concatenation of two corresponding arc diagrams. The result of the product of chord
diagrams is independent of the choice of the arc representations of the factors modulo four-term
relations.

The coproduct δ of chord diagram D is de�ned as follows

δ(D) :=
∑

X⊂V (D)

D|X ⊗D|V (D)\X ,

where D|X denotes the chord diagram formed by a subset X ⊂ V (D) of the set of chords V (D).
Multiplication and comultiplication are extended to linear combinations of chord diagrams by

linearity and preserve the grading. These operations turn the vector space C modulo four-term
relations into a graded Hopf algebra A = A0 ⊕A1 ⊕A2 ⊕ ..., Ai = Ci/<4-term relations>.

In [14] the four-term relation for graphs is introduced.

A B

−

A B

−

A B

+

A B

= 0

The relation is constructed as follows. Choose an arbitrary edge, say AB, of the graph �
it is the �rst graph on the left hand-side in the relation above. The second graph on the left
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hand-side is the same graph with the AB deleted. We now describe how the third and fourth
graphs are obtained. Consider the set of edges (excluding AB) sharing a common vertex B.
Denote them by BC1, BC2, ..., BCn. Now if the vertices A and Ci are connected by an edge in
the initial graph, we delete this edge; otherwise � if the vertices A and Ci lack an edge connecting
them � we add this edge. In this way the third graph is obtained. The fourth graph di�ers from
the third one in that it lacks the edge AB. The linear combination in the left hand-side in the
relation is called 4-term element.

The factor space of the space of graphs over the subspace generated by the 4-term elements
is denoted F = F0 ⊕ F1 ⊕ ..., ãäå Fn = Gn/<4-term elements>. It admits the structure of the
Hopf Algebra, induced from the structure on G. The mapping which puts in correspondence to
a chord diagram its intersection graph may be naturally extended to a graded homomorphism
of Hopf algebras A → F .

1.5 The Hopf algebra of framed graphs

The Hopf algebra of framed graphs was introduced in [16] as a tool for constructing invariants
of �nite order of plane curves. A framed graph is a simple graph G together with a framing, that
is, a map V (G)→ {0, 1} from the vertex set V (G) of G to the two-element set {0, 1}.

Let Gf be the vector space over F generated by the isomorphism classes of framed graphs.
This space is a Hopf algebra as well; its structure is similar to that of the Hopf algebra G of
graphs.

The space Gf is graded as

Gf = Gf0 ⊕ G
f
1 ⊕ G

f
2 ⊕ ... = 〈∅〉 ⊕ 〈 g0 , g1 〉 ⊕ 〈 g0 g0 , g1 g0 , g1 g1 , g0 g0 , g1 g0 , g1 g1 〉 ⊕ ...,

where each Gfn is the �nite-dimensional vector space generated by all framed graphs on n vertices.
The multiplication ν : Gf ⊗ Gf −→ Gf of framed graphs is de�ned as disjoint union: given

graphs G1 and G2,
ν(G1, G2) = G1 tG2.

The comultiplication δ : Gf −→ Gf ⊗ Gf of framed graphs is de�ned by setting, given a
framed graph G,

δ(G) =
∑

J1tJ2=V (G)

G|J1
⊗G|J2

,

where the summation is over all ordered partitions of the vertex set V (G) of G into two disjoint
subsets and G|J denotes the framed subgraph of G induced on the set J of vertices. The framings
of vertices in induced subgraphs are preserved. The comultiplication is extended to the linear
combinations of framed graphs by linearity.

Like in the case of simple graphs, the multiplication and comultiplication of framed graphs
are compatible with the grading:

ν : Gfl1 ⊗ G
f
l2
−→ Gfl1+l2

,

δ : Gfn −→ (Gf0 ⊗ Gfn)⊕ (Gf1 ⊗ G
f
n−1)⊕ · · · ⊕ (Gfn ⊗ G

f
0 ).

The unit, counit, and antipode are introduced by analogy with the corresponding elements
of the Hopf algebra of simple graphs.

A framed chord diagram is a chord diagram of order n with each chord marked by an element
of {0, 1}. The 4-term relations for framed graphs and framed chord diagrams are introduced
in [16], where the structure of a Hopf algebra on the graded vector spaces is also described,
obtained as a factor by the 4-term relations.
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2 The sl2 weight system on graphs

One of the major sources of weight systems is Lie algebras. The simplest non-trivial Lie algebra
provides a fundamental example of the weight system sl2. Even this seemingly basic case exhibits
complex and interesting behavior. We are interested in its possible extensions to the invariant
on graphs, which satisfy the 4-term relation on them.

2.1 The sl2 weight system on chord diagrams

Let G be a Lie algebra, dimG = m, endowed with a nondegenerate invariant bilinear form
(·, ·). Invariance means that (x, [y, z]) = ([x, y], z) for all x, y, z ∈ G. Let U(G) be an universal
enveloping algebra of the algebra Lie G.

Pick an orthonormal basis {e1, ..., em} in G with respect to the scalar product (·, ·). Consider
the mapping wG : A → U(G) of the algebra of chord diagrams modulo 4-term relations to the
universal enveloping algebra of algebra Lie G. Fix an arc diagram a, assosiated to the chord
diagram D. We construct an element wG(D) of the universal enveloping algebra U(G) as follows.
For a given mapping φ of the set of arcs of the diagram a to the set {1, ...,m}, at the ends of
each arc we place an element ei ∈ G if this arc goes to i. The summation over all such mappings
gives us the image of the chord diagram D in the universal enveloping algebra U(G). We extend
the mapping wG to the whole A by linearity.

For example, for m = 3:

7−→
e4

1 + e1e2e1e2 + e1e3e1e3 + e2e1e2e1 + e4
2+

+e2e3e2e3 + e3e1e3e1 + e3e2e3e2 + e4
3

Theorem 1. [2, 11] Let G be a Lie algebra together with the nondegenerate invariant scalar
product (·, ·). Then the mapping wG : A → U(G) possesses the following properties:
(1) the value wG(D) of the mapping wG does not depend on the choice of the orthonormal basis
e1, ..., em;
(2) the value wG(D) of the mapping wG does not depend on choosing an arc representation of
chord diagram D;
(3) the image of wG lies in the center of the universal enveloping algebra U(G);
(4) the mapping wG satis�es the 4-term relation for chord diagrams.

Note that if a chord diagram is the product of two nonempty diagrams, then the value of the
map wG on it is the product of its values on the factors. Thus, wG is an algebra homomorphism,
wG : A → ZU(G).

In the simplest nontrivial case, namely, in the case of the Lie algebra sl2 and the Killing
form, the center of the universal enveloping algebra U(sl2) is generated by a single element, the
Casimir element c = e2

1 + e2
2 + e2

3, ZU(sl2) = C[c]. In this particular case, the function wG

is determined by the Chmutov�Varchenko recurrence relations, which can be considered as an
alternative de�nition of the weight system sl2.

Let v denote the weight system sl2. It associates to a chord diagram with n chords a
polynomial of degree n in the variable c. The value of v on a chord diagram with one chord
equals c. If a chord diagram contains a chord that intersects precisely one other chord, in which
case we call the former chord a leaf, then the value of v on the initial chord diagram is equal
to that on the chord diagram obtained from the initial one by deleting the leaf times (c − 1).
If a chord diagram contains no leaves, then the Chmutov�Varchenko recurrence relations for the
values of v on it hold:

9



− − + = −

− − + = −

By means of these relations, the value of the weight system sl2 on any chord diagram can be
computed recursively. However, complexity of such a computation is exponential: at each step
the diagram is replaced with 5 simpler diagrams.

If a chord diagram is a product of two non-empty diagrams, then the value of the sl2 weight
system on it is a product of values on its factors.

Theorem 2. [5]
(1) The function v de�ned by the recurrence relations above is well-de�ned.
(2) The function v coincides with the weight system constructed from the Lie algebra sl2.

2.2 The problem of the extension of the sl2 weight system on graphs

A function on graphs, which satis�es the 4-term relations, is referred to as a 4-invariant of
graphs. One of the �rst examples of a 4-invariant is the chromatic polynomial for graphs. Every
4-invariant of graphs de�nes a weight system: the value of the weight system on a chord diagram
is given by the value of the 4-invariant on its intersection diagram.

The following assertion allows one to de�ne the value of the weight system sl2 on intersection
graphs.

Theorem 3. [4] The value of the weight system sl2 on a chord diagram is determined by the
intersection graph of the diagram.

The statement above leads to the natural question (S.K. Lando): is there a 4-invariant of
graphs, such that its values on the intersection graphs equals to the values of the sl2-weight
system on them?

In spite of a large number of works on this question, it remains open. Our major result gives
positive answer for this question in case of graphs with ≤ 8 vertices.

Theorem EK21-1. There is a polynomial graph invariant of graphs with up to 8 vertices sat-
isfying the 4-term relations whose values on intersection graphs coincide with that of the weight
system sl2; such a graph invariant is unique.

The question of existence and uniqueness of an extension for graphs with more vertices
remains open and is to be studied further. One of possible ways to approach this case is to de�ne
the sl2-weight system on graphs based on its known values on some series of graphs, see e.g.[23].

The proof of the theorem EK21-1 is based on machine computations.

3 Generating functions of combinatorial objects as solutions

of KP hierarchy

The Kadomtsev�Petviashvili hierarchy (below, KP) is an integrable system of partial di�erential
equations for functions depending on in�nitely many variables. Combinatorial solutions of this
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hierarchy are well described, for example, in [12]. The lowest KP hierarchy equation has the
form

∂2F

∂p2
2

=
∂2F

∂p1∂p3
− 1

2

(
∂2F

∂p2
1

)2

− 1

12

∂4F

∂p4
1

.

In this section we provide the description of the space of solutions of KP hierarchy and study
some families of functions from this the space, which are related to the considered combinatorial
objects .

3.1 Semi-in�nite wedge power

Let V be the in�nite-dimensional space of Laurent series in one variable z. By de�nition, the
half-in�nite wedge power Λ∞/2V is the vector space spanned by the vectors

vµ = zm1 ∧ zm2 ∧ zm3 ∧ . . . , m1 > m2 > m3 > . . . , mi = µi − i,

where µ = (µ1, µ2, µ3, . . . ), µ1 ≥ µ2 ≥ µ3 ≥ · · · ≥ 0, is a partition in which all but �nitely
many parts equal 0. In particular, the empty partition µ = (0, 0, 0, . . . ) = ∅ corresponds to the
vacuum vector v∅ = z−1 ∧ z−2 ∧ z−3 ∧ . . . .

3.2 Schur polynomials

Let µ ` n be a partition. The Schur polynomial Sµ is de�ned as follows.

• For a single-part partition n1 ` n, the Schur polynomial Sn is determined from the decom-
position

S0 + S1z + S2z
2 + S3z

3 + . . . = exp(p1z + p2
z2

2
+ p3

z3

3
+ . . . )

= 1 + p1z +
1

2
(p2

1 + p2)z2 + . . . .

Thus,

S0 = 1

S1 = p1

S2 =
1

2
(p2

1 + p2)

. . . = . . .

Sn =
1

n!

∑
α`n

∏
αi∈α

(αi − 1)!pαi

. . . = . . .

• For any partition µ = (µ1, µ2, µ3, . . . ), µ1 ≥ µ2 ≥ µ3 ≥ . . . , the Schur polynomial Sµ is a
determinant:

Sµ = det ||Sµj−j+i||.
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3.3 The solution space of a KP hierarchy

We say that a function is a solution of a KP hierarchy if it belongs to the space of solutions of
this hierarchy. The space of (formal) solutions of a KP hierarchy can be described by using the
boson�fermion correspondence φ; see [12] for details.

Consider an isomorphism φ : Λ∞/2V → F[p1, p2, . . . ] between the half-in�nite wedge power
and the space of power series in in�nitely many variables. For any partition µ, this isomorphism
takes the basis vector vµ corresponding to µ to the Schur polynomial Sµ. To the half-in�nite
plane spanned by vectors β1(z), β2(z), . . . we assign the vector β1(z)∧β2(z)∧ · · · ∈ Λ∞/2V (this
is Plucker's embedding). We represent every such vector as a linear combination of the basis
vectors of the space Λ∞/2V , divide this linear combination by the coe�cient of the vacuum
vector, and replace each basis vector in it by the corresponding Schur polynomial. The formal
power series in p1, p2, . . . thus obtained forms the space of τ -functions of the KP hierarchy, and
their logarithms form the space of its solutions.

It is well known that any linear combination
∞∑
i=0

aiSi of single-part Schur polynomials in

which S0 has coe�cient 1 is a τ -function of the KP hierarchy.

3.4 Family of KP hierarchy solutions

In [6] the Hopf algebra of graphs was associated with a solution of an integrable Kadomtsev�
Petviashvili hierarchy of partial di�erential equations.

Let C[q1, q2, q3, ...] be a graded Hopf algebra of polynomials, where the weight of the variable
qi equals i, i = 1, 2, 3, ....

Theorem 4. [6] Let I be a graph invariant with values in the ring of polynomials in in�nitely
many variables q1, q2, . . . , I : G 7→ IG(q1, q2, . . . ), extending to a graded homomorphism of Hopf
algebras. Suppose also that all numbers in in de�ned by

in = n!
∑

G,|V (G)|=n

[qn]IG(q1, q2, . . . )

|Aut(G)|

(here |V (G)| denotes the number of vertices in the graph G, [qn]P is the coe�cient of the mono-
mial qn in a polynomial P = P (q1, q2, . . . ), and |Aut(G)| is the order of the automorphism group
of G) are nonzero.

Consider the generating functions

I◦(q1, q2, . . . ) =
∑
G

IG(q1, q2, . . . )

|Aut(G)|
,

I(q1, q2, . . . ) =
∑

G � connected

IG(q1, q2, . . . )

|Aut(G)|
,

where the �rst sum is over all graphs and the second, over all connected graphs. Then, after

rescaling the variables as qn = 2n(n−1)/2(n−1)!
in

pn, the generating function I becomes a solution of
the KP hierarchy with respect to the new variables pi, and I◦ becomes a τ -function of the KP
hierarchy. This τ -function does not depend on the chosen invariant I.

Among the graph invariants satisfying the assumptions of the theorem are many important
ones, such as the Stanley symmetrized chromatic polynomial [21], the Abel polynomial introduced
in [6], and many other invariants. The technique of combinatorial Hopf algebras developed in [1]
makes it possible to construct such invariants from any multiplicative graph invariant.
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Note that the generating functions I◦ and I are connected by the standard relation

I = log I◦.

between a τ -function and the corresponding solution of the hierarchy.
The theorem stated above gives rise to the natural question: What Hopf algebras of combi-

natorial nature other that the Hopf algebra of graphs have the same property? We show that a
similar assertion holds for the Hopf algebra of framed graphs, which was introduced by Lando
in [16], and does not hold for a whole series of other Hopf algebras of a similar nature, including
the Hopf algebras of weighted graphs, of chord diagrams, and of binary delta-matroids.

Let If : Gf → F[q1, q2, . . . ] be a graded homomorphism of the Hopf algebra of framed graphs

to the Hopf algebra of polynomials in in�nitely many variables, and let IfG(q1, q2, . . . ) be the
invariant of the framed graph G being the value of this homomorphism at G.

Consider the generating functions

If◦(q1, q2, . . . ) =
∑
G

IfG(q1, q2, . . . )

|Aut(G)|
,

If (q1, q2, . . . ) =
∑

G � connected

IfG(q1, q2, . . . )

|Aut(G)|
,

here the �rst sum is over all framed graphs and the second is over all connected framed graphs,
and |Aut(G)| denotes the order of the automorphism group of a framed graph G (that is, the
group of the framing-preserving automorphisms of G). As in the case of usual graphs, we have

If = log If◦.

Let us de�ne constants ifn, n = 0, 1, 2, . . . by

ifn = n!
∑

G � connected

|V (G)|=n

[qn]IfG(q1, q2, . . . )

|Aut(G)|
,

where each [qn]P denotes the coe�cient of the monomial qn in the polynomial P = P (q1, q2, . . . ).
The main result of this paper is the following theorem.

Theorem EK19-1. If ifn 6= 0 for all n = 0, 1, 2, . . . , then, after the rescaling qn = 2n(n−1)/2(n−1)!

ifn
pn

of the variables, the generating function If becomes a solution of the KP hierarchy in the variables
pn and If◦ becomes a τ -function of the KP hierarchy. This τ -function is a linear combination
of single-part Schur polynomials.

Remark. This result, as well as its proof, does not change under the replacement of the Hopf
algebra of framed graphs by the Hopf algebra of graphs with vertices marked by the elements
of an arbitrary �nite set rather than by the elements of the set {0, 1} (the multiplication and
comultiplication in this Hopf algebra are de�ned in a similar way). We, however, consider
only the case of framed graphs, because this Hopf algebra is related to invariants of knots and
plane curves. In particular, it is this Hopf algebra which is used in [18] and [15] to construct
extensions of graph invariants to invariants of embedded graphs and binary delta-matroids and,
as a consequence, of knot invariants to link invariants.

Similar to the Theorem EK19-1 statements do not hold for the Hopf algebra of weighted
graphs. A weighted graph is a graph in which every vertex is assigned a positive integer.
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Theorem EK19-2. Let Iw : Gw → F[q1, q2, . . . ] be a graded homomorphism of the Hopf alge-
bra of weighted graphs to the Hopf algebra of polynomials in in�nitely many variables, and let
IwG(q1, q2, . . . ) be the corresponding invariant of a weighted graph G.

Consider the generating functions

Iw◦(q1, q2, . . . ) =
∑
G

IwG(q1, q2, . . . )

|Aut(G)|
,

Iw(q1, q2, . . . ) =
∑

G � connected

IwG(q1, q2, . . . )

|Aut(G)|
,

where the �rst sum is over all weighted graphs, the second sum is over all connected weighted
graphs, and |Aut(G)| denotes the order of the automorphism group of the weighted graph G.

Whatever rescaling of variables qn = anpn, an ∈ F, an 6= 0, n = 0, 1, 2, . . . , the generating
function Iw◦ is not a linear combination of single-part Schur polynomials. Moreover, whatever
rescaling of variables qn = anpn, an ∈ F, the generating function Iw◦ is not a τ -function of the
KP hierarchy in the variables pn and, therefore, Iw is not a solution of the KP hierarchy.

4 Hurwitz numbers

Another set of results of this thesis refers to Hurwitz numbers. Complex Hurwitz numbers and
their various generalizations play key roles in the study of the geometry of moduli spaces of
algebraic curves [8], in the topological recursion theory [7] and in various enumerative problems.
Their real analogues are much less studies, in spite of a broad range of possible applications.
Below we provide some key notions and major theorems from the theory of complex Hurwitz
numbers, then we state the results on the real analogues.

4.1 Complex Hurwitz numbers

Complex Hurwitz numbers enumerate meromorphic functions with a given set of critical values,
rami�cation over each is prescribed. General Hurwitz numbers for a tuple (µ1, ..., µm) of partitions
of d is the sum ∑

f :M→S2

1

|Aut(f)|
,

where the summation is over all rami�ed coverings f : M → S2 of the sphere S2 by the surfaceM
of degree d with prescribed rami�cation types (µ1, ..., µm) over the marked points t1, ..., tm ∈ S2.
The connected Hurwitz number is de�ned in a similar way, but the covering surface is connected.

The simple Hurwitz numbers h◦m,µ enumerate rami�ed coverings of the sphere S2 with a given
set of critical values, rami�cation over one of which is a prescribed partition µ, while all the other
m critical values are simple. The simple Hurwitz numbers are equal

h◦m,µ =
1

n!
|{(τ1, ...τm), τi ∈ C2(Sn)|τm ◦ ... ◦ τ1 ∈ Cµ(Sn)}|,

here C2(Sn) denotes the set of all transpositions in Sn, and Cµ(Sn) is the set of all permutations
of cyclic type µ ` n in Sn. The connected simple Hurwitz numbers are equal

hm,µ =
1

n!
|{(τ1, ...τm), τi ∈ C2(Sn)|τm ◦ ... ◦ τ1 ∈ Cµ(Sn), 〈τ1, ...τm〉 acts transitively}|.
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Consider the exponential generating functions for simple Hurwitz numbers:

H◦(u; p1, p2...) =

∞∑
m=0

∑
µ

h◦m,µpµ1
pµ2

...
um

m!
;

H(u; p1, p2...) =

∞∑
m=0

∑
µ

hm,µpµ1
pµ2

...
um

m!
,

where in each case µ runs over the set of all partitions of all numbers.
A very general combinatorial construction relating connected and disconnected objects jus-

ti�es the following relationship between these two generating functions:

Theorem 5. The following equation holds: H◦ = exp(H).

We have

Theorem 6. [20] The generating function H◦ is a 1-parameter family of τ -functions to the
Kadomtsev�Petviashvili hierarchy and the generating function H is a 1-parameter family of so-
lutions to the KP hierarchy.

Denote by H◦m(p1, p2...) the coe�cient of
um

m!
in generating function H◦(u; p1, p2...).

H◦(u; p1, p2...) =

∞∑
m=0

H◦m(p1, p2...)
um

m!
.

Note, that H◦0 = H◦(0; p1, p2...) = ep1 . The following theorem states the way to compute the
Hurwitz numbers recursively, given this base case.

Theorem 7. [9] (Goulden and Jackson) The generating function H◦ for simple Hurwitz numbers
satis�es the following partial di�erential equation:

∂H◦

∂u
= WH◦,

whereW =
1

2

∞∑
n=1

∑
i+j=n

(
(i+ j)pipj

∂

∂pi+j
+ ijpi+j

∂2

∂pi∂pj

)
is a transposition operator (cut-and-

join operator).

Ñëåäñòâèå 8. The cut-and-join equation can be rewritten as the recurrence H◦m+1 = WH◦m.

Okounkov's theorem 6 is derived from the theorem 7: Schur functions form an eigenbasis of
the transposition operator.

4.2 Real meromorphic functions

Real Hurwitz numbers enumerate real meromorphic functions on real algebraic curves. We intro-
duce di�erent kinds of real Hurwitz numbers,for di�erent classes of real meromorphic functions.

For an antiholomorphic involution τ : C → C, the pair (C, τ) is called a real algebraic curve.
Denote by Cτ the set of �xed points of the involution τ . A real curve (C, τ) is said to be separating
provided C\Cτ is disconnected, and nonseparating otherwise. For a separating real curve, the
complement C\Cτ consists of two connected components. By a framing of a separating real
curve we mean a choice of one of the two components of C\Cτ .
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A real holomorphic mapping of a real curve (C1, τ1) to a real curve (C2, τ2) is a holomorphic
mapping f : C1 → C2, such that f ◦ τ1 = τ2 ◦ f . In particular, a real meromorphic function
on (C, τ) is a real meromorphic mapping from (C, τ) to (CP 1, σ), where σ : CP 1 → CP 1 is the
standard complex conjugation, σ : z 7→ z.

A real meromorphic function f : C → CP 1 is said to be simple if all its �nite critical values
are simple. A real meromorphic function f : C → CP 1 is said to be purely real if all its �nite
critical values are real.

4.3 Case of separating real curves

4.3.1 Purely real simple Hurwitz numbers

Framed real meromorphic function is a real meromorphic function f : (C, τ)→ (CP 1, σ) de�ned
on a framed separating real curve (C, τ). Denote by Cf the connected component, chosen by
the framing.

We are going to de�ne the rami�cation type of a framed real meromorphic function f :
(C, τ) → (CP 1, σ) over a point ∞ ∈ RP 1. The poles of f are split into real ones and pairs of
τ -conjugate nonreal poles. In each pair exactly one of τ -conjugate poles belongs to the domain
Cf . The orders of the τ -conjugate poles form a partition λ = (`1, `2, ...). A real pole of the
function f is said to be positive if the function f increases to the left of the pole, and negative, if
the function f decreases to the left. The orders of positive and negative real poles form partitions
κ+ = (k+

1 , k
+
2 , ...) and κ

− = (k−1 , k
−
2 , ...) respectively. The rami�cation type of f over in�nity is

the triple of partitions µ = (κ+, κ−, λ).
Framed simple purely real connected Hurwitz numbers hR◦m;µ enumerating real meromorphic

functions having rami�cation type µ = (κ+, κ−, λ) over in�nity and m given nondegenerate real
critical values. Formally,

hR◦m;µ =
∑
f

1

#Aut(f)
,

where #Aut(f) denotes the order of the automorphism group of the function f .
We denote by hRm;µ the number of all simple framed purely real meromorphic functions with

connected domain.

4.3.2 Transposition operator

Let us associate with the rami�cation type

µ = (κ+, κ−, λ) = ((k+
1 , k

+
2 , ...), (k

−
1 , k

−
2 , ...), (`1, `2, ...))

the monomial
pµ = p+

k+
1

p+

k+
1

...p−
k−1
p−
k−2
...q`1q`2 ...

in the variables p+
i , p

−
i , qi, i = 1, 2, .... Introduce the generating functions

HR(u; p+
1 , ..., p

−
1 , ..., q1...) =

∞∑
m=0

∑
µ

hRm;µpµ
um

m!
,

HR◦(u; p+
1 , ..., p

−
1 , ..., q1...) =

∞∑
m=0

∑
µ

hR◦m;µpµ
um

m!
;

where the summation on the right runs over all triples of partitions µ = (κ+, κ−, λ) and all
nonnegative values of m.
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Theorem 9. We have HR◦ = exp(HR).

The following theorem introduces the transposition equation for the real case � the analogue
of Goulden-Jackson equation for complex Hurwitz numbers.

Theorem 10. [13] The generating function HR◦ satis�es the di�erential equation

∂HR◦

∂u
= W+(HR◦),

where W+ =
∞∑

i,j=1

(
pīip

+
j

∂
∂pīi+j

+ pīi+j
∂2

∂pīi∂p
+
j

)
+
∞∑
i=1

(
ip+

2i
∂
∂qi

+ qi
∂

∂p+
2i

)
, where, for a positive in-

teger i, notation ī stands for the sign + provided i is even, and for the sign − otherwise.

The action of the operatorW+ on the initial condition HR◦(0, p±1 , p
±
2 , ...) = ep

+
1 +p−1 +q1 allows

one to compute as many terms of the power series HR◦ as we like,

HR◦(u, p±1 , p
±
2 , ...) = euW

+

ep
+
1 +p−1 +q1 .

4.3.3 Action of the transposition operator

Pick a �nite set N of n elements and a representation of N as a disjoint union N = N+ tN− of
two subsets N+ and N− consisting of n+ and n− elements, respectively, n+ + n− = n. A state
is a partition of N = {1, 2, 3, ..., n} into a disjoint union of one and two-element subsets such
that each two-element subset contains one element from N+ and one from N−. A transition
is an ordered pair of states. The type of a transition is its orbit under the action of the group
Sn+ × Sn− acting on the set of transitions by separately permuting the elements in N+ and N−.

The algebra types of transitions An+,n− is introduced in [13], and the di�erential operator
on the right side of the transposition equation is interpreted as an operator of multiplication
by the transposition class in this algebra. It is shown, the operator W+ on the vector space
An+,n− is self-adjoint with respect to a non-degenerate scalar product on An+,n− , hence it has
an eigenbasis. Explicit computation of an eigenbasis of the operator W+ is tedious, since it
requires computations of the roots of polynomials of increasing powers, with ration coe�cients;
instead of computing the eigenvalues and �nding the eigenbasis of the operator W+ we represent
it in the block form, which allows to compute the real Hurwitz numbers e�ciently.

An+,n− algebra can be presented as a direct sum of subspaces, generated by transitions,
such that their left states contain t two-element subsets, An+,n− = ⊕tAn+,n−,t. The subspaces
An+,n−,t are invariant with respect to the action of the operator W+.

In sections 3.1.3, 3.1.4 of the major part of the thesis we study properties of representations
of a product of two symmetric groups in the algebra An+,n− , which is isomorphic the algebra of
polynomials in variables p+

k , p
−
k , ql. We describe the decomposition of the transposition operator

in the direct sum of operators, corresponding to isotypical decompositions of representations.
We show that such operators written in an appropriate basis are matrices with integer entries
and then provide the explicit ways to compute them.

Theorem EK23-3. Action of the operator W+ on the space of polynomials of degree n = n+ +
n− can be decomposed as a direct sum of its action on the subspaces of isotypical representations
of the group Sn+ × Sn− .

In sections 3.1.1, 3.1.2 we describe the methods to decompose the action of the operator W+

as a direct sum of its actions on the isotypical subspaces, in section 3.1.5 we provide an example
of such decomposition for the case of A2,4 algebra.
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4.4 The case of not necessarily separating real curves

4.4.1 Purely real simple Hurwitz numbers

We are going to de�ne the rami�cation type of the real meromorphic function f . The poles of
f are split into real ones and pairs of complex-conjugate nonreal poles. The sign of a real pole
is well de�ned for a pole of even order only: it is positive if the corresponding critical point is a
local minimum, and negative in case of local maximum. Thus, the rami�cation type of function
f at in�nity is a quadruple

µ = (κ+, κ−, κ, λ) = ((k+
2 , k

+
4 , ...), (k

−
2 , k

−
4 , ...), (k1, k3, ...), (`1, `2, `3, ...)),

where κ+ and κ− are the partitions formed by the even parts corresponding to the orders of
positive and negative real poles, respectively, κ is the partition formed by odd parts corresponding
to the orders of poles of odd orders, and λ is a partition formed by the orders of pairs of conjugate
non-real poles.

Simple purely real Hurwitz numbers h̃R◦m;µ enumerating real meromorphic functions having
rami�cation type µ = (κ+, κ−, κ, λ) over in�nity and m given nondegenerate real critical values.
We denote by h̃Rm;µ the simple purely real connected Hurwitz numbers with connected domain.

4.4.2 Transposition operator

Let us associate with the rami�cation type µ = (κ+, κ−, κ, λ) the monomial

pµ = p+

k+
2

p+

k+
4

...p−
k−2
p−
k−4
...pk1

pk3
...q`1q`2 ...

in the variables p+
2i, p

−
2i, p2i−1, qi, i = 1, 2, .... The generating functions in the case of not neces-

sarily separating real curves have the form

H̃R(u; p+
2 , ..., p

−
2 , ..., p1..., q1...) =

∞∑
m=0

∑
µ

h̃Rm;µpµ
um

m!
,

H̃R◦(u; p+
2 , ..., p

−
2 , ..., p1..., q1...) =

∞∑
m=0

∑
µ

h̃R◦m;µpµ
um

m!
;

where the summation runs over all quadruples of partitions µ = (κ+, κ−, κ, λ) and all nonnegative
values of m.

Theorem 11. [19] [13] The generating function H̃R◦ satis�es the di�erential equation

∂H̃R◦

∂u
= W̃R(H̃R◦),

where

W̃R =
∑
i,j

(
p2i−1p2j−1

∂

∂p−2i+2j−2

+ p2i−1p
+
2j

∂

∂p2i+2j−1
+ p+

2ip
+
2j

∂

∂p+
2i+2j

)
+

+
∑
i,j

(
2p2i+2j−1

∂2

∂p2i−1∂p
+
2j

+
1

2
p−2i+2j−2

∂2

∂p2i−1∂p2j−1
+ 2p+

2i+2j

∂2

∂p+
2i∂p

+
2j

)
+

∞∑
i=1

(
ip+

2i

∂

∂qi
+ qi

∂

∂p+
2i

)
,

with the initial conditions:

H̃R◦(0; p1, p2, . . . , q1, . . . ) = ep1+q1/2.
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4.4.3 Action of the transposition operator

Denote by Nn a �nite set Nn = {1, 2, 3, ..., n}. A state is the involution of the set Nn, that is, the
partition of Nn into a disjoint union of one and two-element subsets. A transition is an ordered
pair of states. The type of a transition is its orbit under the action of the group Sn on the set
Nn by permuting the elements.

The algebra types of transitions An is introduced in [19], and the di�erential operator W̃R is
interpreted as an operator of multiplication by the transposition class in this algebra.

Theorem EK23-6. The operator W̃R on the vector space An is self-adjoint with respect to the
scalar product de�ned on An.

Ñëåäñòâèå 12. The operator W̃R of degree n is diagonalizable.

Explicit computation of the eigenbasis for the operator W̃R is tedious and requires �nding
the roots of polynomials of increasing powers with rational coe�cients; instead of computing the
eigenvalues and the eigenbasis of the operator W̃R we present is in the block form, which allows
to compute the Hurwitz numbers e�ciently.

The algebra An can be decomposed in the direct sum of subspaces, generated by transitions,
such that their left states contain m one-element subsets, An = ⊕mAn,m. The subspaces An,m
are invariant with respect ot the action of the operator W̃R.

In sections 3.2.3, 3.2.4 of the major part of the thesis we study properties of representations of
the symmetric group in the algebra An, isomorphic to the algebra of polynomials in the variables
pk, p

+
k , p

−
k , ql. We describe the decomposition of the transposition operator as a direct sum of

operators, corresponding to the isotypical decompositions of representations of the symmetric
group. We show that such operators may be written in an appropriate basis as matrices with
integer entries and provide explicit ways to compute them.

Theorem EK23-7. The action of the operator W̃R on the space of polynomials of the given
degree n can be decomposed as a direct sum of its actions on the subspaces of isotypical repre-
sentations of the group Sn.

In sections 3.2.1, 3.2.2 we describe methods to construct the decomposition of the operator
W̃R as a direct sums of its actions on the isotypical subspaces, and in section 3.2.5 we provide
an example of such decomposition in the case of A6 algebra.
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5 Main results of the thesis

Main results of the thesis are stated in the following theorems.

Theorem EK19-1. Let If be an invariant of framed graphs taking values in the ring of polyno-
mials in in�nite set of variables q1, q2, . . . , I

f : Gf 7→ F(q1, q2, . . . ), such that it can be extended
to a graded homomorphism of Hopf algebras.

Let us de�ne constants ifn, n = 0, 1, 2, . . . by

ifn = n!
∑

G � ñâÿçíûé

|V (G)|=n

[qn]IfG(q1, q2, . . . )

|Aut(G)|
,

where each [qn]P denotes the coe�cient of the monomial qn in the polynomial P = P (q1, q2, . . . ).
The main result of this paper is the following theorem.

Consider the generating functions

If◦(q1, q2, . . . ) =
∑
G

IfG(q1, q2, . . . )

|Aut(G)|
,

If (q1, q2, . . . ) =
∑

G � ñâÿçíûé

IfG(q1, q2, . . . )

|Aut(G)|
,

here the �rst sum is over all framed graphs and the second is over all connected framed graphs.

If ifn 6= 0 for all n = 0, 1, 2, . . . , then, after the rescaling qn = 2n(n−1)/2(n−1)!

ifn
pn of the variables,

the generating function If becomes a solution of the KP hierarchy in the variables pn and If◦
becomes a τ -function of the KP hierarchy.

Theorem EK19-2. Let Iw : Gw → F[q1, q2, . . . ] be a graded homomorphism of the Hopf alge-
bra of weighted graphs to the Hopf algebra of polynomials in in�nitely many variables, and let
IwG(q1, q2, . . . ) be the corresponding invariant of a weighted graph G.

Consider the generating functions

Iw◦(q1, q2, . . . ) =
∑
G

IwG(q1, q2, . . . )

|Aut(G)|
,

Iw(q1, q2, . . . ) =
∑

G � connected

IwG(q1, q2, . . . )

|Aut(G)|
,

where the �rst sum is over all weighted graphs, the second sum is over all connected weighted
graphs, and |Aut(G)| denotes the order of the automorphism group of the weighted graph G.

Whatever rescaling of variables qn = anpn, an ∈ F, an 6= 0, n = 0, 1, 2, . . . , the generating
function Iw◦ is not a linear combination of single-part Schur polynomials. Moreover, whatever
rescaling of variables qn = anpn, an ∈ F, the generating function Iw◦ is not a τ -function of the
KP hierarchy in the variables pn and, therefore, Iw is not a solution of the KP hierarchy.

Theorem EK21-1. There is a polynomial graph invariant of graphs with up to 8 vertices sat-
isfying the 4-term relations whose values on intersection graphs coincide with that of the weight
system sl2; such a graph invariant is unique.

Theorem EK23-6. The operator W̃R acting on the vector space An is self-adjoint with respect
to the scalar product de�ned on An.
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Theorem EK23-3. The action of the transposition operator W+ in the case of separating real
curves on the space of polynomials of degree n = n+ + n− can be decomposed as a direct sum of
its action on the subspaces of isotypical representation of the group Sn+ × Sn− .

It follows that for the �xed n+ and n− the computation of the homogeneous component of

the generating function ep
+
1 +p−1 +q1 can be carried our using the following algorithm:

1. decompose the action of the group Sn+ × Sn− on the space of states Vn+,n− into the
irreducible;

2. for each of the subalgebras An+,n−,t ⊂ An+,n− of the transition algebra deduce its decom-
position as direct sum of algebras of endomorphisms of isotypical subspaces of irreducible
representations of the group Sn+ × Sn− ;

3. decompose the action of the transposition operator W+ as a direct sum of actions by
multiplication in each of the algebras of endomorphism of isotypical subspaces;

4. decompose the initial condition over the isotypical subspaces;

5. using the known characteristic polynomial of the restriction of the operator on the isotypical
subspace, construct the rational generating function for real Hurwitz numbers, determined
by the corresponding isotypical subspace.

Theorem EK23-7. The action of the transposition operator W̃R in the case of not necessarily
separating real curves on the space of polynomials of a given degree n can be decomposed as a
direct sum of its actions on the subspaces of isotypical representations of the group Sn.

From the above the computation of the homogeneous component of degree n for the generating

function H̃R◦ = euW̃
R
ep1+q1/2 can be carried out using the following algorithm:

1. decompose the action of the group Sn on the space of spates Vn into the irreducible;

2. for each of the subalgebras An,m ⊂ An of the transition algebra deduce its decomposi-
tion as a direct sum of algebras of endomorphisms of isotypical subspaces of irreducible
representations of the group Sn;

3. decompose the action of the transposition operator W̃R as a direct sum of actions by
multiplication in each of the algebras of the endomorphisms of isotypical subspaces;

4. decompose the initial conditions over the isotypical subspaces;

5. using the known characteristic polynomial of the restriction of the transposition operator on
the isotypical subspace, construct a rational generating function for real Hurwitz numbers,
de�ned by the corresponding isotypical subspace.

6 The main results of the thesis are presented in these pa-

pers
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