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1 Introduction

The exploration of 3D computer vision seeks to bridge the gap between digital and physical
worlds, providing a detailed understanding of three-dimensional spaces from two-dimensional
data. Despite significant progress, a primary challenge remains: improving the generalization
capabilities of 3D computer vision models to perform reliably across diverse, unseen environ-
ments. This thesis focuses on this challenge, aiming to advance the field by enhancing the
adaptability and efficiency of models across various 3D computer vision tasks. The goal of
this research is to boost the capabilities of 3D computer vision systems in tasks such as generat-
ing synthetic data, creating more accurate 3D reconstructions, rendering new viewpoints more
efficiently, and estimating human poses with greater precision.

1.1 Background and motivation

When solving the main interconnected tasks of 3D computer vision, each of which is critically
important for interpreting and reconstructing the complex nature of the surrounding three-
dimensional world, it is necessary for the corresponding methods to have good generalization
capabilities. Among these tasks are the initial data collection and then registration, reconstruc-
tion, dynamic interpretation, and visualization of 3D environments. At each step, models need
not only to understand and process large volumes of data, but also to work accurately and effi-
ciently in scenarios for which they were not specifically trained.

At the core of 3D computer vision lies the crucial process of reconstruction [24, 83, 58, 59],
where raw data is transformed into detailed 3D models, both static and dynamic. The initial
step, data acquisition, forms the foundational stage where raw visual information is gathered
using various sources such as RGB cameras or synthetic data generation techniques. All further
steps and the final results of the analysis and reconstruction depend on the quality of the data.

Following data acquisition, the next critical step is registration, where different data sets are
spatially aligned and integrated [5]. This step ensures that the subsequent processing stages,
such as 3D reconstruction, are based on a unified dataset that accurately reflects the geometric
and spatial relations within the captured scene.

The reconstruction phase begins after registration. In this stage, aligned data is processed
to create a 3D digital model. Algorithms interpret and merge the data using techniques like
triangulation or surface reconstruction [28, 40], resulting in a detailed three-dimensional rep-
resentation. Outputs range from point clouds to complex formats like mesh models, and even
textured 3D models that offer realistic surface details. An important output of this process is
Computer-Aided Design (CAD) models, crucial in precision-focused fields like engineering and
architecture. Traditional approaches often struggle with high-resolution and noisy data.

The task of novel view synthesis often occurs either after the reconstruction process or con-
currently with it. This involves generating realistic images from viewpoints not originally cap-
tured during data acquisition. A significant challenge lies in developing a model capable of
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effectively generalizing to unseen scenes and rapidly processing input data for rendering new
views.

Accurately interpreting dynamic 3D environments, particularly those involving human in-
teractions, is vital. This is especially relevant in applications like human pose estimation for
augmented reality and virtual fitting rooms. Unlike traditional methods, which typically focus
on identifying key body joints or landmarks [91], dense human pose estimation [3] provides
a comprehensive mapping of the human form, generating a detailed per-pixel map of the hu-
man body and assigning each pixel of the person in the image to a corresponding 3D point on
a body surface model [51]. This allows for a finer understanding of human posture and move-
ment. However, current models are slow, hindering their application in real-world interactive
scenarios.

Lastly, in the realm of human-centric 3D reconstruction, crucial for virtual avatar creation,
there is a challenge to perform reconstruction from a single image, departing from traditional
methods that rely on multiple images [2, 25, 4]. This requires a model to generalize well across
identities.

1.2 Relevance of research

The field of 3D computer vision has seen significant advances yet continues to confront chal-
lenges that limit its effectiveness and broader applicability, particularly in generalizing across
diverse and complex environments.

To address the challenges in generalizing across diverse environments, there have been sig-
nificant developments in the use of synthetic data. While generative learning has enabled the
creation of realistic synthetic data, video generation remains a resource-intensive task that often
fails to achieve the desired quality [52].

In geometric modeling, methods for detecting features of 3D objects (such as sharp feature
curves curves, surface lines along which the normal field experiences discontinuities) require
careful parameter tuning for each model, thus complicating scalability [90, 16]. Standard strate-
gies, such as surface segmentation and patch fitting, although robust to noise, still lack flexibility
and computational efficiency [50, 9]. Similarly, machine learning models for feature classifica-
tion are ineffective when working with noisy data [27, 31].

Traditional methods in novel view synthesis, including view interpolation and light field
rendering, often falter with complex geometries and diverse lighting conditions [47, 76]. Ad-
vanced techniques such as Neural Radiance Fields (NeRF) and voxel-based methods face is-
sues with high computational demands and optimization [56, 38]. Neural Point-Based Graphics
(NPBG) improves rendering quality but needs extensive optimization for each scene, limiting
its usability [1].

Current human pose estimation models, robust in their performance, are unsuitable for mo-
bile deployment due to their significant computational requirements [3, 98]. Although advance-
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ments like Slim DensePose and uncertainty estimation techniques exist, they have yet to suffi-
ciently optimize for mobile usage in terms of size and speed [62, 61].

Furthermore, while 2D-focused techniques in head appearance modeling are advanced, 3D
modeling often depends on restrictive data like 3D scans [39, 17, 74]. New methods using im-
plicit representations such as NeuS and VolSDF show potential yet struggle with scene adapta-
tion [86, 63, 99, 41].

These challenges validate the need for this research to enhance the robustness, efficiency,
and practicality of 3D computer vision technologies, addressing existing limitatiions to better
align with the requirements of real-world applications.

1.3 Research Objectives and Scope

The goal of this thesis is to develop and implement new methods and approaches aimed at
improving the generalization capabilities of models in 3D computer vision tasks. To achieve
this goal, the following objectives were set:

1. Investigate the possibility of improving model generalization for video generation under
computational resource constraints during training.

2. Develop a method for predicting sharp geometric features in 3D models with enhanced
generalization capabilities when working with new, previously unseen 3D models of dif-
ferent scales and with scanning noise.

3. Develop an approach for novel view synthesis, effectively generalizable to new scenes
without requiring intensive optimization.

4. Improve model generalization for dense human pose estimation, achieving high perfor-
mance and quality under strict model size and speed constraints.

5. Improve the generalization ability of algorithms for 3D head portrait reconstruction so
that they work effectively with a single input image.

1.4 Results

The work is based on the use of methodology and methods of machine learning, deep learning,
and computer vision.

Reliability of the results is ensured by the correct application of validated scientific tools
for research and analysis. The developed algorithms were experimentally tested on various
tasks using both synthetic and real datasets. Detailed reports on the conducted experiments,
open-source code, and access to the data allow for the reproduction of the obtained results. The
research has been published in leading scientific journals and presented at computer vision
conferences.
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Key points presented for defense:

1. Investigation of the possibility of video modeling in a discrete latent space.

2. A regression method for localizing special curves of 3D objects, which reliably handles
noisy, high-resolution 3D data and outperforms existing methods.

3. A model for generating new views of a scene from a set of images of that scene, which
effectively generalizes to new scene data without additional training.

4. A model for efficiently solving the task of dense human pose estimation, which can be
deployed on a mobile device.

5. Adaptation of the 3D head reconstruction algorithm based on a single image for use with
unknown camera parameters.

1.5 Importance of work

In this dissertation, we propose new approaches that enhance the generalization of solutions
to 3D computer vision tasks at various stages of 3D model construction. We introduce a new
method for video generation [68] that performs comparably to existing methods but requires
significantly fewer computational resources for model training. We developed a model for pre-
dicting sharp features from three-dimensional point clouds [53], trained on synthetic data with
minimal retraining on real data, which provides accurate predictions for real 3D objects. We
propose a model for novel view synthesis [66] that does not require retraining on data from a
new scene and achieves comparable quality and rendering speed up to 22 frames per second,
which is significantly higher than the speed of existing approaches. For real-time dense human
pose estimation, we developed a model [67] that achieves an optimal balance between perfor-
mance and quality, allowing the model to be deployed on a mobile device. We have developed
a model for three-dimensional reconstruction of a human head, which can operate from the
data of a single photograph and effectively generalizes to data from new people [8].

These enhancements not only broaden the practical applications in augmented and virtual
reality, robotics, and other sectors but also underscore the importance of this work in pushing
the boundaries of generalization within the 3D computer vision field.
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2 Publications and approbation of the research

This thesis is based on the following five main research papers, all of which are indexed by
SCOPUS and Web of Science.

First-tier publications

1. Rakhimov, R.*, Ardelean, A. T.*, Lempitsky, V., & Burnaev, E. (2022). NPBG++: Ac-
celerating Neural Point-Based Graphics. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 15969-15979). CVPR 2022. CORE A*.
https://doi.org/10.1109/cvpr52688.2022.01550
Summary: We present, NPBG++, an advanced model for novel view synthesis (NVS) to
generate photorealistic views of a scene from limited image sets. It introduces a stream-
lined approach that predicts neural descriptors from source images in a single pass, elim-
inating the need for extensive per-scene optimization. This method not only reduces the
scene fitting time significantly but also improves rendering quality. Utilizing a combi-
nation of U-Net-based feature extraction, permutation-invariant descriptor aggregation,
and a refiner network, NPBG++ provides efficient and high-quality rendering. Empirical
results show that NPBG++ performs comparably to leading NVS methods, offering faster
rendering times and high-quality outputs, positioning it as a promising solution for real-
time applications in virtual reality, cinematography, and gaming industries.
Main Contribution: I played a crucial role in both conceptualizing and developing the
model. I developed most of the NPBG++ pipeline and contributed significantly to the
experiments.

2. Matveev, A., Rakhimov, R., Artemov, A., Bobrovskikh, G., Egiazarian, V., Bogomolov, E.,
Panozzo, D., Zorin, D., & Burnaev, E. (2022). DEF: Deep Estimation of Sharp Geometric Fea-
tures in 3D Shapes. Proc. SIGGRAPH 2022 conf. ACM Transactions on Graphics, 41(4)
(ACM ToG). CORE A*. https://doi.org/10.1145/3528223.3530140
Summary: We develop a novel, learning-based framework designed to predict sharp ge-
ometric features in 3D shapes by regressing a scalar field representing the distance from
point samples to the nearest feature line. The DEF framework utilizes deep estimators on
local patches of depth images, employing training datasets derived from both synthetic
and real-world sources to ensure robustness and adaptability. Key components of DEF
include the construction of training data, a patch-based deep estimation model, and inno-
vative methods for integrating predictions over complete 3D models and extracting para-
metric feature curves. The proposed method significantly outperforms existing feature
detection techniques in terms of precision and generalization across various quality met-
rics and datasets. The extensive evaluations demonstrate DEF's superior ability to handle

* --- Equal Contribution
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large-scale datasets, positioning it as a powerful tool for advancing geometric analysis and
3D computer vision.
Main Contribution: I developed the first of the two major components of the entire
pipeline, specifically the method for regressing a scalar field representing the distance
from point samples to the nearest feature line. I also made significant contributions to the
experiments regarding patch-level comparisons on synthetic data and was responsible for
fine-tuning models on real data.

3. Rakhimov, R.*, Bogomolov, E.*, Notchenko, A., Mao, F., Artemov, A., Zorin, D., & Bur-
naev, E. (2021). Making DensePose Fast and Light. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (pp. 1869-1877). WACV 2021. CORE A.
https://doi.org/10.1109/wacv48630.2021.00191
Summary: We introduce Mobile Parsing R-CNN, a new architecture designed for real-
time DensePose estimation on mobile devices. Addressing the challenges posed by ex-
isting DensePose models that are heavily parameterized and require robust server-side
infrastructure, this research achieves a significant reduction in model size (by 17 times)
and latency (by 2 times) compared to traditional models. The empirical results demon-
strate that the model not only retains good accuracy but also improves operational ef-
ficiency, making it a promising solution for applications requiring real-time, on-device
human form understanding.
Main Contribution: I took a leading role in developing improvements in the model's ar-
chitecture and contributed to the experiments.

4. Burkov, E., Rakhimov, R., Safin, A., Burnaev, E., & Lempitsky, V. (2023). Multi-NeuS: 3D
Head Portraits from Single Image with Neural Implicit Functions. IEEE Access, Q1 Journal.
https://doi.org/10.1109/access.2023.3309412
Summary: We develop Multi-NeuS, a novel 3D neural implicit model tailored for recon-
structing textured 3D human head models from single or few images, enhancing appli-
cations in AR, VR, XR, and gaming. Multi-NeuS builds on the NeuS framework by in-
corporating shared and scene-specific layers, enabling it to efficiently manage multiple
objects and scenes. The architecture optimizes for both geometric and textural details,
overcoming the limitations of earlier models that depend on extensive datasets or 3D
scans. Through a meta-learning approach, Multi-NeuS learns a generalizable represen-
tation, which is then fine-tuned for individual scenes. Empirical results demonstrate the
model's capability to produce high-quality reconstructions from minimal input, showing
comparable or better performance to existing methods.
Main Contribution: I made a significant contribution to various stages of the model de-
velopment process, such as data preprocessing, optimization of camera parameters, code

* --- Equal Contribution
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for metrics calculation, extraction of a polygonal representation of the scene, adaptation
of the algorithm to work with images with unknown camera parameters.

Second-tier publications

1. Rakhimov, R.*, Volkhonskiy, D.*, Artemov, A., Zorin, D., & Burnaev, E. (2021). Latent Video
Transformer. Proceedings of the 16th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2021. CORE B.
https://doi.org/10.5220/0010241801010112
Summary: The Latent Video Transformer (LVT) is a new model introduced to tackle the
complexities of video generation, specifically focusing on predicting future video frames
from a sequence of initial conditioning frames. This model finds its utility in various ap-
plications including self-driving technology, anomaly detection, and animated content
creation. LVT leverages a combination of a frame autoencoder, specifically the VQ-VAE
architecture for encoding frames into a discrete latent space, and an autoregressive gen-
erative model that predicts subsequent frames, reducing computational demands while
maintaining quality. It employs a structured approach to generate videos by sequentially
creating each frame in a latent space before mapping them back to the pixel space, ensur-
ing efficient video generation with reduced resource requirements. The model has been
tested on datasets like BAIR Robot Pushing and Kinetics-600, demonstrating comppeti-
tive results, albeit with some limitations in complex scenarios, highlighting the ongoing
challenges and the necessity for further advancements in video generation technology.
Main Contribution: I came up the initial idea of moving the generation process to the
discrete latent space and developed the overall pipeline, particularly the first stage, the
frame autoencoder. I also made significant contributions to the experiments.

Reports at conferences and seminars

1. "Making DensePose Fast and Light" talk at the WACV conference, Online, 2021;

2. "Latent Video Transformer" talk at the VISIGRAPP conference, Online, 2021;

3. "NPBG++: Accelerating Neural Point-Based Graphics", talk at the conference Fall into ML
2022, Moscow, Russia;

4. "Multi-Sensor Large-Scale Dataset for Multi-View 3D Reconstruction", talk at the confer-
ence Fall into ML 2023, Moscow, Russia.

The author has also contributed to the following publications

1. Voynov, O., Bobrovskikh, G., Karpyshev, P., Galochkin, S., Ardelean, A. T., Bozhenko, A.,
Galochkin, S., Karmanova, E., Kopanev, P., Labutin-Rymsho, Y., Rakhimov, R., Safin, A.,

* --- Equal Contribution
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Serpiva, V., Artemov, A., Burnaev, E., Tsetserukou, D., & Zorin, D. (2023). Multi-Sensor
Large-Scale Dataset for Multi-View 3D Reconstruction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (pp. 21392-21403). CVPR 2023.
CORE A*. Indexed by SCOPUS, Web of Science. https://doi.org/10.1109/cvpr52729.
2023.02049

3 Content of Works

The dissertation is structured into several sections, each focusing on a distinct research article.
In Section 3.1, we explore the feasibility of modeling videos within a discrete latent space.

This section covers the current methodologies, introduces the architecture of the proposed
model, and provides a comparative analysis with existing approaches.

In Section 3.2 we introduce a novel regression technique for pinpointing specific curves on
3D objects. We describe the architecture of this new method and compare it against existing
techniques.

In Section 3.3, we propose a new model for generating novel species from a collection of in-
put images. This section evaluates the model's quality and efficiency in terms of scene modeling
and rendering, comparing these aspects to those of current methods.

In Section 3.4 we describe a model for dense human pose estimation with enhanced pro-
cessing speed, making it suitable for mobile devices. We review how different components of
the model affect both the quality of the results and the speed of operation.

Finally, in Section 3.5 we present a model for creating three-dimensional representations
of human heads from a single image. We describe how to apply the model to images with
unknown camera parameters.
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3.1 Latent Video Transformer

We address the challenge of video generation, specifically predicting future video frames given
a few input conditioning frames. This task finds practical applications in diverse fields such
as self-driving technology, anomaly detection, time-lapse creation [60], and animated land-
scape generation [22], where accurate predictions of future video frames are crucial for decision-
making and content creation.

Despite recent advances in generative learning that have facilitated the creation of realis-
tic objects with high quality, including images, text, and speech, video generation remains a
formidable challenge. Neural networks, even for brief videos consisting of 16 frames at low res-
olution, demand a substantial computational load, reaching up to 512 Tensor Processing Units
(TPUs) [52] for parallel training. Despite these computational demands, the resulting video
quality remains low.

To address this challenge, we introduce the Latent Video Transformer (LVT), a model that
leverages autoregressive generation in a discrete latent space [84]. Our approach significantly
reduces computational demands while preserving the quality of generated videos. By com-
bining representation learning with recurrent video generation, the LVT not only overcomes
GPU memory limitations but also accelerates inference speed, offering a promising solution for
resource-intensive video generation tasks.

Model Description

The Latent Video Transformer (LVT) predicts subsequent frames given an initial set. We define a
video sequence, denoted as X , as a series of T frames xTt=1, where each frame xt ∈ RH×W×3 has
dimensions H and W with 3 RGB channels. Our objective is to generate the remaining frames
(T − T0) given the first T0 frames. The LVT model comprises two main components: a frame
autoencoder and an autoregressive generative model.

For the frame autoencoder, we employ the VQ-VAE [84] architecture, which is a variational
autoencoder with a discrete latent space. The VQ-VAE, depicted in Figure 1, is designed to en-
code an input image x ∈ RH×W×3 by utilizing a codebook e ∈ RK×D. Here, K represents the
codebook size, indicating the categorical nature of the latent space, and D signifies the dimen-
sionality of an embedding in the codebook.

Broadly, the VQ-VAE comprises an encoder that compresses the image into a more compact
representation, ze(x) ∈ Rh×w×D; a bottleneck that discretizes each pixel by associating it with its
nearest embedding, ei, from the codebook, producing z(x) ∈ [K]h×w×1; and a decoder that takes
discrete latent codes, z(x), and maps them to corresponding embeddings, decoding the result,
zq(x) ∈ Rh×w×D, back to the input pixel space.

The training objective for VQ-VAE includes a reconstruction loss and a regularization term,
expressed by the following equation:
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L = ∥x− decoder(zq(x))∥2 + ∥ze(x)− sg[e]∥2. (1)

Here, sg[] represents the stop gradient operator, which outputs its argument during the
forward pass and zero gradients during the backward pass. We employ Exponential Moving
Average (EMA) updates for codebook variables.

Copy gradients

... ... ... ...

NNE D

Figure 1: Architecture of the frame autoencoder. The encoder divides the input image into nc = 4

parts along the channel dimension. Pixels in each segment are then paired with the nearest
embeddings from the codebook, which the decoder uses as input.

The frame encoder transforms the initial T0 frames into a discrete representation denoted
as Z0 ∈ [K]T0×h×w×nc . The autoregressive model is then employed to generate new frames,
totaling T − T0, conditioned on Z0. We adopt the Video Transformer [92], an autoregressive
video generative model, applying it within the latent space as opposed to the pixel space in the
original paper. The architecture of the video transformer is detailed in the original paper [92].

The model takes a tensor Z ∈ [K]T×h×w×nc as input and initiates the generation process by
priming it with the first T0 latent frames, i.e., Z:T0,:,:,: = Z0. The remaining latent frames can
be randomly initialized as the generation process conditions solely on previously generated or
priming pixels. The model employs the concept of subscale [54], generating a latent video as a
sequence of non-overlapping slices. Using a subscale factor s = (st, sh, sw), the latent video is
divided into s = stshsw slices, each of size T/st×h/sh×w/sw. The generation process unfolds
sequentially, slice by slice, pixel by pixel within a slice, and channel by channel for each pixel:

p(Z) =
Thw−1∏
i=0

nc−1∏
k=0

p
(
Zk
π(i)|Zπ(<i), Z

<k
π(i)

)
. (2)

where p(Z) represents the probability distribution over the latent video sequence Z. Pixels in
each slice Z(a,b,c) are generated in raster-scan order, while slices are generated in subscale order:
Z(0,0,0), Z(0,0,1), . . . , Z(st−1,sh−1,sw−1).

The transformer model comprises an encoder and a decoder. To generate a new pixel value
within a slice Z(a,b,c), the encoder first produces the representation of already generated slices
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Figure 2: Latent Video Transformer architecture. Numbers show generation order, colored pixels
represent generated pixels, white pixels are zero-padding, and same-color pixels belong to the
same slice. Example: generating the last pixel of slice Z(1,0,1) for a latent video of size (t, h, w) =

(4, 4, 4) with subscale factors (st, sh, sw) = (2, 2, 2).

Z<(a,b,c). This representation is then mixed with the representation of already generated pixels
inside the current slice Z(a,b,c). The autoregressive order is maintained through padding within
the encoder and masking in convolutions and attention within the decoder. After generating
a new pixel value, the corresponding padding is replaced with the generated output, and the
generation process recurs. The generation process, in the case of spatiotemporal (st > 0, sh >

0, sw > 0) subscale, is illustrated in Figure 2.
Once the generation process is finished, the latent frame decoder takes Z ∈ [K]T×h×w×nc

as input (where all values are now valid), maps it to the previously learned embeddings Zq ∈
RT×h×w×D, and decodes it back frame by frame to the original pixel space X ∈ RT×H×W×3.

Empirical Results

We evaluate the video predictions using the Fréchet Video Distance (FVD) [30]; in addition,
we include bits per dimension (bits/dim), representing the negative log2-probability averaged
across all generated (latent) pixels and channels. We also provide the baseline solution: what if
we take the last ground truth frame and use it as a prediction for all future frames.

We present both quantitative (Tables 1a, 1b) and qualitative outcomes (Figure 3) on two
datasets, BAIR Robot Pushing [20] and Kinetics 600 [10]. While our performance matches that
of other methods on the BAIR Robot Pushing dataset, we observe inferior results on Kinetics-
600, attributing this discrepancy to error accumulation within the Transformer model, which
we connect to the dataset's elevated complexity and diversity.
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Table 1: Quantitative evaluations. We follow the setup of previous approaches [13, 92] and train
the video generator conditioning on one frame and report metrics for videos of 16 frames. FVD
and bits/dim are computed on videos with five priming frames and one priming frame accord-
ingly.

(a) BAIR Robot Pushing dataset

Method bits/dim(↓) FVD(↓)

Baseline - 320.90

VideoFlow [44] 1.87 -
SVP-FP [18] - 315.5

CDNA [23] - 296.5

LVT (ours, nc = 1) 1.25 275.71± 5.41

SV2P [19] - 262.5

LVT (ours, nc = 4) 1.53 125.8± 2.9

SAVP [46] - 116.4

DVD-GAN-FP [13] - 109.8

TriVD-GAN-FP [52] - 103.3

Axial Transformer [32] 1.29 -
Video Transformer [92] 1.35 94± 2

(b) Kinetics-600 dataset

Method bits/dim(↓) FVD(↓)

Baseline - 271.00

LVT (ours) 2.14 224.73

Video Transformer [92] 1.19 170± 5

DVD-GAN-FP [13] - 69.15± 1.16

TriVD-GAN-FP [52] - 25.74± 0.66

Figure 3: Results on the BAIR Robot Pushing dataset. Each row depicts a distinct video, showcasing
the initial five frames as real and the subsequent frames as generated.

Conclusion

A video generation model has been developed based on the concept of modeling video in a
discrete latent space. The presented model exhibits good generalization ability, meaning it can
generate video sequences from previously unseen conditional input frames. Moreover, this is
achieved using limited computational resources during the training stage, consisting of 8 V100
GPUs, whereas alternative methods require up to 512 tensor processors for training.
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3.2 DEF: Deep Estimation of Sharp Geometric Features in 3D Shapes

Figure 4: DEF Overview. (a) We develop efficient models for distance-to-feature estimation using
range scans as an input; (b) Our method integrates these predictions to estimate complete 3D
shapes; (c) Out method enables extracting explicit feature curves; (d) This results in precise
reconstructions of both straight and curved features, closely aligned with CAD models.

We address the task of predicting sharp geometric features in 3D shapes (surface curves across
which the surface normals have a sudden change). Solving this task has a key value for the task
of CAD (Computer-Aided Design) model reconstruction while eliminating the need for manual
feature definition and parameter tuning.

Existing methods for geometric feature detection include local estimation techniques [90,
16], which focus on computing differential properties in small areas but require extensive pa-
rameter tuning for each specific model. Surface segmentation methods [50] aim to identify
surface patches and classify their interfaces as features, yet they are ineffective for incomplete
models. Patch fitting strategies [9] involve fitting predefined primitives to large mesh regions,
offering noise robustness but at the cost of computational efficiency and flexibility due to re-
liance on predetermined shapes. Meanwhile, the rise of data-driven methods, particularly ma-
chine learning models for feature point classification [27, 31], marks a significant shift. However,
they struggle with scalability and robustness in the presence of noisy data.

Our proposed method, DEF, introduces a novel distance-to-feature regression on local
patches, departing from binary classification and offering scalability, adaptability, and im-
proved performance in detecting sharp geometric features, thus addressing critical limitations
in current methodologies.

Model Description

Our algorithm processes depth images, sourced from real-world scans or simulated for syn-
thetic mesh data, as input for a given object. It outputs a truncated distance-to-feature scalar
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function for each input point, demonstrated in Figure 4. The method includes four main com-
ponents.

The first component, training data construction, involves creating DEF-Sim (synthetic) and
DEF-Scan (real-world) datasets for the following model training. DEF-Sim, based on the ABC
dataset [42], uses boundary representation and sharp curve annotations for training, calculating
the distance-to-feature for each point p as dε(p) = min(∥q(p)−p∥2, ε), where q(p) is the point on
the nearest sharp feature curve or edge and ε as the truncation radius. DEF-Scan includes 3D-
printed objects scanned with a structured light 3D scanner, aligned with CAD models. These
datasets provide varied training environments in resolution, noise levels, and sample sizes cru-
cial for developing precise models for sharp feature detection.

The second component, Patch-Based Deep Estimators (DEFs), focuses on estimating distance-
to-feature in depth images. Trained initially on the synthetic datasets and fine-tuned with
real-world data, these models aim to minimize min

θ

1
N

∑N
i L(di, f(Pi; θ)), where di is the ac-

tual distance-to-feature for patch Pi, f(·; θ) is the model with parameters θ, and L is the loss
function. CNNs, particularly the U-Net model with a ResNet-152 architecture, were found to
be most effective. The Histogram loss [36] significantly improved regression quality by focus-
ing the network on a narrower range of target distances. Network performance stabilizes with
datasets over 64000 instances, and DEFs can detect features at various sampling rates, indicating
model adaptability.

The third component is estimation on complete 3D models. We present a novel method for
this task by fusing per-patch distance-to-feature predictions using deep estimators. This pro-
cess first involves converting an input 3D model into a set of range images, Inv

i=1, from multiple
directions. Each image patch Ii is independently processed by our neural network, yielding dis-
tance predictions sensitive to interior feature curves. The essence of our approach is the transfer
of these predictions across patches. For a given pair (s, t) of source and target views, and with
the distance-to-feature estimate ds available in the source view, we utilize a warping-based view
synthesis mechanism to produce a warped prediction d̂s→t

t for each pixel in the target view by
re-projecting predictions from the source view's image plane. The final step involves deriving
a coherent global distance estimate, computed as the minimum across warped estimates from
different source views d̂t = mins d̂

s→t
t . This method effectively integrates feature-sensitive in-

formation throughout the complete 3D shape, as validated through various ablation studies.
Finally, we extract parametric feature curves from point clouds, merging corner detection,

graph structure analysis, and spline fitting. This involves classifying and segmenting lo-
cal points, constructing a curve graph, fitting and optimizing splines, and applying a post-
processing procedure, which includes a quality metric and filtering based on curve length.
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Empirical Results

We evaluate our feature estimation method using several quality measures, including root mean
squared error (RMSE), recall, false positive rate with varying thresholds, for assessing the qual-
ity of distance-to-feature regression, feature line estimation precision in 3D shapes.

We compare DEF with five leading methods for extracting feature lines from 3D shapes,
covering both traditional and deep learning techniques. VCM [55], a non-learning approach,
utilizes Voronoi covariance measures. Sharpness Fields (ShF) [65] employs a CNN for sharpness
field prediction. EC-Net [101] leverages a PointNet++[64]-based network for sharp feature line
detection, PIE-NET [88] uses a two-stage process for feature curve segmentation and parametric
curve proposal generation.

Through extensive evaluations on synthetic and real-world datasets, DEF consistently out-
performs its competitors in terms of recall and false positive rates. In the patch-based compar-
ison (Table 2), DEF outperforms competitors like ShF, VCM, and PIE-NET. The evaluation on
complete 3D models and real-world scanned shapes (Figure 5) further reinforces DEF's supe-
riority, showcasing its ability to robustly regress distance-to-feature fields and outperforming
competitors in terms of precision and generalization. Overall, the results validate DEF as a
powerful and versatile framework for sharp geometric feature detection in 3D shapes.

Table 2: Quantitative Evaluation of Sharp Feature Line Estimation. Our local patch-based networks,
dedicated to distance-to-feature estimation and feature line segmentation, outperform competing
methods in several segmentation and regression quality metrics (evaluated using DEF-Sim syn-
thetic image patches). To obtain DEF segmentation results, a threshold of 0.02 is applied to the
predicted distance.

Method RMSE×10−3 ↓ RMSE-q95 × 10−3 ↓ Recall % ↑ FPR % ↓

VCM [55] --- --- 49.1 3.1
EC-Net [101] --- --- 79.2 2.9
DEF (Trained on EC data) 124.1 501.1 56.0 0.15
PIE-NET [88] --- --- 32.0 3.8
DEF (Trained on PIE data) 86.2 451.8 57.1 0.1
ShF [65] 18.0 95.7 80.9 0.3
DEF (Ours) 11.1 42.5 80.02 0.02
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Figure 5: Qualitative Evaluation of Sharp Feature Line Estimation. We compare with state-of-the-
art methods on (a) high-resolution synthetic full shape datasets and (b) real scanned datasets
representing full 3D shapes. Our method robustly reconstructs a point-wise distance-to-feature
field and scales to 3D shapes represented by millions of points.

Conclusion

A new approach, DEF, has been proposed for predicting sharp geometric features in 3D mod-
els. Traditional methods rely on fitting primitives or estimating the Voronoi covariance mea-
sure, which is time-consuming and does not always yield high-quality results. In contrast, DEF
trains on large synthetic datasets and a minimal amount of real data, and learns to regress the
distance field to features on local patches. Due to these two factors, DEF demonstrates excel-
lent generalization and scalability to new, previously unseen 3D shapes of various sizes and
variability, even in the presence of scanning noise.
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3.3 NPBG++: Accelerating Neural Point-Based Graphics

We address the task of novel view synthesis (NVS), a technology for generating photorealistic
views of a scene from a limited set of images. This technique is vital in applications such as
virtual and augmented reality, cinematography, and the gaming industry, where it enables the
creation of immersive and lifelike environments from sparse data.

Traditional methods like view interpolation and light field rendering [47, 76] have been foun-
dational but often struggle in complex scenarios with detailed geometries and varied light-
ing. The introduction of Neural Radiance Fields (NeRF) [56] marked a significant advance-
ment, modeling entire scenes with neural networks optimized via differentiable volume render-
ing. However, NeRF requires substantial computational resources and numerous input views.
Voxel-based methods [38] have also been explored, offering a structured representation of 3D
scenes but facing challenges in resolution and computational efficiency. Another significant
approach is Neural Point-Based Graphics (NPBG) [1], which uses point clouds to model scene
geometry and has shown promising results in rendering quality. Yet, these methods, generally
necessitate intensive per-scene optimization, which can be time-consuming.

Our model, NPBG++, builds upon and significantly improves the original NPBG frame-
work. By predicting neural descriptors directly from source images in a single pass, our method
streamlines the process, eliminating the need for laborious per-scene optimization. This devel-
opment not only substantially reduces scene fitting time but also enhances rendering quality.
NPBG++ offers a significant advancement in efficiency and adaptability for NVS, enabling high-
quality rendering in real-time for a diverse range of scenes.

Model Description

Our system generates images from novel views of a static scene using a set of multiview input
images, associated camera parameters, and a point cloud. In contrast to NPBG [1], which opti-
mizes neural descriptors for each new scene, our approach adopts a learning-based strategy to
predict these descriptors. These neural descriptors represent local geometric and photometric
properties and are computed from the input views.

Our system, in contrast to image-based methods that rely on identifying the nearest views
from the input image set for generating a novel perspective, constructs a single scene model.
This is achieved by processing input views in an online mode, iteratively updating point inter-
mediate states independently of the view count, thereby ensuring constant memory usage. Fol-
lowing the processing of all views, we compute final descriptors from these states. The system
comprises two main stages: the modeling stage, where we obtain point descriptors by process-
ing input views, and the rendering process, where descriptors are rasterized and converted into
final images using a refiner convolutional network (Figure 6).

In the first, modeling stage, we employ a feature extraction process where a U-Net-based net-
work [72] generates a dense feature map for each pixel of the input image while preserving
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Figure 6: NPBG++ Overview. The scene is represented as a point cloud, with each point contain-
ing an embedded view-dependent neural descriptor. In the 3D modeling stage, we sequentially
process each input view, align the images, extract features, and perform online aggregation to
update the neural descriptors, all without requiring fitting. For novel view synthesis, we ras-
terize the point cloud descriptors and pass the result through a rendering network, followed by
post-processing alignment to generate the new view.

its spatial dimensions. We then project points onto the feature map and bilinearly sample the
point descriptors. Two important remarks should be noted here. First, the input images un-
dergo an alignment process to ensure consistency across descriptors from different views. This
alignment occurs by rotating the input image to a canonical orientation, where the projection of
the world's up-axis onto the image plane is vertical (see Figure 6-left). This alignment is crucial
because our feature extractor network is not inherently rotation-equivariant. Second, to prevent
the updating of descriptors for occluded points, we estimate the visibility of each element by
constructing a Z-buffer and rasterizing the point cloud onto a reduced image size. We mark
only the points with the minimum Z-value as visible.

Figure 7: View-Dependent Neural Descriptor. The descriptor y: R3→Rc is modeled as a linear
combination of learnable basis functions over the sphere (H: R3→Rm), defined by coefficients
βi ∈ Rc (Equation 3). For each new scene, using a set of source images, we determine βi for
every point.

In the subsequent aggregation phase, we tackle the challenge of processing descriptors from
various input views in an online mode, ensuring both memory independence regardless of the
number of views and order independence of input frames. We avoid Transformer-based [85],
LSTM [33], and GRU [12] networks due to their limitations. Instead, we choose a permutation-
invariant method that incorporates view-dependent effects into each point's neural descriptor.
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We model this descriptor y : R3 → Rc as a linear combination of learnable basis functions over
the sphere (Figure 7):

y(v)
1×c

= H(v)
1×m

β
m×c

+ β0
1×c

, (3)

where v represents the unit-length view direction, H : R3 → Rm is a set of m basis functions
(we use m = 6), and β and β0 are coefficients to be determined for each point. This approach is
similar to NEX [94], where they model view-dependent RGB values instead of neural descrip-
tors. Unlike NEX, we solve N multivariate linear regression problems to find coefficients β and
β0 for all N points. For each point, we have a set of pairs {(vk, yk)}Kk=1, where K is the number
of input views in which we estimate the point to be visible. vk is a unit-length view direction,
and yk is a sampled descriptor from the input image. Given this, we find the parameters of the
descriptor as follows:

β0
1×c

=
1

K

K∑
k=1

yk
1×c

, (4)

R
m×c

:=
1

K

K∑
k=1

H(vk)
T yk︸ ︷︷ ︸

m×c

− 1

K

K∑
k=1

H(vk)
Tβ0︸ ︷︷ ︸

m×c

,

β
m×c

=

 1

K

K∑
k=1

H(vk)
TH(vk)︸ ︷︷ ︸

m×m

+
α

K
Im

m×m

−1

R
m×c

, (5)

where Im is the identity matrix, β0 captures the mean descriptor, and we set the regularizer
α=1. When a new descriptor sample yk arrives we update five intermediate states: K,

∑K
k=1 yk,∑K

k=1H(vk)
T yk,

∑K
k=1H(vk)

T ,
∑K

k=1H(vk)
TH(vk). It's important to note that the size of these

interim calculations doesn't depend on the number of input views K. For each individual point,
we keep updating these calculations until we've processed all the input views. Afterward, we
calculate the values for β and β0. We also remove points from the point cloud that were not
visible in any of the input views.

In the second stage, novel view synthesis stage of our process, we employ three distinct steps to
generate the final image based on specific camera parameters. Initially, we rasterize the calcu-
lated descriptors, following a similar approach as NPBG [1]. Then, a refiner network, utilizing
a U-Net architecture with gated convolutions [100], processes the rasterization output to ad-
dress issues such as surface bleeding. Finally, as the last step, we introduce an output image
alignment process. This process initially renders the image in a canonical orientation and then
rotates it to align with the original query orientation, as depicted in Figure 6-right. This step
ensures a consistent appearance, regardless of the camera's y-axis orientation, a factor that has
been previously overlooked in methods employing neural descriptors [1, 45, 93].

Our training loss combines a VGG-19 perceptual loss [77], anL1 loss between down-sampled
output and target images to preserve color and prevent detail smoothing, and a novel self-
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supervised regularization loss that compares the ground truth image with a rendered image
using ground-truth descriptors obtained from the target image.

Empirical Results

In our experimental evaluation, we assessed the effectiveness of our proposed method using
several standard metrics for image quality assessment: Structural Similarity Index (SSIM), Peak
Signal-to-Noise Ratio (PSNR), and Learned Perceptual Image Patch Similarity (LPIPS) [102]. We
compare our method's performance with several state-of-the-art neural rendering algorithms,
including NPBG [1], NeRF [56], SVS [71], and IBRNet [87]. These comparisons were illustrated
quantitatively in Table 3 and qualitatively in Figure 8. We found that our method could produce
superior renderings to SVS and on-par results with IBRNet, the leading NVS method for fast
generalization to new scenes. In the fine-tuning case, our method outperformed NPBG on all
datasets, obtaining leading scores on DTU and H3DS scenes and competing closely on ScanNet
and NeRF-Synthetic datasets.

Table 3: Quantitative evaluations. For each dataset, we compute the metrics on holdout frames
averaged across holdout scenes. Subscript ft indicates finetuned versions of the methods. In
the case of NPBG++ft we directly finetune coefficients (β, β0) and the refiner. In the case of
NPBG++ft-system we finetune the feature extractor, aggregator (MLP: neural basis functions), and
refiner.

Nerf-Synthetic ScanNet DTU H3DS

Method
Per scene
optimization

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SVS[71] 7 22.81 0.919 0.104 23.32 0.771 0.445 20.98 0.897 0.162 18.96 0.798 0.210
IBRNet[87] 7 29.47 0.955 0.157 23.34 0.760 0.494 25.81 0.924 0.231 20.30 0.791 0.279
NPBG++ (Ours) 7 26.06 0.936 0.071 23.11 0.766 0.502 23.23 0.915 0.154 21.80 0.818 0.177

NPBG[1] 3 28.62 0.946 0.058 25.09 0.737 0.459 26.00 0.913 0.125 24.68 0.827 0.146
NeRF[56] 3 32.49 0.970 0.041 25.74 0.780 0.537 26.92 0.913 0.198 23.88 0.833 0.178
SVSft[71] 3 23.37 0.919 0.101 22.31 0.610 0.543 20.72 0.864 0.190 20.12 0.770 0.197
IBRNetft[87] 3 32.51 0.972 0.144 24.42 0.774 0.493 23.80 0.917 0.222 24.68 0.850 0.195
NPBG++ft-system (Ours) 3 26.24 0.940 0.064 23.48 0.768 0.490 24.05 0.919 0.147 23.79 0.836 0.155
NPBG++ft (Ours) 3 28.67 0.952 0.050 25.27 0.772 0.448 26.08 0.928 0.123 24.91 0.845 0.137
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Figure 8: Qualitative evaluations. Comparisons with otimization-based approaches (NPBG[1],
NeRF[56]) and learning based approaches (IBRNet[87], SVS[71]) on ScanNet[15], NeRF-
Synthetic[56], DTU[37], H3DS[69] scenes.

Figure 9: Runtime vs. Image Quality. Comparison of several methods, computed on the `hot-
dog` scene from the NeRF-synthetic dataset. The time axis represents the time-to-rendering,
i.e., fitting time + rendering time for one image. For methods marked with ⋆, the first scores are
reported without per-scene optimizations. Fitting time consists of feature extraction for IBRNet,
geometry estimation + 3D modeling stage for NPBG++, and geometry estimation + meshing for
SVS (the renderings on top offer qualitative comparisons between these configurations). The re-
maining scores are computed at different points in the fine-tuning processes. Circle areas are
proportional to logarithms of the rendering times (smaller is better) and highlight the methods’
rendering speed.
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We also conducted runtime analysis, comparing the speed of several advanced methods
across two stages of inference, as illustrated in Figure 9. The first stage involves algorithms cap-
turing data from source images. This includes training neural representations for some meth-
ods, running feature extractors for IBRNet, and 3D modeling for our approach. SVS, NPBG,
and NPBG++ also construct 3D representations at this stage. The time for these processes is
counted in our comparisons. This stage occurs once per scene. The second stage involves ren-
dering novel views. NeRF and IBRNet, in particular, show high rendering times. IBRNet's
rendering time exceeds the entire fitting process of our method. NeRF, PlenOctrees, and NPBG
require per-scene fitting, leading to longer durations for quality results. Our model, without
optimization, has the shortest overall time-to-render, outperforming SVS and IBRNet, which
are hindered by surface estimation and rendering time, respectively.

Conclusion

In conclusion, the proposed NPBG++ model significantly improves generalization in the task
of novel view synthesis, meaning that the model can perform well on diverse, previously un-
seen scenes without per-scene optimization. By predicting neural descriptors directly from the
original images in a single pass, NPBG++ avoids the laborious optimization process for new
scenes. This innovation allows the model to quickly adapt to new environments and enables
the rapid creation of high-quality renderings while maintaining high rendering speed.

3.4 Making DensePose fast and light

We address the task of DensePose estimation [3], which involves understanding human forms
in images through dense image-to-surface correspondences. This task is crucial for a variety of
computer vision applications, such as augmented reality and virtual cloth fitting, where precise
human body modeling is essential. The DensePose task involves predicting UV coordinates for
each pixel of the human form, mapping it to a 3D model like the Skinned Multi-Person Linear
(SMPL) model [51].

However, existing solutions in this field, such as the DensePose R-CNN [3] and Parsing R-
CNN [98], are heavily parameterized, making them unsuitable for deployment on mobile or
embedded devices. These models require robust server-side infrastructure and stable internet
connectivity, limiting their practical applicability. Moreover, the followup works [62, 61] have
improved the quality of the results, but none have specifically focused on optimizing model
size and speed for mobile deployment. These limitations highlight a critical gap in making
DensePose estimation more accessible and widely usable in real-time applications.

In response to these challenges, our work introduces a novel architecture, Mobile Parsing
R-CNN, that is designed to be both lightweight and efficient, enabling real-time DensePose es-
timation on mobile devices. We have meticulously restructured the DensePose R-CNN model,
incorporating several deep learning innovations and model quantization methods. Our archi-
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tecture represents a significant advancement in the field, achieving a 17× reduction in model
size and a 2× improvement in latency compared to the baseline model. This breakthrough
opens up new possibilities for deploying advanced computer vision applications directly on
end-user devices, without the need for extensive hardware or internet dependency.

Model Description

NeckBackbone

C2

C3

C4

C5 P5

P4

P3

P2

P6 RPN

RPN | box/class head

RPN | box/class head

RPN | box/class head

RPN | box/class head | DensePose head

Figure 10: High-level Structure. Ci, Pi represent feature levels with a resolution of 1/2i of the
input image. P6 is obtained via stride-2 pooling on P5.

In our development of the Mobile Parsing R-CNN model, we are inspired by the Parsing
R-CNN model, renowned for winning the COCO 2018 Challenge DensePose Estimation task.
The network architecture fundamentally relies on a two-stage R-CNN detection pipeline, which
includes a backbone for feature extraction, a neck for further refining these features, a Region
Proposal Network (RPN) to generate object proposals, a Box Head for object classification and
bounding box regression, and a DensePose Head dedicated to detailed pose estimation (see
Figure 10).

For the backbone of our model, we emphasize efficient design, aligning with structures akin
to MobileNetV1 and V2 [35, 73], marked by depth-wise separable convolutions. Our explo-
ration includes various architectures such as MobileNetV3 [34], which integrates Squeeze and
excitation block and non-linearities; MixNet [81], offering a multi-kernel variant; Differentiable
neural architecture search (NAS), where models like MnasNet [79], FBNet [95], and Single-Path
[78] are considered; EfficientNets [80], balancing accuracy and network size; and CondConv
[97], featuring dynamic kernel weights in convolutional layers.

In the neck section, our choice is the bidirectional FPN (BiFPN) [82] for multi-scale fea-
ture fusion, which has shown superior performance in object detection tasks while remaining
lightweight and efficient. This is partly attributed to the use of separable convolutions.
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The Densepose head sees an enhancement in the region of interest (RoI) resolution, in-
creased from 14 × 14 to 32 × 32 as suggested in [98]. Here, we employ the atrous spatial pyra-
mid pooling (ASPP) module [11], followed by convolutional layers, and deliberately exclude
the non-local convolutional layer [89] to reduce network latency.

Empirical Results

In our experimental evaluation of the Mobile Parsing R-CNN models, we primarily used the
Average Precision (AP) at various geodesic point similarity (GPS) thresholds, alongside box av-
erage precision, to assess the performance. We implemented and modified the Parsing R-CNN
model using PyTorch and Detectron2 [96]. Our experiments involved an extensive ablation
study on different model components, including the backbone network, neck type, and the
number of channels in the model, as detailed in Tables 4, 5, and 6.

Table 4: The main differences between the models presented. Results on DensePose-COCO minival.
3x LR refers to 3 times longer training compared to the default setting. Pi represents a feature
level with a resolution of 1/2i of the input images. #Channels represent the number of channels
inside neck and heads.

DensePose R-CNN (baseline) [3] Parsing R-CNN [98] Mobile Parsing R-CNN (A) Mobile Parsing R-CNN (B)

Backbone ResNet-50 [29] ResNet-50 [29] Single-Path [78] Single-Path [78]
Neck FPN[49] FPN[49] FPN[49] BiFPN[82]

RoI resolution 14× 14 32× 32 32× 32 32× 32

Pooling Type RoIPool RoIPool RoIAlign RoIAlign
Box/class head 2 linear layers 2 linear layers 2 conv layers 2 conv layers

Feature level for prediction P2,P3,P4,P5 P2 P2 P2

DensePose head 8 conv layers ASPP[11]+NL[89]+4 conv layers ASPP[11]+4 conv layers ASPP[11]+4 conv layers
#Channels 512 512 256 64

#Params 59.73M 54.36M 11.35M 3.35M
GPU FPS 13.16 10.15 12.03 22.77 (3x LR: 23.55)
CPU FPS 1.62 1.39 1.42 2.02 (3x LR: 2.10)
box AP 57.8 59.609 56.370 55.39 (3x LR: 56.83)

densepose AP 49.8 54.676 49.512 46.79 (3x LR: 51.08)

We found that Mobile Parsing R-CNN variants (A) and (B) balance average precision and
computational efficiency, showing significant FPS improvements on CPU and GPU, as demon-
strated in Figure 11.
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Figure 11: Qualitative comparison of different models. We depict contours with color-coded U and
V coordinates as an output of the model.

Table 5: Ablation on the backbone network used in Mobile Parsing R-CNN (A). The backbones are
sorted by top-1 accuracy. Results on DensePose-COCO minival.

Backbone Top-1 Accuracy (%) #Params box AP dp. AP GPU FPS CPU FPS

ResNet-50 [29] 77.15 33.61M 60.0 54.7 11.05 1.34

EfficientNet-B3 [80] 81.636 16.03M 59.027 53.084 8.31 1.37

EfficientNet-EdgeTPU-L [21] 80.534 17.89M 60.069 53.378 8.11 1.34

MixNet-XL [81] 80.120 19.10M 58.444 51.475 8.54 1.32

EfficientNet-B2 [80] 79.688 13.68M 58.041 51.800 9.33 1.38

MixNet-L [81] 78.976 14.62M 57.481 50.649 8.52 1.34

EfficientNet-EdgeTPU-M [21] 78.742 14.57M 58.825 52.302 9.21 1.37

EfficientNet-B1 [80] 78.692 13.03M 57.654 51.053 9.49 1.39

CondConv-EfficientNet-B0 [21, 97] 77.304 18.32M 56.779 49.231 10.63 1.40

EfficientNet-EdgeTPU-S [21] 77.264 13.12M 58.296 51.606 10.03 1.39

MixNet-M [81] 77.256 12.39M 56.834 48.371 9.39 1.35

EfficientNet-B0 [80] 76.912 12.10M 56.271 49.647 10.53 1.39

MixNet-S [81] 75.988 11.52M 55.132 46.685 10.34 1.37

MobileNetV3-Large-1.0 [34] 75.516 12.04M 54.537 47.195 11.54 1.40

MnasNet-A1 [81] 75.448 10.94M 54.648 47.036 11.21 1.38

FBNet-C [95] 75.124 11.49M 55.399 47.983 10.97 1.37

MnasNet-B1 [79] 74.658 11.31M 52.280 47.658 11.24 1.37

Single-Path [78] 74.084 11.35M 56.370 49.512 12.03 1.42
MobileNetV3-Large-0.75 [34] 73.442 10.92M 52.763 44.736 11.02 1.36

MobileNetV3-Large-1.0 (minimal) [34] 72.244 10.48M 52.464 44.632 11.33 1.36

MobileNetV3-Small-1.0 [34] 67.918 10.07M 49.614 35.808 10.62 1.35

MobileNetV3-Small-0.75 [34] 65.718 9.74M 44.224 32.650 10.16 1.33

MobileNetV3-Small-1.0 (minimal) [34] 62.898 9.58M 45.989 36.522 10.34 1.34
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Table 6: Ablation on neck type and number of channels. The number of channels is the same in neck
and heads. Results on DensePose-COCO minival.

Neck #channels #Params box AP dp. AP GPU FPS CPU FPS

Mobile Parsing R-CNN (A) FPN 256 11.35M 56.371 49.512 12.03 1.42

BiFPN 256 10.53M 58.106 52.80 12.05 1.41

BiFPN 112 4.41M 56.41 49.64 19.04 1.78

BiFPN 88 3.82M 56.08 48.19 20.43 1.87

Mobile Parsing R-CNN (B) BiFPN 64 3.35M 55.39 46.79 22.77 2.02

Conclusion

The study is dedicated to improving the generalization ability of the DensePose model for dense
human pose estimation under strict constraints on model size and speed. The improvement
was achieved through careful selection of components in various parts of the model, such as
the choice of the optimal backbone network for feature extraction, the neck architecture, and
the architectures of the heads for human detection and DensePose prediction. Thanks to these
innovations, the model became faster and more efficient, which subsequently allowed it to run
locally on a mobile device.

3.5 Multi-NeuS: 3D Head Portraits from Single Image with Neural Implicit Func-
tions

Input Input

Figure 12: 3D Head Portrait Reconstruction from Single Image. Multi-NeuS can create realistic 3D
head portraits from single in-the-wild photos or paintings.

We address the challenge of 3D portraiture, specifically the automatic acquisition of textured
3D human head models. This task is crucial in various fields such as filmmaking, augmented
reality (AR), virtual reality (VR), extended reality (XR), and the gaming industry. It aims to
capture both the geometric and textural details of human heads, bypassing the need for labor-
intensive and time-consuming manual model creation. The importance of this task lies in its
potential to revolutionize content creation in these domains, providing more realistic and im-
mersive experiences.
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In the realm of head appearance modeling, several methods have been developed, focusing
mainly on 2D representations [39, 17, 74]. For 3D modeling, existing approaches like H3D-Net
and NeuralHeadAvatars [70, 26] often rely on 3D scans or synthetic data, limiting their practi-
cality. These methods, while groundbreaking, exhibit limitations in data acquisition and gen-
eralizability. The recent introduction of NeuS and related methods like UNISURF and VolSDF
[86, 63, 99, 41] have opened new avenues in implicit representations for shape and appearance,
but still face challenges in adapting to individual instances effectively.

To overcome these limitations, we propose Multi-NeuS, an innovative neural implicit archi-
tecture that efficiently fits multiple objects of the same class (human heads) and reconstructs
their surfaces from sets of multi-view photos. Multi-NeuS extends the NeuS framework [86],
employing a shared parameter subset across various training videos. This unique approach fa-
cilitates rapid learning from a minimal dataset and demonstrates impressive data-efficiency and
speed. Unlike its predecessors, Multi-NeuS can generate high-quality 3D head portraits from
a single or few photographs, marking a significant advancement in the field of 3D portraiture
(Figure 12).
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Figure 13: Multi-NeuS Overview. Our model, a 3D neural implicit function, can represent multi-
ple objects of the same class. Shared layers (blue) capture class priors for few-shot reconstruction
in novel scenes of the same class. It's trained using volumetric rendering and pixelwise loss on
a dataset of multiple scenes. When fitting to a new object, scene-specific layers (yellow) are ad-
justed first, followed by fine-tuning all layers.

In our study, we introduce Multi-NeuS, a novel 3D neural implicit function designed for
reconstructing multiple objects of a specific class simultaneously. Building upon the principles
of NeuS [86] and NeRF [57], Multi-NeuS aims to overcome the limitations in scenarios where
only single or few images are available for reconstruction. We focus on the class of human heads
for our implementation.

We begin by reviewing the NeuS reconstruction method, a modification of NeRF tailored
for non-transparent objects, specifically focusing on modeling the object's surface. NeuS rep-
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resents the object's surface as the zero-level set of a signed distance function (SDF), defined
as

{
x ∈ R3 | SDF(x) = 0

}
. Two neural networks are used to model the SDF and RGB radiance

at any 3D point, with density defined as a bell-shaped function of the SDF, peaking at zero,
which corresponds to the object's surface. These networks are optimized through differentiable
volume rendering, enabling both 3D surface reconstruction and novel view synthesis.

Our Multi-NeuS method expands NeuS to manage multiple scenes, incorporating shared
and scene-specific layers into its architecture (refer to Figure 13). This design aids in transferring
learned class priors to new scenes, improving few-shot reconstruction.

For the training process, Multi-NeuS undergoes two main stages: meta-learning and fitting
(Figure 14). During meta-learning, we pre-train the model on a dataset of multi-view images
from multiple scenes, allowing Multi-NeuS to learn a general representation of the class. Subse-
quently, in the fitting stage, we add and optimize scene-specific layers for new, unseen objects,
starting with an initialization representing an 'average' object from the dataset.

Next, we address the task of applying the model to in-the-wild images, such as those taken
from the Internet. The model requires both extrinsic and intrinsic camera parameters, which
are typically unknown for random pictures.

First, we manually initialize an intrinsics matrix by averaging the parameters of the cameras
used during the meta-learning stage. To reduce potential initialization errors, all images from
the training, validation, and in-the-wild sets are cropped around the face area with a margin. To
find the extrinsic camera parameters, we use the 3D coordinates of facial landmarks, relative to
which all training examples were aligned during the meta-learning stage. For in-the-wild pho-
tographs, we predict the 2D coordinates of facial landmarks using an off-the-shelf detector [7].
Given the 2D positions of the landmarks, the corresponding 3D coordinates, and the intrinsics
matrix, the extrinsic camera parameters can be estimated using PnP [14].

The obtained estimate is quite coarse, so during training, the extrinsics matrix is multiplied
by a correction matrix parameterized using se(3) Lie algebra, following [48]. To correct the
intrinsic camera parameters, we set learnable coefficients that multiply the focal lengths of the
matrix. All new parameters are optimized alongside the network parameters in each training
iteration using stochastic optimization.

Empirical Results

The training of our model utilized a subset of the SmartPortraits dataset [43], consisting of smart-
phone videos. We extracted frames and camera parameters using COLMAP software [75], en-
suring that the scenes were aligned for consistent 3D coordinates.

We evaluate single-view mesh reconstruction and provide both quantitative (Table 7) and
qualitative (Figure 15) comparisons. Our method, Multi-NeuS, exhibited comparable perfor-
mance to H3D-Net [70], even though it was trained on a different dataset with far less data and
without access to 3D scans. Results on in-the-wild photographs are showcased in Figure 16.
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Figure 14: The training stages of Multi-NeuS. Row 1: The model is trained to represent N scenes,
including scene-specific layers. Row 2: Scene-specific layers are reset using weighted aggrega-
tion for fitting a new scene. Row 3: Only scene-specific layers are fine-tuned for new individuals
with limited images. Row 4: All layers are fine-tuned with reduced learning rate.

Input H3D-Net Ours GT Input H3D-Net Ours GT

Figure 15: Single-view Mesh Reconstruction Comparison. We evaluate on the first four scenes of
the H3DS dataset. H3D-Net [70], originally designed for three-view reconstruction, can also be
assessed in one-shot mode. H3D-Net was trained on 10,000 3D scans from the same distribution
as these test examples, while our method, trained on a hundred smartphone videos, achieves
comparable quality. Furthermore, our approach demonstrates a smaller identity gap and a less
pronounced regression-to-mean effect.
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Table 7: Mesh Reconstruction Quantitative Results. We compare with H3D-Net [70] on the H3DS
dataset [70]. We calculate the unidirectional Chamfer distance in millimeters, measured post
alignment with the ground truth via the Iterative Closest Point (ICP) method [6]. This metric
was applied to both facial areas and full head meshes. Lower values indicate better perfor-
mance. 'F/L/R' represents the input views: 'frontal/left/right'.

face head
Input view F L R mean F L R mean

H3D-Net 3-view - - - 1.34 - - - 10.53

H3D-Net 1-view 1.82 1.83 1.91 1.85 13.83 13.01 12.51 13.12
Ours 1-view 1.89 1.77 1.86 1.84 13.00 13.27 11.95 12.74

Input Input Input

Figure 16: 3D reconstruction of in-the-wild photographs and paintings. Our method handles diverse
hair styles and performs well on images beyond the SmartPortraits dataset. Potential artifacts
on the back are due to limited training data angles.

Conclusion

This work presents Multi-NeuS, a new approach for reconstructing 3D head portraits from one
or more images, improving generalization in 3D computer vision tasks. Generalization, or the
model's ability to accurately reconstruct new faces from one or a few photographs, is achieved
by incorporating priors through pre-training on a large dataset of various individuals' images.
This pre-training step enables the model to capture class-specific features, reducing the need
for lengthy optimization for each scene. By combining fitting general parameters with adapta-
tion to specific scenes, Multi-NeuS effectively reconstructs textured surfaces. The method has
limitations, primarily due to the limited diversity of the training dataset. In the future, expand-
ing the dataset and making architectural improvements will further enhance the approach's
capabilities.
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4 Conclusion

In this dissertation, we propose methods to improve the generalization capabilities of models
in 3D computer vision tasks. All presented methods aim to enhance the efficiency and accuracy
of model performance in diverse, previously unseen conditions, which is a key factor for the
successful application of these technologies in real-world scenarios.

In the first study, we introduce a video generation model based on modeling videos in a dis-
crete latent space. The uniqueness of this approach lies in its ability to generate video sequences
from previously unseen input conditional frames, achieved with significantly fewer computa-
tional resources compared to existing methods. Using only eight V100 graphics processors for
model training, while alternative approaches require up to 512 tensor processors, demonstrates
a significant improvement in efficiency without compromising generalization quality.

In the second study, we propose a new DEF method for predicting sharp geometric fea-
tures in 3D models. Unlike traditional methods that rely on fitting primitives or estimating the
Voronoi covariant measure, DEF uses training on large synthetic datasets with minimal real
data. The method learns to regress the distance field to features on local patches, which en-
hances generalization ability and scalability to new, previously unseen 3D shapes, even in the
presence of scanning noise.

In the third study, we focus on the NPBG++ model, which significantly improves general-
ization in the task of novel view synthesis. This model predicts neural descriptors directly from
input images in a single pass, avoiding laborious optimization on a new scene. This innovation
allows the model to quickly adapt to new environments, creating high-quality renderings at a
high visualization speed, making it efficient compared to existing approaches.

In the fourth study, we achieve significant improvement in the generalization ability of the
DensePose model for dense human pose estimation under strict size and speed constraints.
By optimizing various components of the model, such as the feature extraction backbone, the
neck and head architectures for human detection and DensePose prediction, we improve model
performance and quality, ultimately enabling it to run locally on a mobile device.

Finally, in the fifth study, we present the Multi-NeuS approach for reconstructing 3D head
portraits from one or several images. Improvement in generalization ability is achieved through
pre-training the model on a large set of images of different people, allowing it to capture class-
specific features and reduce the need for prolonged optimization for each scene. By combining
the optimization of general parameters with scene-specific adaptation, Multi-NeuS effectively
reconstructs textured surfaces.

Thus, all the methods we present in this work demonstrate significant improvements in the
generalization capabilities of models in 3D computer vision tasks. Each proposed solution not
only surpasses existing approaches in efficiency and accuracy but also ensures broader applica-
bility in various practical tasks, such as synthetic data generation, accurate 3D reconstruction,
efficient novel view synthesis, and human pose estimation. These achievements underscore
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the importance and significance of the developed methods, opening new possibilities for the
further development of 3D computer vision technologies.
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