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Introduction

The present dissertation is dedicated to the study of certain aspects of the
geometry of (hyper-)complex nilmanifolds. Nilmanifolds are compact quotients
of nilpotent Lie group G by cocompact lattice Γ. We denonote them N = Γ\G.

One of the goals of this dissertation is to study submanifolds in complex
nilmanifolds, in particular, the presence or absence of complex curves. This
question pertains to the field of classical algebraic and complex geometry; how-
ever, solving it using standard methods presents significant difficulties.

Nevertheless, nilmanifolds have a unique property: questions about their
geometry can be translated into the language of the theory of nilpotent Lie
algebras. To understand the geometric structure of nilmanifolds, we study the
corresponding nilpotent Lie algebras, which are finite-dimensional vector spaces.
The central tenet is that the geometry of the compact, complex nilmanifold Γ\G
can be described by the linear algebra of g = Lie(G), complex structure operator
I ∈ End(g) and the rational subalgebra of g generated by log Γ ⊂ g.

The (hyper-)complex structure on a nilmanifold Γ\G is induced by the cor-
responding left-invariant (hyper-)complex structure on the Lie group, which is
identified with a complex structure operator I ∈ End(g) on the corresponding
Lie algebra g. In the work [AV], A. Abasheva and M. Verbitsky considered
hypercomplex nilmanifolds with an abelian hypercomplex structure (one for
which the

√
−1-eigenspace of the complex structure I, induced by the quater-

nions, form an abelian Lie subalgebra). Abelian complex structures were first
described in the work of M. L. Barberis [Ba]. The study [AV] provided a char-
acterization of the geometry of submanifolds in nilmanifolds with an abelian
hypercomplex structure.

In the first part of this dissertation, we develop the approach outlined in
[AV]. We consider complex nilmanifolds, with a complex structure induced by
quaternions and the corresponding Lie algebra is H-solvable (Definition 0.0.2).

The condition of H-solvability of the corresponding Lie algebra is of inde-
pendent interest. For example, any Lie algebra with an abelian hypercomplex
structure is H-solvable. Less obvious is the existence of H-solvable Lie algebras

1



whose hypercomplex structure is not abelian. We provide such an example using
the quaternionic double construction described in [SV].

The question of the H-solvability of a hypercomplex Lie algebra is the subject
of study in the second part of the dissertation. We consider hypercomplex
nilmanifolds with flat Obata connection. The Obata connection is the unique
torsion-free connection in the tangent bundle that preserves the hypercomplex
structure [Ob], [K].

Curves in Hypercomplex Nilmanifolds

Before delving into the research topic, we briefly consider the reasons for our
interest in nilmanifolds, as well as highlighting the reasoning in the study of the
existence of curves.

The question of the existence of low-dimensional objects very often holds
key importance in the field of algebraic geometry. For example, when studying
moduli spaces of vector bundles or sheaves, we look for curves in algebraic
varieties. However, there are manifolds which do not contain curves. Even in
the Enriques-Kodaira classification, some surfaces lack complex curves, leaving
a gap in the classification that persists to this day. Let’s briefly recall some
results in this area.

Among compact complex surfaces, an important class is that of surfaces of
class VII. These are non-Kähler surfaces with Kodaira dimension −∞ and first
Betti number b1 = 1 [In]. A minimal surface S of class VII is called class VII0.
In the works [Bog1], [Bog2], it was shown and then clarified in [Te], [LYZ], that
S with second Betti number b2(S) = 0 is biholomorphically equivalent to a Hopf
surface or an Inoue surface.

A Hopf surface H is a class VII0 surface with the universal cover C2\{0}.
Hopf surface can be obtained as the quotient H ∼= C2\{0}/⟨γ⟩ by a cyclic group
generated by a holomorphic contraction γ. A Hopf surface always contains
at least one complex curve, for example, consider an elliptic curve C = C∗ ×
{0}/⟨γ⟩.

Inoue surfaces S are class VII0 surfaces with the universal cover C × H,
where H is the upper half-plane. Inoue surfaces S are biholomorphic to C×H/Γ,
where Γ is a discrete subgroup acting holomorphically on H × C. Inoue showed
that these surfaces have zero algebraic dimension and contain no complex curves.
If we assume the Global Spherical Shell conjecture, then they are the only non-
Kähler surfaces without curves.

A Global Spherical Shell (GSS) on a complex surface is an open subset
biholomorphic to a neighborhood of S3 in C2\0 such that its complement is
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connected. The Global Spherical Shell conjecture claims that all surfaces
of class VII0 with positive second Betti number contain a GSS. The hypothesis
has been proven for b2 = 0 and b2 = 1 by A. Teleman in [Te2]. Furthermore,
Dloussky, Oeljeklaus, and Toma showed that the presence of a GSS in a surface
S implies that all class V IIb2>0

0 surfaces contain exactly b2(S) rational curves
[DOT].

There is a higher-dimensional generalization of Inoue surfaces. They are
related to certain number fields and are called Oeljeklaus-Toma manifolds.
For many number fields, these manifolds do not contain subvarieties at all
[OV1],[Ve].

We study compact complex non-Kähler manifolds without curves. We have
already seen an example: an Inoue surface. In particular, both Inoue surfaces
and Oeljeklaus-Toma manifolds fall under the category of solvmanifolds. These
are smooth manifolds obtained from a solvable Lie group. All solvmanifolds are
fibered over a torus with a fiber diffeomorphic to a nilmanifold [Mos]. Usually,
it is hard to study solvmanifolds straightforward, so we deal with nilmanifolds
instead. It should be noted that complex nilmanifolds, except compact tori, do
not admit Kähler structure [BG].

To obtain a complex nilmanifold without curves, we recall a standard tech-
nique called the twistor deformation.

A smooth manifold X is called hypercomplex if there exist three integrable
almost complex structures I, J, and K in End(TX) satisfying I2 = J2 = K2 =
−Id and IJ = −JI = K. For any (a, b, c) ∈ S2, the linear combination L :=
aI + bJ + cK defines another complex structure on X. This results in a CP 1-
family of complex structures. It is called a twistor deformation.

Using the twistor deformation and foliation theory, we prove the following
theorem:

Theorem 0.0.1: Let (N, I, J,K) be a hypercomplex nilmanifold, and sup-
pose the corresponding Lie algebra is H-solvable (Definition 0.0.2). Then, for
a generic complex structure L induced by quaternions, the complex manifold
(N,L) has no complex curves1.

First, we introduce the definition of H-solvable Lie algebra.

A hypercomplex structure on a Lie algebra g is a triple of complex struc-
ture operators I, J, and K on g, satisfying the quaternionic relations.

1Here, generic means outside a countable set
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Let g be a nilpotent hypercomplex Lie algebra. We define inductively the
H-invariant subalgebras of the Lie algebra as follows:

gH
i := H[gH

i−1, g
H
i−1], (0.0.1)

where gH
0 = Hg = g and gH

1 := H[g, g] = [g, g] + I[g, g] + J [g, g] +K[g, g].

Definition 0.0.2: A hypercomplex nilpotent Lie algebra g is called H-solvable
if the sequence (0.0.1) converges to zero.

We will consider left-invariant foliations on the Lie group G, generated by
subalgebras of the Lie algebra g.

For the reader’s convenience, we recall the definition of a foliation.

A subbundle on a smooth manifold X is called a distribution Σ ⊂ TX. A
distribution is called involutive if it is closed under the Lie bracket. A leaf
of the distribution Σ is the maximal connected immersed submanifold L ⊂ N
such that L is tangent to Σ at every point. If Σ is involutive, then the set of all
its leaves is called a (smooth) foliation.

For each i ∈ Z>0, consider the left-invariant foliation Σi on the Lie group G
generated by the subalgebra gH

i .

Theorem 0.0.3: Let CL be a complex curve in the complex nilmanifold (N,L),
where L ∈ CP1 is a generic complex structure. Suppose that CL is tangent to
the foliation Σi−1. Then it is also tangent to Σi.

Corollary 0.0.4: Let (N, I, J,K) be a hypercomplex nilmanifold, and suppose
the corresponding Lie algebra is H-solvable. Then, for a generic complex struc-
ture L induced by the quaternions, the complex manifold (N,L) has no complex
curves.

H-solvable Lie Algebras and Algebraic Monodromy

The second part of the dissertation is devoted to the question of the H-solvability
of the Lie algebra of a hypercomplex nilmanifold. We work with hypercomplex
nilmanifolds which admit flat Obata connection. The Obata connection is the
unique torsion-free connection on the tangent bundle that preserves the hyper-
complex structure.

Recall that manifolds with a flat connection in a tangent bundle are called
(flat) affine manifolds.
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Let X be a compact affine manifold whose linear holonomy representation
is unipotent. Then X admits a parallel volume form. The partial inverse also
holds and was proven by Goldman, Fried, and Hirsch [FGH, Theorem A]:

Theorem 0.0.5: Let X be a compact affine manifold with a parallel volume
form. Assume the affine holonomy group is nilpotent. Then the linear holonomy
representation is unipotent.

We use the following reformulation of Theorem 0.0.5:

Theorem 0.0.6: Let X be a compact affine manifold with a parallel volume
form, and let its fundamental group be nilpotent. Then its monodromy repre-
sentation is unipotent.

Nilmanifolds are K(Γ, 1)-spaces and π1(N) = Γ, which is, obviously, nilpo-
tent. To be able to apply Theorem 0.0.5, we also need a parallel volume form
on a nilmanifold. Its existence guaranteed by the following theorem:

Theorem 0.0.7: [BDV, Theorem 3.2] Let N = Γ\G be a hypercomplex nil-
manifold, n = dimC G. Then G admits a left-invariant non-zero holomorphic
section Ω of the canonical bundle Λn,0G. Moreover, ∇Ω = 0, where ∇ is the
Obata connection.

Note that Theorem 0.0.6 is only valid for nilmanifolds, that is, when the
corresponding Lie algebra has a rational structure, i.e. rational subalgebra
gQ ⊂ g, such that gQ ⊗ R = g.

In the case when a Lie group G admits a left-invariant hypercomplex struc-
ture with a flat Obata connection, we might attempt to prove that gH

1 is a proper
subalgebra of g, and then apply induction as g is finite-dimensional. However,
we must be concerned with the existence of a rational structure in gH

i , which
is not guaranteed to exist, hence it is not possible to apply Theorem 0.0.5.
Consequently, there is no way to resolve this issue directly via induction.

Instead, we use a different approach.

We introduce the notion of algebraic monodromy:

Definition 0.0.8: Let g be a Lie algebra, and∇ : g−→ End(g) an R-linear map.
An algebraic monodromy group Hola∇ is a subgroup of GL(B) generated
by the matrix exponents:

Hola∇ := ⟨et∇X | t ∈ R, for allX ∈ g ⟩.
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Informally, it allows us to measure how much the monodromy action of the
flat connection differs from the action of the differential of the left shift on the
Lie group. Using this notion, we prove the following theorem, which is a key
ingredient of the proof of main result:

Theorem 0.0.9: Let Γ\G be a hypercomplex nilmanifold with the flat Obata
conection ∇ on TG. Then the action of the algebraic holonomy on g = Lie(G)
is unipotent.

As a consequence of Theorem 0.0.9, we have the following:

Theorem 0.0.10: The Lie algebra g = Lie(G) of a hypercomplex nilmanifold
Γ\G with a flat Obata connection is H-solvable.

Lie pencils

In this dissertation, the comprehensive resolution of the question of H-solvability
remains an open challenge. This section addresses an issue that eludes complete
resolution. We announce a novel perspective on the problem concerning H-
solvability.

We introduce the following definitions:

Definition 0.0.11: Let V be a vector space, and S ⊂ Hom(Λ2V, V ) a subspace,
such that for any w ∈ S, the map w(x, y), denoted in the sequel as [x, y]w,
satisfies the Jacobi condition [[x, y]w, z]w +[[y, z]w, x]w +[[z, x]w, y]w = 0. Then
S is called a Lie pencil. When dimS = k, we call it a k-pencil.

Definition 0.0.12: A Lie pencil S ⊂ Hom(Λ2V, V ) is S-solvable if V admits
a filtration V = V0 ⊃ V1 ⊃ ... ⊃ Vn = 0 such that [Vi, Vi]w ⊂ Vi−1 for all w ∈ S.

Question 0.0.13: (“the main conjecture”)
Let S ⊂ Hom(Λ2V, V ) be a Lie pencil. Assume that the Lie algebra (V, [·, ·]w)
is nilpotent for all w ∈ S. Will it follow that that (V, S) is S-solvable?

Remark 0.0.14: When dimS = 2, the answer is affirmative.

We are interested in this conjecture only when S = H and the Lie pencil
comes from a hypercomplex structure on a Lie algebra, but it might be true in
all generality.
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Theoretical significance of the results

The results of this study have interesting implications and can be built upon
and expanded. One immediate effect is the creation of many new examples of
compact complex manifolds without complex curves. Additionally, another out-
come partially characterizes hypercomplex nilmanifolds that have a flat Obata
connection.

Practical significance of the results

The dissertation is entirely theoretical in nature.

Personal contribution

All of the main results were obtained by the author.

Approbation of the results of the dissertation research

1. Seminário de Geometria Diferencial, talk “Complex curves in hypercom-
plex manifolds”, IMPA, Rio de Janeiro, Brazil;

2. Geometric Structures and Moduli Spaces, poster ”Complex curves in hy-
percomplex nilmanifolds with H-solvable Lie algebras”, UNC, Cordoba,
Argentina;

3. Brazil-China Joint Mathematical Meeting, poster “Flat hypercomplex nil-
manifolds are quaternionic-solvable”, Foz do Iguacu, Brazil, July, 2023;

4. Estruturas geométricas em variedades, talk “Flat hypercomplex nilmani-
folds are H-solvable ”, IMPA, Rio de Janeiro, Brazil, August, 2023;

5. Geometry Seminar, talk “Quaternionic-solvable hypercomplex nilmani-
folds”, UFRJ, Rio de Janeiro, Brazil, November, 2023;

6. Algebraic Geometry, Lipschitz Geometry and Singularities, talk “Complex
curves in nilmanifolds”, Pipa, Brazil, December 2023

7. Conference on Singularity and Birational Geometry, talk “Complex curves
in nilmanifolds”, Yonsei University in Seoul, Korea, January, 2024.

8. Special Holonomy and Geometric Structures on Complex Manifolds, poster
“Complex curves in hypercomplex nilmanifolds”, IMPA Rio de Janeiro,
Brazil, March 2024

9. Algebraic geometry seminar, talk “Complex curves in nilmanifolds”, HSE,
Moscow, Russia, April 2024
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10. Algebra seminar, talk “Complex curves in hypercomplex nilmanifolds”,
KU Leuven, Leuven, Belgium, May 2024

Publications

The results of the thesis are published in two articles:

a. Yulia Gorginyan, Complex curves in hypercomplex nilmanifolds with H-
solvable Lie algebras, Journal of Geometry and Physics, Volume 192, Oc-
tober 2023, 104900

b. Yulia Gorginyan, Flat hypercomplex nilmanifolds are H-solvable, Func-
tional Analysis and Its Applications, Volume 58, 3 issue, 2024
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