Skolkovo Institute of Science and Technology

as a manuscript

Vage Egiazarian

IMAGE VECTORIZATION USING DEEP LEARNING

PhD Dissertation Summary

for the purpose of obtaining academic degree

Doctor of Philosophy in Computer Science

Academic Supervisor:
Doctor of Science

Evgeny V. Burnaev

Moscow — 2024

Contents

1 Dissertation Topic 3
2 Key Results and Contributions 4
3 Publications and Validation of the Work 7
4 Dissertation Structure 9
5 Description of Data and Problem Statement 9
5.1 Description of Data for Two-Dimensional Drawings 10
5.2 Description of Data for Three-Dimensional Objects 11
6 Vectorization of Two-Dimensional Images 12
6.1 Preprocessingofimages o oo 14
6.2 Initial primitives estimation oo oo 14
6.3 Primitive parameters optimization 0o 000000 15
6.4 Experimentalevaluation 0 oL, 17
7 Generation of High-Quality Synthetic Data with Descriptions of Three-Dimensional
Objects 19
8 Vectorization of Three-Dimensional Objects 23
8.1 Description of the Developed Method for Obtaining Three-Dimensional Paramet-
ricCurves e 23
8.1.1 Inmitialization 24
812 CornerDetection o oo 24
8.1.3 Segmentation of curvesandangles Lo 25
814 Curve Graph Extraction 26
8.1.5 Spline Approximation and Optimization 28
8.1.6 Post-processing of Spline-Based Representations 28
8.2 Evaluation of the Proposed Approach 29
9 Conclusion 32
References 33

1 Dissertation Topic

The theme of this research is the development of efficient methods for raster image and depth
map for three-dimensional object vectorization using deep learning. Vectorization of objects
refers to finding object representation using mathematical primitives and relationships between
them.

To achieve this goal, the following tasks were addressed: data collection, construction
of mathematical models, and development of vectorization algorithms. Data collection was
performed through synthetic data generation and processing of real scanned images of two-
dimensional and three-dimensional objects. Automatic algorithms using computer vision
methods were developed for data cleaning and processing, along with procedures for manual
data processing. The proposed algorithms enable obtaining annotated data in a semi-automatic
mode, which opens up the possibility of using deep learning methods to train neural networks
on those data.

Various neural network architectures, such as convolutional and recurrent networks, as well
as transformers, were investigated to build architectures that effectively solve the set tasks. The
aim of constructing an optimal architecture is to create models capable of accurately and effi-
ciently vectorizing various types of images and three-dimensional objects.

The proposed algorithms demonstrate high accuracy and efficiency in solving object vec-
torization tasks. These algorithms can be applied in various fields such as computer vision,
robotics, and data visualization to represent objects as vector graphics with high accuracy and
detail.

The relevance of research

There are many software products for image and document recognition, but most of them focus
on text recognition and either do not work with images or perform poorly with them. Typi-
cally, these products do not allow representing the recognition results as vector graphics, one
of the most convenient formats for subsequent work. In the case of two-dimensional and three-
dimensional data, existing vectorization approaches based solely on optimization algorithms
have a large number of customizable hyperparameters and perform poorly with noise in the
input data. Using neural networks can reduce the number of hyperparameters, and because
neural networks learn to recognize patterns, it is possible to efficiently process even significantly
noisy data.

The relevance of the study is justified by the fact that image and form vectorization is an im-
portant and complex task in the field of computer vision, which has not been fully solved yet.
In this dissertation, the problem of precise vectorization for two-dimensional technical draw-
ings and three-dimensional component models is considered, and a method for recognizing
drawings and objects using neural networks is proposed for tasks requiring precise and flexible

representation of two-dimensional and three-dimensional objects. The research results can be

3

applied in various applications such as automatic recognition and analysis of technical draw-
ings, automated modeling and editing of 3D objects, as well as virtual and augmented reality.

The objective of this dissertation is to study and develop efficient methods for vectoriza-
tion of two-dimensional technical drawings and three-dimensional models in the field of com-
puter vision. The main tasks include studying existing methods, collecting and processing data,
developing deep learning algorithms, evaluating and comparing vectorization methods, and
studying their practical application.

The objective is achieved through the solution of the following tasks:

e obtaining high-quality geometric data for two-dimensional and three-dimensional objects

for subsequent training of neural network models;
e developing a new system for vectorization of raster images of technical drawings;

e developing an algorithm for reconstructing parametric models of three-dimensional ob-

jects.

The work is based on the use of methodology and methods of machine learning, differential

geometry, and mathematical modeling.

2 Key Results and Contributions

The work is based on the use of methodology and methods of computer vision, computer
graphics, machine learning, and deep learning.

The scientific novelty of the work can be described by the following points:

1. A new method was proposed for generating high-resolution three-dimensional objects at
different scales. A new deep multi-scale model for point cloud generation, Latent-Space
Laplacian Pyramid GAN, was developed based on advanced technologies in the field of
generative adversarial networks for point cloud data [1] and approaches for modeling
data at different scales [8, 26].

2. For the first time, a system was proposed that allows for a more precise solution to the
vectorization problem of scanned drawings. The system includes several components:
specially prepared high-quality data for training neural network models, a new archi-
tecture of the trainable neural network model for vectorization and a new approach for
optimizing primitives to build the final representation of the object in vector format. Train-
able neural network models are used at multiple steps of this approach: for preprocessing
the image to reduce noise levels; for obtaining an initial vector approximation of the im-
age. Then, using the solution to an optimization task, the final result is constructed from
the obtained initial approximation, and its post-processing is performed to minimize the

number of primitives.

3. A new method for extracting parametric curves from three-dimensional point clouds was
presented, allowing for accurate transformation of point clouds into analytical models of
special curves in three-dimensional space, which describe the structural features of three-
dimensional component models and are necessary for further building 3D descriptions of

these objects.

These results were published in the proceedings of international conferences at the Core
A* and Core B level, with the papers undergoing double-blind peer review, and the pre-

sentations being given at international conferences.

Theoretical and Practical Significance

The theoretical significance of the work lies in the new methods and algorithms in the field
of image processing, vectorization, and generation of three-dimensional data. The current state
of approaches to vectorization and generation of images and three-dimensional data was an-
alyzed in the study. Advanced approaches from machine learning, modern neural network
architectures and optimization procedures were applied to build models and methods. Follow-
ing the obtained practical results the understanding of the applicability boundaries of modern
machine learning methods for vectorization tasks has been expanded.

The developed methods have practical applicability in various fields, such as automatic
recognition and analysis of technical drawings, automated modeling and editing of three-

dimensional objects.

Results Presented for Defense:

1. Methodology and algorithms for data generation,

2. Algorithm for transforming raster technical drawings into vector graphics while preserving

information,

3. Algorithm for transforming three-dimensional scanned objects into vector graphics con-

sisting of three-dimensional curves,
4. Methodology for evaluating the accuracy and quality of vectorized data.

The reliability of the obtained results is ensured by the correct use of a tested set of tools for
research and analysis. The proposed algorithms were experimentally tested on various tasks
and on real datasets of both two-dimensional and three-dimensional objects. Detailed descrip-
tions of the experiments conducted and the source code are publicly available, enabling repli-
cation of the obtained results. The research results were published in leading scientific journals
and at conferences dedicated to computer vision and pattern recognition.

Personal Contribution to the Presented Results: All stated results were obtained by the au-
thor of this dissertation. In all mentioned cases, both the text of the papers and the experimental

results presented therein are the results of collaboration with other authors.

5

In Paper 1: "Deep vectorization of technical drawings," Egiazaryan V.G, as the primary au-
thor, developed and implemented a system for processing input images with subsequent ac-
quisition of vector representations. Additionally, the author was responsible for developing
the neural network architecture and its training algorithm, which transforms raster images into
vector primitives, and jointly with co-authors developed methods and experimental design for
evaluating the effectiveness of the proposed method.

In Paper 2: "Def: Deep estimation of sharp geometric features in 3d shapes," Egiazaryan V.G.
was responsible for developing and improving the second component of the entire pipeline: the
algorithm for recovering parametric curves from point clouds.

In Paper 3: "Latent-Space Laplacian Pyramid GAN," the author of the dissertation developed
and implemented the algorithm for multi-scale generation of three-dimensional point clouds,

as well as a methodology for evaluating the accuracy and quality of the generated objects.

3 Publications and Validation of the Work

First-tier publications

1.

Vage Egiazarian*, Oleg Voynov*, Alexey Artemov, Denis Volkhonskiy, Aleksandr Safin,

Maria Taktasheva, Denis Zorin, Evgeny Burnaev. Deep vectorization of technical draw-
ings. In Proceedings of the European Conference on Computer Vision, pp. 582-598,
Springer, Cham. ECCV 2020, CORE A*, indexed by SCOPUS.

. Albert Matveev*, Ruslan Rakhimov*, Alexey Artemov, Gleb Bobrovskikh, Vage Egiazarian,

Emil Bogomolov, Daniele Panozzo, Denis Zorin, Evgeny Burnaev. DEF: Deep estimation
of sharp geometric features in 3d shapes. In Proceedings of the SIGGRAPH 2022 conf.,,
ACM Transactions on Graphics (TOG), 41(4):122, 2022. CORE A*, indexed by SCOPUS.

Second-tier publications

3.

Vage Egiazarian®, Savva Ignatyev®, Alexey Artemov, Oleg Voynov, Andrey Kravchenko,

Youyi Zheng, Luiz Velho, Evgeny Burnaev. Latent-space laplacian pyramids for adversar-
ial representation learning with 3d point clouds. In Proceedings of the 15th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Ap-
plications, pp. 421-428, VISIGRAPP 2020, CORE B, indexed by SCOPUS.

The author has also contributed to the following publication

4.

Oleg Voynov, Alexey Artemov, Vage Egiazarian, Alexander Notchenko, Gleb Bobrovskikh,

Denis Zorin, Evgeny Burnaev. Perceptual deep depth super-resolution. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 5653-5663, 2019. CORE A*,
indexed by SCOPUS.

. Denis Mazur*, Vage Egiazarian*, Stanislav Morozov*, Artem Babenko. Beyond vector spaces:

Compact data representation as differentiable weighted graphs. In Proceedings of the Advances
in Neural Information Processing Systems (NeurIPS), Volume. 32, 2019. CORE A%, in-
dexed by SCOPUS.

. Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, Evgeny Burnaev.

Wasserstein-2 generative networks. In Proceedings of the International Conference on Learn-
ing Representations (ICLR), 2021. CORE A*, indexed by SCOPUS.

Alexander Korotin, Vage Egiazarian, Lingxiao Li, Evgeny Burnaev. = Wasserstein iterative
networks for barycenter estimation. In Proceedings of the Neural Information Processing
Systems (NeurIPS), 2022. Volume 35. CORE A*, indexed by SCOPUS.

Arip Asadulaev*, Alexander Korotin*, Vage Egiazarian, Petr Mokrov, Evgeny Burnaev.

Neural optimal transport with general cost functionals. In Proceedings of the International
Conference on Learning Representations (ICLR), 2024. CORE A*, indexed by SCOPUS.

7

9.

10.

Tim Dettmers*, Ruslan Svirschevski*, Vage Egiazarian*, Denis Kuznedelev*, Elias Frantar,
Saleh Ashkboos, Alexander Borzunov, Torsten Hoefler, Dan Alistarh. SpQR: A Sparse-
Quantized Representation for Near-Lossless LLM Weight Compression. In Proceedings of the

International Conference on Learning Representations (ICLR), 2024. CORE A*, indexed
by SCOPUS.

Vage Egiazarian*, Andrei Panferov*, Denis Kuznedelev, Elias Frantar, Artem Babenko, Dan

Alistarh. Extreme Compression of Large Language Models via Additive Quantization. In Pro-
ceedings of The Forty-first International Conference on Machine Learnings (ICML), 2024.
CORE A*, indexed by SCOPUS.

Reports at conferences and seminars

Deep vectorization of technical drawings, poster presentation at 16th European Confer-
ence on Computer Vision (ECCV), Online, 2020;

"Vectorization using deep learning," presentation at the seminar of the Association "Arti-

ficial Intelligence in Industry," Online;

"DEF: Deep estimation of sharp geometric features in 3D shapes," poster presentation at
the SIGGRAPH conference, Canada, 2022;

"Latent-space Laplacian pyramids for adversarial representation learning with 3D point

clouds," poster presentation at the VISAPP conference, Malta, 2020.

* - Equal contribution

4 Dissertation Structure

The main part of the dissertation consists of four sections:

Section 5 describes the methodology for obtaining vectorization data. Methods for obtain-
ing both synthetic and real data necessary for training and evaluating vectorization models are
considered.

Section 6 presents a data processing system for 2D technical drawings aimed at obtaining
vector graphics. Methods and algorithms used to transform raster images into vector represen-
tations are described.

Section 7 describes a new method for generating high-quality three-dimensional objects.
Existing methods for generating three-dimensional data are discussed, and the general archi-
tecture and structure of the proposed new method are described.

Section 8 proposes a method for obtaining three-dimensional parametric curves from three-
dimensional objects. The efficiency of the developed method is compared to existing ap-

proaches.

5 Description of Data and Problem Statement

Vector representations are often used for technical drawings and three-dimensional models,
such as architectural plans, engineering drawings, 3D models of buildings and parts, etc. The
demand for vector representations is justified by several advantages. First, vector graphics are
scale-independent, much more compact, and, most importantly, support easy editing at the
primitive level. Another important advantage of vector representation is that it provides the
basis for a higher-level semantic structure (e.g., with sets of primitives hierarchically grouped
into semantic objects).

However, in many cases, vector representation is unavailable, and only the "raw" object is
accessible. In the two-dimensional case, this is a scanned image, and in the three-dimensional
case, it is often RGB-D images or point clouds. Examples of such scanned images include old
hand-drawn sketches, for which only a printed copy of the original source is available, or images
found in online collections. When the original vector representation of the document is unavail-
able, it is usually manually reconstructed based on scans or photographs. The conversion to a
vector representation is commonly referred to as vectorization.

There is a wide range of methods that often solve various variations of the vectorization
problem and are tailored to different types of input and output data. Most of them are not
based on machine learning approaches and apply algorithmic and optimization methods to
solve the vectorization task. However, such approaches typically have a number of drawbacks,
including a large number of hyperparameters, low processing speed, and little consideration of

the processing specifics of different types of images.

f{@

Figure 1: Example from the DLD dataset: (a) original input image, (b) image cleaned from

background and noise, (c) final target mask with filled lines.

With the development of deep learning, the idea of using approaches from this field to solve
the vectorization task naturally arises. However, such methods also have their own limitations,
including the need for a large amount of training data. In the case of vectorization, a significant
amount of input and output data pairs are required for training neural networks.

Collecting real data is a laborious task that requires significant resources [24, 38]. Generat-
ing synthetic data is less resource-intensive, but the obtained data may significantly differ from
real data and contain domain shifts. This means that neural networks trained only on synthetic
data may perform poorly when applied to real data. Therefore, a good strategy is to use a com-

bination of synthetic and real data.

5.1 Description of Data for Two-Dimensional Drawings

There are several ways to obtain pairs of raster and vector images. One approach is to first collect
raster images and then trace the lines manually, thereby creating a vector representation. This
method is accurate in terms of matching the output vector representation to the input raster
image but is resource-intensive. In this case, the location and style of the vector image may
not correspond to the original drawing. Another approach is to start with a vector image and
render it into a raster image. This approach is cheaper and requires significantly fewer human
resources but does not necessarily create realistic raster images, as it is difficult to model the
degradation of real-world documents [21]. Due to these limitations, it was decided to use both
approaches.

The task of image vectorization can be divided into two parts: improving the quality of the
raster image to remove noise and artifacts, and obtaining pairs of clean raster and vector images.

To solve the problem of improving the quality of the raster image, a dataset of real technical
drawings (DLD) and a set of synthetic data were collected.

The real data consists of photos and scans of 81 floor plans with a resolution of ~ 1300 x 1000.

To prepare the raster and corresponding ground truth data, each image was manually cleaned

10

L
@ ®) © @

Figure 2: (a) Vector image serving as the ground truth, and artifacts used for vectorization

performance evaluation. (b) Skeleton structure deviation. (c) Shape distortion. (d) Excessive

Figure 3: The examples of synthetic training data for our primitive extraction network.

parameterization.

by removing text, background, and noise, as well as enhancing the line structure by filling gaps
and sharpening edges (Figure 1).

The synthetic data includes 20,000 pairs of images with a resolution of 512 x 512. The ground
truth data were obtained by generating random mathematical primitives. The input images
were obtained by rendering the ground truth data onto one of 40 realistic scanned paper back-
grounds and degrading the rendering with random blurring, distortion, noise, etc.(Figure 2)

To obtain pairs of clean raster and vector images, the PFP vector floor plan dataset was cre-
ated, which includes 1554 architectural floor plans from the real world [35], and the ABC vector
mechanical parts dataset containing 10,000 vector images of mechanical parts obtained from
the dataset [23] by projecting them onto a two-dimensional canvas using Opencascade [34]

(see Figure 3).

5.2 Description of Data for Three-Dimensional Objects

Three-dimensional objects have different representations, among which the most common ones
are Point Clouds, RGB-D, Mesh, and CAD models. RGB-D and point clouds can be obtained
by measuring distance using 3D scanners (e.g., LIDARs, RGB-D cameras, and structured light
scanners) or computed using stereo matching algorithms. Mesh and CAD models are typi-
cally created by engineers or designers in professional software such as Blender, AutoCAD, etc.
Similar to two-dimensional data, there are several ways to obtain training samples for three-
dimensional models.

One approach, complex in implementation but allowing relatively inexpensive creation of
a large amount of data, is the use of generative modeling. Data created in this way are syn-
thetic and often less realistic, but they provide many opportunities for manipulation. Alterna-
tively, data can be extracted from CAD models or other representations (e.g., from the ABC
dataset [23]). These data are usually of higher quality compared to the results of generative
modeling, and they can provide not only input data but also ground truth. However, their vol-

ume is limited by the number of original models, and they also cannot model real distributions

11

of real scanned data. Models trained on the above data may not always perform well on real
data due to domain shift. The most accurate, albeit most costly, way to obtain training data is to

scan real objects using LiDARs, RGB-D cameras, and structured light scanners [40].

Obtaining Data from CAD Models

The data presented in [28] is derived from CAD models [23] and constitutes a collection of
local patches and complete three-dimensional models at various resolutions: low, medium, and
high, as well as at different levels of noise.

To obtain the data, n, virtual cameras were set up with uniformly distributed positions on a
sphere around the object (using Fibonacci sampling [16]), with the z-axis pointing to its center
of mass. For each camera, a regular grid (image) of size 64 x 64 pixels (with r denoting the pixel
size) was created, and rays perpendicular to the grid were cast from each pixel corner. Thus,
patches of up to 4096 points were obtained (points outside the object were set to a background
value).

Given the camera parameters K, 7T, where K € R?*3 is the intrinsic matrix transforming
point coordinates from camera coordinates to the image plane, and T € R*** is the external
camera transformation matrix from camera coordinates to the global coordinate system [17],
selected points p;; = (x5, yij, 2ij) (in homogeneous coordinates) could be associated with the
am), where z#™ = (KT~ 'p;;)3 denotes the z-coordinate of point p;; in
camera coordinates. Annotation images of distances to the object were created by computing

depth image I = (z

d = (d°(psj)) and recording the pair I, d as a training example. A value of 18 was chosen for
n,, and the dataset was augmented by rotating and shifting the grid of images during data
generation, while preserving the same orientation of the z-axis [28]. Thus, a training set was

obtained for 68 complete three-dimensional models at various resolutions.

6 Vectorization of Two-Dimensional Images

There are numerous methods for vectorizing images and drawings [30, 37,12, 9, 3,5, 2, 13, 15].
One of the most widely used methods for image vectorization is Potrace, which finds contour
of curves in the provided images[37]. Potrace can handle both colored and black and white
images. Some works use Potrace as a stage in their algorithms [31, 22]. Another set of works
is based on extracting a network of curves and cleaning up the topology [12, 3, 32, 5, 4, 33, 19]
[42,20]. The work by Ellis et al. [11] uses machine learning to extract high-level representations
from raster sketches without aiming to precisely reproduce the geometry of primitives. Guo et
al. [14] focus on improving the accuracy of topology reconstruction. The algorithm by Gao et
al. [13] considers only simple data and uses a neural network for more accurate matching of
the geometry of curve segments.

Each of these methods addresses different versions of the vectorization problem and works

with different types of input and output data. Some algorithms can handle noisy data, while

12

N\ \
B\ \
A
V1]
1 (4 N)
rimitives "Tg\\%‘*»\— i T%f
network -
o N ~—
Raster drawing Cleaned drawing Predicted primitives Optimized primitives Final vector

Figure 4: Overview of the presented vectorization method. In the initial stage, the input im-
age is cleaned using a deep convolutional neural network. Then the clean result is divided into
patches, and for each patch, the placement of primitives is estimated using a deep neural net-
work. Next, the primitives in each patch are refined through iterative optimization. At the final

stage, patches are merged into a single vector image.

others require clean input; some methods can process colored images, while others cannot.
Different methods yield different sets of mathematical primitives as output.
Although different applications have different requirements, overall "good" vectorization

adheres to the following requirements:

e Well approximate the input image semantically or perceptually;
e Avoid vectorizing noise and handle artifacts;

e Minimize the number of primitives used, creating a compact and easily editable represen-

tation.

The method proposed by the author of this dissertation [10] focuses on vectorizing technical
images. The developed system (Figure 4) takes a raster sketch as input and produces a set of

graphic primitives, such as line segments and quadratic Bezier curves, with width.

The method consists of the following steps:

1. Preprocessing of raster images. At this stage, a pre-trained neural network removes noise,

corrects contrast, and fills in missing parts of the image.

2. Initial primitives estimation. The cleaned image from the previous step is divided into
fragments, and initial parameters of primitives are estimated for each fragment using a

neural network.

3. Optimization of primitive parameters. Refinement of primitive parameters occurs by

aligning them with the cleaned raster.

13

=t (b)

i =pql =yl

Figure 5: Example of image preprocessing: (a) original raw image, (b) result from [38], (¢)

result from our model.

IoU,%| PSNR
[38] 49 15.7
Ours| 92 25.5

Table 1: Comparison of data cleaning with [38].

4. Post-processing. Predictions from all fragments are combined, and redundant primitives

are removed.

Let’s now consider each step in more detail.

6.1 Preprocessing of images

The goal of preprocessing is to clean raw input data by removing noise, filling in missing parts
of lines, and setting the background to white. This task can be considered as an image seg-
mentation problem into two classes, where one class represents the background and the other
represents everything else. Following the ideas of [24, 38], the work utilizes the U-net archi-
tecture [36], which is widely used in segmentation tasks. The model is trained on synthetically
generated data and fine-tuned on real data described in Section 5. Binary cross-entropy loss
function is used. Comparisons with the method of [38] are presented in Table 1, and an exam-

ple of the work is shown in Figure 5.

6.2 Initial primitives estimation

First, the cleaned raster image obtained from the previous stage is divided into patches. Then,
the parameters of primitives for each patch are independently initialized using a neural net-
work. The neural network consists of an encoder based on ResNet [18] and a sequence of n4ec

transformer blocks [39].

14

Each patch I, € [0,1]°%*% is encoded using the encoder network X™ = ResNet (I,,), and

then the feature embeddings of primitives X" are decoded using the transformer blocks (1).

XP" = Transformer (X', X'™) € [R7prim X demb i=1,...,Ngdec- (1)

At the output, we obtain a set of parameters npin, 0f size depp,. The maximum number of
primitives is determined by the size of the 0-th embedding X} € R"rim*demd initialized with
positional encoding as described in [39].

More than 97% of patches in the training dataset contain no more than 10 primitives. Based
on this, it was decided to fix the maximum number of predicted primitives at ten and filter
out any additional ones. To obtain the coordinates of control points and the width of prim-
itives © = {6 = (Th1, Y1, - .- wi) oo™ and the confidence values that the primitive exists
p € [0,1]"P"™, the last obtained feature embedding is passed to a fully connected block. If the
width or confidence value is less than a threshold (typically set to 0.5), the primitive is dis-
carded.

To predict primitive parameters, a neural network was trained using a loss function that
evaluates the accuracy of simultaneously solving multiple tasks: binary entropy for confidence
values and a weighted sum of parameter deviations with (L1) and (L2) losses. Since this loss
function is not permutation-invariant regarding the primitives and their control points, the end-

points in primitives and the primitives themselves are sorted lexicographically.

A R 1 MNprim X R
L (1%277 @,@> = o kZ:1 <Lcls (Pr, Dr) + Lioc <0k>0k)> 7 (2)
Las (pis Dr) = —prlogpr — (1 — pr) log (1 — py), (3)
Lige (61,01) = (1=) 0 — Bl + Al6y — O3 (4)

6.3 Primitive parameters optimization

The neural network for predicting primitives minimizes the mean squared error, but even with
a small average deviation, individual estimates can be inaccurate. To refine the primitive pa-

rameters, a functional (5) has been developed, which aligns primitives to the raster image.
O™ = argmin E (0, 1,,) . (5)
©

For each primitive, an optimization functional was defined that consist of the sum of three terms:

Mprim
i i d
E (6, 0% 1) = Y Ej” + B} + E;™", (6)
k=1
where OP% = {7 P — js a primitive parameter, ©517° = {65%°] —size parameter, and
- k k=1 p p ’ - k k=1 P Y

0y, = (68, 65).

15

The positions of the line are defined by the coordinates of its midpoint and its inclination
angle, while the size is determined by its length and width. In the case of an arc, the midpoint
is defined as the intersection of the curve and the bisector of the angle between the segments
connecting the midpoint and the endpoints. The lengths of these segments and the inclination

angles connecting the “midpoint” with the endpoints are also utilized.

Interaction of Charges. Various parts of the functional are based on the energy of interaction

between unit point charges 71, r2, defined as the sum of near and far-field potentials.

e —rall? _ Hn—;z\@
o(ri,m)=e¢ " +X e | (7)
The parameters R., Ry, s are chosen experimentally.
The interaction energy between a uniformly positively charged region of the i-th primitive
Q and a grid of point charges ¢ = {g;};>} at the centers of pixels r; is determined by the

following equation:
MNpix

Bi@=Ya [[etrr)ar’ (8)
=1 Q

In the case of curves, it is approximated by the sum of integrals over segments of a polyline that
straightens the curve.

The proposed functional utilizes three different charge grids, encoded as vectors of length
npix: g represents the raster image with charges set to pixel intensities, g, represents the ren-
dering of the i-th primitive with its current parameter values, and q represents the rendering
of all primitives in the patch. The sets of charges g;, and g are updated at each iteration.

Let’s examine in detail formula (6), which consists of three components.

The first component is responsible for expanding and shrinking the primitive to cover filled

pixels (with the primitive’s position fixed):
B =E.(lg-d0c+a.01—cl). 9)

The weight ¢;; € {0,1} ensures coverage of the continuous raster region, following the shape
and orientation of the primitive.

The second component is responsible for aligning primitives of fixed size.
EY” =Ey(la—ar— 4l ©[1+3c]). (10)

The last component is responsible for collapsing overlapping collinear primitives; for this term,

Ar = 0is used:

E;" = By, (q};d“) , i = exp (— (ki - M

=117 8) Il (11)

where 1, ; —the direction of the primitive at its nearest point to the i-th , m;; = > itk liqj
— the sum of directions of all other primitives, weighted relative to their "presence”, and 3 =

(cos 15° — 1)~ is chosen experimentally.

16

xd ¢g

850 px

Al
.l t
A

[
J
xd 011

CHD, 52% / 349 Ours, 78% / 368

Figure 6: Qualitative comparison on a scan of a real floor plan. IoU / #P with the best result are
highlighted in bold. Primitives are shown in blue color with orange endpoints overlaying the

cleaned raster image.

An approximate solution for formula (5) can be obtained by considering each energy term
EP*, Esize, Er0 as dependent only on the parameters of the i-th primitive. This allows for
efficiently computing the gradient for the proposed functional, as it is necessary to differentiate

each term only with respect to a small number of parameters.

6.4 Experimental evaluation

To evaluate the algorithm’s performance, 15 test images from the DLD dataset were used. The
quantitative results of this evaluation are presented in Table 2, and the qualitative results are
shown in Figure 6. Additionally, a comparison was made on 40 images from the PFP dataset
and 50 images from ABC with resolutions of ~ 2000 x 3000. The quantitative results on these
data are also presented in Table 2, and the qualitative results are shown in Figures 7 and 8.

As was previously mentioned, good vectorization should contain a small number of primi-
tives while still effectively approximating the input image. Based on the approximation quality
metrics on the PFP dataset, our vectorization system outperforms other methods, only being
surpassed in the number of primitives by the FvS model. In the case of the ABC dataset, de-
spite the PVF model outperforming our vectorization system in terms of IoU metric, its result

contains significantly more primitives.

PFP ABC DLD
IoU,% HD, px dm, px #P |IoU% HD, px dy, px #P |IoU,% #P
FvS 31 381 28 696 | 65 38 1.7 63
CHD| 22 214 21 1214 60 9 1 109 | 47 329
PVF 60 204 1.5 38k | 89 17 0.7 7818
Ours | 86/88 25 02 1331(77/77 19 0.6 97 179/82 452

Table 2: Quantitative vectorization results on PFP, ABC, and DLD datasets using various meth-

ods.

17

xd 0241

xd 967

DD %%% %

EvS CHD PVF Ours
29% | 415px 21% / 215px 64% / 140px 89% / 28px
4.2px / 615 1.9px / 1192 0.9px / 35k 0.2px / 1286

GT,
#I’ 1634

Figure 7: Qualitative comparison on an image from the PFP dataset. The values of IoU / HD /
dy / #P with the best result are highlighted in bold. The endpoints of primitives are shown in

orange color.

A
@
A,
A
A,
FvS CHD PVF Ours
67%/ 32px 67%/ 7px 95%/ 4px 86%/ 5px GT,
1.1px/ 79 1.0px/ 108 0.2px/ 9.5k 0.4px/ 139 #1359

Figure 8: Qualitative comparison on an image from the ABC dataset. The values of IoU / HD /
dy / #P with the best result are highlighted in bold. The endpoints of primitives are shown in

orange color.

18

Conclusion

This section discusses a new method for vectorizing technical images using neural networks.
It involves cleaning the input image with a neural network based on the U-Net architecture,
initial estimation of primitives using a combination of ResNet and Transformer neural networks,
optimization of primitive parameters, and post-processing.

The proposed work significantly improves the quality of the resulting vector images of tech-
nical scans and reduces the number of hyperparameters thanks to the use of deep learning

methods and a new approach to optimization.

7 Generation of High-Quality Synthetic Data with Descriptions of

Three-Dimensional Objects

As was mentioned earlier, obtaining real data is a labor-intensive task, and training a neural
network requires a large amount of data (see section 5). A neural network trained on synthetic
data does not always perform well on real data due to domain shift. The problem of domain
shift can be addressed by fine-tuning on real data, making synthetic data more realistic, or
transforming real data to resemble synthetic data during inference.

The problem of collecting real data for vectorization is even more complex in three-
dimensional cases. Fine-tuning on real data still requires a large amount of data relevant to
the task. An alternative approach of training on synthetic data that approximates real data al-
lows for the use of an unpaired dataset of synthetic and real data. Such a dataset can be collected
using open sources from the internet. As a result, it is possible to train a model that makes syn-
thetic data more realistic or vice versa. Therefore, it was decided to study the issue of translating
one distribution into another in three-dimensional space using the standard task of generating
three-dimensional point clouds from noise.

Generating three-dimensional data is a complex task. A recent trend is the use of data-
driven generation methods such as deep generative models [1, 25, 6]. Most methods operate
only on coarse three-dimensional geometry (low resolution) because high-resolution three-
dimensional shapes require significant computational resources for processing and are chal-
lenging to train. To generate high-resolution data, a new deep cascaded model called Laplacian
Pyramid in Latent Space GAN (LSLP-GAN) was developed [10].

The proposed model (illustrated schematically in Figure 9) for training using three-
dimensional point clouds is based on works on latent GANs [1] and Laplacian GANs [8]. In
[1], it was proposed to train GANs not in the space of point clouds but on latent codes obtained
using an autoencoder. Laplacian GANs [8] address the challenge of training high-resolution
objects by cascading image synthesis using a series of generative networks Go, ..., G,, where
each network Gy, learns to generate high-frequency residual images 7, = G (U (Ix+1), 2), with

Ii, being the reconstructed image obtained from G_;. Thus, the image at stage k is represented

19

§ refine h1 — hl

< ~

2 encode h;

+

=

Q

+~

<

3 /‘\
n

o

=

<

o

g |
S

¥ ¢ tx 2 ' x4

input X X1 Xo

Figure 9: The proposed multi-stage Generative Adversarial Network (GAN) module over a

latent space.

as follows:
Iy = Ul y1) + Gre(U(Tkt1)s 21), (12)

where U(+) is the up-sampling operator, and zj is the noise vector. Since modeling high-detail
three-dimensional point clouds is challenging due to the high dimensionality, the idea of [8]
was adopted to start with a low-detail (but easily constructible) model and break down the
generation task into a sequence of simpler stages, each aimed at gradually increasing the level
of detail.

Rnk—1><3 Rnkxi% hk:
T~ f k G
U 3 d k
(o] O<L
)"’C 4 1 va
0Lk hk:
1 gk
Coarser point clouds Finer point clouds Latent space
(less points) (more points)

Figure 10: Detailed schematic of our Laplacian pyramid in the latent space.

From the space of three-dimensional shapes {R"*3}X_ corresponding latent code spaces
{R%}X | were constructed using trained point cloud autoencoders {(fx, g)}* . The autoen-
coder (fx, gx) is trained using a resolution of n;, point clouds, which increases as k grows. After
training the autoencoders, their parameters were fixed, and hidden codes were extracted for
point clouds in each of the three-dimensional shape spaces.

Laplacian Pyramid in Latent Code Space

The system takes as input a point cloud X;_; € R™-1*3, The goal is to transition from Xj,_; to

20

Xy, i.e., to increase the resolution from ny_; to ny = 2n;_; by generating additional points on

the shape’s surface (see Figure 10).

One class Many classes
o
Froy
o
—
o
<
I
(@]
i
[c°]
=
o
N

Figure 11: Examples of shapes synthesized using our LSLP-GAN model. Left: airplanes, chairs,
and tables synthesized using our single-class models. Right: samples of three-dimensional

shapes synthesized using our multi-class model.

The processing of the input point cloud begins with a simple interpolation operator U(-).
The process of obtaining the coarse point cloud X, = U(X}_1) occurred as follows: for each
point z € Xj_;, a new instance = = % ZieNN(a:) x; was created, where NN(z) is a set of m
nearest neighbors of z in the Euclidean space X;_; (in the work, m = 7 neighbors, including
x, were used), which was added to the point cloud. This procedure constitutes a simple linear
interpolation and generates n;, points close to the real surface.

However, the computed point cloud Xy, usually contains distorted points, and it was consid-
ered only as an approximation to our desired shape X,. The coarse point cloud X 1 was mapped
using f;, to a hidden code 7Lk = f ()? %), which is assumed to deviate slightly from the manifold
of hidden representations due to interpolation error in X;.. To compensate for this error in the
latent space, an additional correction 7, for ﬁk was computed using the generative network Gy,
resulting in the corrected code hj, = ﬁk + 7 = iNzk + Gk(ﬁk, z1). Decoding hy, is done using gy,
thereby obtaining the refined point cloud X = g (h) with resolution ny.

The complete procedure in the latent space represents a series of connections:

hi = fr(U(Xg-1)) + Ge(fe(U(Xp-1)), 2k)s (13)

which is analogous to the Laplacian pyramid in the latent space (12). This procedure was
named Latent-Space Laplacian Pyramid GAN (LSLP-GAN).

21

~

x K
Dataset ;ﬁ-?? % ; ’g
i J g W
3 ,.. —> — | 1 @ — —> —> @ —> Ea —> ' — 2
s : § 4 -
HE. ~ v

:
i E g _~input X coarse X, latent hy, residual ry, refined X},
— —L—140

noise 2o latent hg A i

noise 2z,

(optional initialization)

Figure 12: Complete architecture of the LSLP-GAN model. The network takes or generates
an initial point cloud X, and processes it through a series of K trainable steps. Each step (1)
increases the input resolution using the non-trainable operator U, (2) encodes the up-scaled
version in the latent space using fi, (3) performs correction of the hidden code using conditional
GAN G}, and (4) decodes the corrected hidden code using g.

Training GANs on Latent Codes

A series of generative adversarial networks {(Gy, Di)}_ | were trained on the latent codes.
The generator G}, synthesizes "residuals” 7, in the latent space based on the input hy, while
the discriminator D), distinguishes between real hidden codes h; € R% and synthetic ones
hi + Gy (ﬁk, zi). It is noteworthy that each (except the first) generative adversarial network
takes the coarse latent code hy and can be considered as a conditional generative adversarial
network (CGAN) [29].

Examples of generated objects can be seen in Figure 11.

Conclusion

This section presented a new method for multi-level generation of three-dimensional point
clouds using a generative adversarial neural networks. The generative networks operate in the
latent space of an autoencoder, generating increments that gradually increase the number and
correct arrangement of points in the output model.

Thanks to the multi-level approach, this method can be applied not only for generating ob-
jects from noise, but also for enhancing the input point cloud. Specifically, this method can
generate synthetic data close to real data to reduce domain shift during training. The proposed
model can also be used as a standalone module to improve the point cloud obtained from the
depth image of scanned objects for more accurate depth image vectorization. The effectiveness
of these approaches for improving vectorization is a subject for future research.

Additionally, another application of the method can be the generation of vector graphics
from noise. This generation occurs in two stages: first, a point cloud is generated, and then the

vectorization method is applied.

22

8 Vectorization of Three-Dimensional Objects

Vectorizing three-dimensional objects, analogous to two-dimensional vectorization, involves
representing objects and their connections using mathematical primitives. The most common
examples are Computer Aided Design (CAD), object skeletons, and parametric curves.

This section will discuss a method for extracting parametric curves from scanned three-
dimensional objects. The input consists of depth images of the object from various viewpoints,
and the output is three-dimensional splines describing the input object. The method consists of
two parts: obtaining an estimated distance field of geometric features and extracting parametric
curves based on this information.

To obtain the distance field, a U-Net neural network based on ResNet-152 was used to solve
the regression task of predicting the truncated distance field to special curves on the depth map.
The proposed new approach then combined these predictions to produce estimated distance
fields on full three-dimensional models [28].

The extraction of parametric curves utilizes the information from the estimated distance
fields obtained earlier with Deep Estimators of Features (DEFs) [28] and involves a local clas-
sifier for detecting corner vertices, constructing a graph structure, and spline approximation.

The algorithm is based on the method described in the paper [27]. The overall structure of
the approach is preserved, but significant improvements have been made to automate its oper-
ation, increase stability, and improve the quality of the obtained results. These improvements

were achieved through the following changes:
e using a different criterion for detecting corners and endpoints of curves in (14), (17);

e amore reliable stage of polyline construction based on k nearest neighbors and a different

optimization functional in (19);
e adding a post-processing method in (21).

Figure 13 provides a visual illustration of the differences between the two algorithms. As
seen in this figure, the proposed algorithm handles complex three-dimensional objects better

and is less prone to generating outliers.

8.1 Description of the Developed Method for Obtaining Three-Dimensional Para-

metric Curves

The proposed method includes several stages:
e Initialization,
e Corner Detection,

e Curve and Corner Segmentation,

23

Wireframes DEF (Ours) Ground Truth

CD =194 CD =3.4x10-3

Figure 13: The proposed method improves corner detection (line 1) and can resolve complex
curves (line 2), while Wireframes occasionally produce curves with significantly large deviations

from the ground truth.

e Curve Graph Extraction,

e Spline Approximation and Optimization,

e Post-processing of representations obtained based on splines.

Figure 14 presents a visual scheme of our algorithm’s operation. Below, each of these stages
will be examined in more detail.
8.1.1 Initialization

At this stage, a subset of points is selected from the initial point cloud P, that consists of points
with estimated distance to nearest sharp features d less than the threshold dsharp- To further
reduce the number of points, the Poisson disk sampling [7] method was used, leaving only

10% of points. As a result, a subset of points Pyp,rp Was obtained.

8.1.2 Corner Detection

At this stage, anchor points were selected from FPyharp using the farthest point method. 20% of
points from Pyharp were used as anchor points. Then sets B; were constructed, containing points
located in overlapping Euclidean balls with a radius of Rcomer, centered at anchor points and

covering Fharp-

24

Each of these local sets B; was approximated by its ellipsoidal shape by computing the
principal components (PCA) on the points of the set and obtaining the vector of variances
(A1, A2, A3), such that \; < A2 < A3 and 22:1 A = 1, describing the lengths of the ellip-
soid axes. For each specific set B;, the obtained vectors were used to compute the normalized

aggregation of the quadratic distance using the following expression:

A= 3 AN 14
where) is the set of indices of sets Bj nearest to set B;, and ¢;; is the Euclidean distance between
the anchor points of sets B; and B;.

Next, the problem of assigning the local set B; to clusters of points, belonging to corners, is

solved. This is done by comparing A; with the threshold Tyariance, and labeling B; as either a

corner set or a curve type set:

Bcorner = {Bz ‘ Az’ > Tvariance}a

(15)
Bcurve = {Bi ‘ Ai < Tvariance}-

By varying N, Tvariance, and Rcorer Within small ranges, 60 combinations of classifications were
obtained. Then, based on the proportion of corner classifications in a specific set B;, the proba-
bility that this set is a corner was calculated.

To extend the classification to all points, the & nearest neighbors method with k£ = 50 was
applied. Thus, for each point, a value 0 < w(p) < 1 was obtained.

To determine the corner points a threshold value Tcomer is applied:

FPeorner = {p € P, sharp * w(p) > Tcorner}-

8.1.3 Segmentation of curves and angles

For curve segmentation, two sets of points were used: Peorner, containing corner points, and
Peurve = Psharp \ Peorner, containing points that are not corners. Both of these sets were processed
to extract clusters that define individual corners and curves respectively.

For distinguish points belonging to separate curves, a dense graph was constructed using
the k-nearest neighbors (kNN) method. All points in the set Peyrve that were within a distance
(refer to Equation (16)) were connected to each other. The resulting graph was partitioned into

connected components to obtain separate clusters of points corresponding to different curves.

roox n = l X S (16)
~— ~— ~— —~—
sampling num. samples characteristic ~ scaling
distance per feature spatial size factor

25

Reconstructed Estimated Segmented Optimized ~ Reconstructed Parametric True Parametric

Distance-to-Feature Field Corner Probability Curve Instances Curve Graph Feature Curves Feature Curves
S—_ S
\ * 7 l’ »
O, L
Q Q/ L~

Figure 14: At the initial stage (a), thresholding is applied to the distances to obtain a subset
Pyharp, which is then used for angle probability estimation (b) and curve segmentation (black
clusters correspond to detected corner neighborhoods) (c). Next, the detected corners and
curves allow the construction and optimization of the curve graph (d). In the final stage, the
curve graph is transformed into a set of parametric curves (e), reflecting the geometry of the

original shape (f).

The connected component defines one of the ncyrve curves, and all of them constitute a set of

point clusters corresponding to each curve:

Peurve = {Pc C Pearve |Vp € Pcaq € FP.,p 7é q: ||p—qH < r}::{ve-

For corner points Peomer, the procedure is similar. Clusters of corners Pcorer are extracted by

partitioning the connected components of detected corner sets.

8.1.4 Curve Graph Extraction

From the segmentation obtained in the previous step, a curve graph corresponding to Pyparp is

constructed. This procedure consists of the following steps:
e detection of endpoints for each curve, based on which curves are defined as open or closed;
e approximation of each curve by the shortest polyline;
e connecting the fitted polylines, corners, and endpoints into a complete curve graph;
e refinement of the positions of endpoints and corners.

Below, we will look at each of these steps in more detail.

Detection of Endpoints for Each Curve. To detect endpoints of the segmented curve clus-
ter P., an endpoint detector based on the neighborhood, similar to the corner detector, is con-
structed. Then, Euclidean neighborhoods F; with a radius Rendpoint, centered at anchor points
Pai chosen from P, are constructed, and their approximation by a line is computed by perform-

ing PCA on the points in E; and reducing its dimensionality to one principal component. Then

26

each point p € E; is parameterized by one coordinate ¢(p) obtained from PCA. To determine the
endpoints of the curve, the fraction of points p € E; with parametric coordinates ¢(p) greater or

less than the parametric coordinate t,; of the anchor point p,; is computed:

Vi= | S sien(t(o) — tai)| (17)
il =%,

where p,; is considered an endpoint if V; is greater than the threshold value Tendpoint: Vi = 0
corresponds to a fully symmetric case, while V; = 1 indicates a strong predominance of points
on one side of the anchor point. If there is only one such anchor point for the curve cluster P,
the anchor p,; with the second largest value of V; is selected as the second endpoint; if more than
two endpoints are detected, the two farthest points are chosen; if endpoints are not detected,
the curve is considered closed.

Approximation of Each Curve by the Shortest Polyline. For an open curve, a graph is
created using the k-nearest neighbors method by connecting all anchor points of the curve p;
from P, that are within a distance not exceeding twice the average sampling distance from each
other. The polyline is initialized by finding the shortest path in such a graph between the de-
tected endpoints using Dijkstra’s algorithm.

For a closed curve, three points with the greatest spread are chosen from the cluster and
connected. Then the remaining polyline points are found using a splitting strategy. Candidates

for splitting are determined by computing pgpyit:

Peplit = argmax |d; — ||p; — min ' (p;)||| (18)
piEPc !

for points p; from the current curve cluster P. € Pcurve, where min, 7! (p;) is the projection of p;
onto the nearest polyline segment [. To continue the splitting, the absolute difference between
the estimates distance to the nearest sharp features d; and the actual distances |p; — 7!(p;)| is
compared with the threshold value Typ;i; for candidates pgpiie exceeding this value, we split
the polyline, assigning ppiit as new vertices of the polylines and splitting the corresponding
segment into two.

Connecting Fitted Polylines, Corners, and Endpoints into a Complete Graph. The de-
tected endpoints of open curves are replaced with the corresponding nearest centers of corner
clusters. Thus, a final curve graph G(q, e) is obtained, defined by the positions of nodes ¢ and
the connections e between them.

Refinement of the Positions of Endpoints and Corners. Formula (19) is used for optimiz-

ing the positions of nodes:

. 1 o e _
min (—— > Jdp) ~ [p - “@I@)| - Y cosa), (19)
q ’P sharp‘ _
pe]:’sharp a€l|G(g.e)]
where 7%(p) is the projection of point p onto the nearest edge in the curve graph G, and

> _gel[Glg.e)) €057 is the sum of cosines of angles between consecutive edges incident to node

27

g, computed only for the set of nodes I[G(q, ¢)] having exactly two incident edges. The second
term represents polyline stiffness, which prevents sharp angles between edges. Optimization
helps to determine the positions of graph nodes more accurately, especially at intersections of
multiple curves, while the stiffness term makes polyline segments straighter. Upon completion
of this step, the final positions of corners are determined as the coordinates of graph nodes with

more than two incident segments.

8.1.5 Spline Approximation and Optimization

To approximate splines, it is necessary to obtain a consistent parametrization for each character-
istic curve. This is achieved by partitioning the curve graph into shortest paths between nodes
of degree not equal to 2, where each path serves as a proxy for a curve, determining the param-
eter coordinates of points along the characteristic curve. For path g, represented as a sequence
of graph nodes ¢, = {qz}‘z‘q:| 1, a set of nearest points Py € Pyparp is obtained, then projections
m9(p;), pi € Py are computed, and parameter values u, = {ui}igl| are obtained as the cumula-
tive sum of norms 79(p;) along path g. At the same time, nodes t, are computed as uniformly
distributed parameters; the number of nodes is determined as max (5, ‘%')

Approximating path g with a spline s, results in a set of control points c;, defining the precise
shape of the spline curve. After spline approximation, the point Ps(cs) = ~(ug, Py, tq,cs) on
spline curve s, is evaluated. These points ideally should be as distant from point cloud F; as
implied by distance field d. To ensure this property, control points are optimized to fit the spline
to distance values:

| Py 2
=1

where p; € P, Jz is the corresponding distance value, and ~(u;, pi, ti, ¢) is the point correspond-
ing to p; evaluated on spline s,. Additionally, constraints are imposed on spline endpoints to
match the polyline endpoints.

The described steps are analogous for closed curves: spline endpoints must meet at a single

point, and tangents at endpoint positions must be equal.

8.1.6 Post-processing of Spline-Based Representations

To improve the final result, a post-processing procedure is applied. After this procedure, only
curves that fit well the original point cloud remain. The quality of describing a curve from the
original point cloud is determined using a quality metric, which is calculated as the F; score
of Chamfer distances between selected curves and Pyparp, and vice versa (21). The lower this

score, the better.

28

DEF (Ours) Ground Truth DEF (Ours) Ground Truth DEF (Ours) Ground Truth

)

v
(a) CD=12x10" (b) CD=31x10" (c) CD=15x10

Figure 15: The result of the proposed method for full 3D vectorization with DEF

1

CD = inf ||z — vyl

XY NXE ylgylliv yll*,
zeX

2- H(CDX—>Y < Tmetric) :]l(CDY—>X < Tmetric)
]l(CDX—>Y g Tmetric) + Il(C]:)Y—>X g Tmetric) ’

(21)

F 1 (Tmetric> =

where CDx_,y is the Chamfer distance from the set of points X to the set of points Y, 1 is the
indicator function, and Tpetric is the threshold used to convert real distances into hard 0-1 labels.
When using this metric for post-processing, Psparp is defined as one of the sets of points, while
the other set represents a discretized set of curves.

Initially, this metric is computed using all curves. Then, each curve is sequentially excluded
from the calculation, and the metric is computed again. If, after this, the distance increases or
remains the same, the previously excluded curve remains in the final set of curves. Otherwise,
the curve is removed.

To conclude the post-processing procedure, curve filtering based on their length is applied.
This process involves detecting connected sets of curves, for each of which the number of curves
forming it is counted, and the total length of all curves in it is calculated. Then, all curves with
a computed length less than a threshold are removed.

The illustration of the complete vectorization system is presented in Figure 15.

8.2 Evaluation of the Proposed Approach

To test the described approach, the vectorization method is run on complete 3D models sam-
pled using n, = 128 views. After setting the parameters, the method was run without manual
intervention. The outputs of the method are (1) spline curve parameters and (2) coordinates

of endpoints of straight lines.

29

_ PIE-NET DEF (Ours) Ground Truth PC2WF DEF (Ours) Ground Truth

4
L

— —
o
=1 =1
= =
S S
€ CD=24x10" CD =0.4x10" <€ CD=99x10" CD = 0.9x10-
3 =
z e =) =
ey o]
& s Py SO\ S
2= A~ X &
b \./ \./
CD =554 CD =0.9x10° CD = 1290x10° CD = 0.3x10°
I
3 ": Y <<y N\ <
: U =P :
§ CD-14x10% CD = 0.6x10" = CD=1x10" CD = 0.4x10"
k2
=) — 9
z z
4 m O
~ ~
(a) CD=029 CD =5x10- CD = 9x10- CD =0.7x10-

Figure 16: A qualitative comparison of the performance of the proposed method DEF with the
results of PIE-NET (a) and PC2WF (b).

For evaluating the model quality, the system was tested on the test set of 68 complete 3D
models (DEF-Sim). For comparison, the methods PIE-NET and PC2WF were also run on the
same dataset, and the obtained results were compared with true parametric curves. To com-
pute the metrics, point clouds were obtained by sampling the predicted curves and lines, as
well as the set of true curves. Chamfer, Hausdorff, and Sinkhorn distances were computed be-
tween predictions and ground truth for the obtained point clouds. The aggregated statistical
evaluation of the metrics for our method and PIE-NET is provided in Table 3. The qualitative
comparison is presented in Figure 16.

Table 3: Comparison of parametric curves obtained using DEF and PIE-NET.

Method CD| HD| SD|

PIE-NET [41] 097 219 0.84

DEF (Ours) 0.04 0.55 0.05

Compared to PIE-NET, DEF detects more instances of curves, and thanks to the predicted
distance field, the fitting procedure depends not only on point positions but also has no issues
with sampling. DEF can fit curves of various types, while PC2ZWF is designed only for straight
lines.

Additionally, it was demonstrated that the proposed vectorization system outperforms the
method it is based on (Wireframes). The qualitative comparison is presented in Figure 13. Im-
proved corner detection and polyline construction based on k nearest neighbors allow the de-
veloped method to handle cases of close corners and complex curves. The topology of the curve
graph guides the curve fitting stage, and if this topology is inaccurate, it can lead to incorrect

curves, as seen in the output of Wireframes.

30

Conclusion

This section presented a method for vectorizing depth images to obtain a parametric repre-
sentation of a three-dimensional object. In this context, the vector representation of a three-
dimensional object is a wireframe, represented by parametric curves.

To obtain the parametric curves, a U-Net-based neural network was applied to each input
depth image to predict the distance to sharp features lines. The resulting predictions were then
combined into a three-dimensional distance field. Based on this field, parametric curves were

extracted, thereby producing a vector representation of the input object.

31

9 Conclusion

This research is dedicated to the development of methods for solving vectorization tasks of
two-dimensional images and depth images for three-dimensional objects using deep learning.
To address this task, deep learning methods and optimization algorithms specifically adapted
for vectorization tasks of two-dimensional technical drawings and three-dimensional models
were developed and applied. Relevant data, including synthetically generated and real images
and 3D shapes, were collected and preprocessed, enabling the creation of datasets necessary
for training and evaluating the developed models. Neural networks and optimization methods
were then developed to accurately and efficiently vectorize input objects.

Within this research, the following results were obtained:

e A method was proposed for obtaining high-quality geometric data for two-dimensional

and three-dimensional objects;
e A new system was developed for vectorizing raster images of technical drawings;

e An algorithm was developed for reconstructing parametric models that describe special

curves of three-dimensional shapes.

The results of our research represent a significant contribution to the field of deep learn-
ing and object vectorization. The developed algorithms achieved high accuracy and efficiency
in solving object vectorization tasks. The presented models demonstrate the ability to extract
mathematical primitives and relationships between them, representing objects as accurate vec-
tor representations. The developed algorithms have great potential for application in various
fields, including recognition and analysis of technical drawings, automated modeling, and edit-
ing of three-dimensional objects.

Future research could delve into the study of alternative neural network architectures, the
development of more sophisticated optimization methods, and the consideration of other types
of data for vectorization. It is also important to continue working on improving the quality and
generalization ability of models.

This research represents an important step towards the development of efficient methods for
object vectorization using deep learning. The developed methods open up new perspectives for
various applications and further research, stimulating the advancement of the field as a whole

and making a significant contribution to the scientific community.

32

References

[1]

(2]

3]

[4]

[5]

[6]

[10]

[12]

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning

representations and generative models for 3d point clouds. In ICML, pages 40—49, 2018.

Bin Bao and Hongbo Fu. Vectorizing line drawings with near-constant line width. In 2012
19th IEEE International Conference on Image Processing, pages 805-808. IEEE, 2012.

Mikhail Bessmeltsev and Justin Solomon. Vectorization of line drawings via polyvector
tields. ACM Transactions on Graphics (TOG), 38(1):9, 2019.

Jiazhou Chen, Mengqi Du, Xujia Qin, and Yongwei Miao. An improved topology
extraction approach for vectorization of sketchy line drawings. The Visual Computer,
34(12):1633-1644, 2018.

JiaZhou Chen, Qi Lei, YongWei Miao, and QunSheng Peng. Vectorization of line drawing

image based on junction analysis. Science China Information Sciences, 58(7):1-14, 2015.

Xuelin Chen, Baoquan Chen, and Niloy] Mitra. Unpaired point cloud completion on real

scans using adversarial training. arXiv preprint arXiv:1904.00069, 2019.

Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans. Graph., 5(1):5172,
jan 1986.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using

a laplacian pyramid of adversarial networks. In NIPS, pages 1486-1494, 2015.

Luca Donati, Simone Cesano, and Andrea Prati. A complete hand-drawn sketch vector-
ization framework. Multimedia Tools and Applications, 78(14):19083-19113, 2019.

Vage Egiazarian, Savva Ignatyev, Alexey Artemov, Oleg Voynov, Andrey Kravchenko,
Youyi Zheng, Luiz Velho, and Evgeny Burnaev. Latent-space laplacian pyramids for adver-
sarial representation learning with 3d point clouds. In Proceedings of the 15th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications.
SCITEPRESS - Science and Technology Publications, 2020.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to
infer graphics programs from hand-drawn images. In Advances in neural information pro-

cessing systems, pages 6059-6068, 2018.

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. Fidelity vs. simplicity:
a global approach to line drawing vectorization. ACM Transactions on Graphics (TOG),
35(4):120, 2016.

33

[13] Jun Gao, Chengcheng Tang, Vignesh Ganapathi-Subramanian, Jiahui Huang, Hao Su, and
Leonidas] Guibas. Deepspline: Data-driven reconstruction of parametric curves and sur-
faces. arXiv preprint arXiv:1901.03781, 2019.

[14] Yi Guo, Zhuming Zhang, Chu Han, Wen-Bo Hu, Chengze Li, and Tien-Tsin Wong. Deep
line drawing vectorization via line subdivision and topology reconstruction. Comput.
Graph. Forum, 38:81-90, 2019.

[15] David Ha and Douglas Eck. A neural representation of sketch drawings. In International

Conference on Learning Representations, 2018.

[16] JH Hannay and JF Nye. Fibonacci numerical integration on a sphere. Journal of Physics A:
Mathematical and General, 37(48):11591, 2004.

[17] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, 2 edition, 2004.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 770-778, 2016.

[19] Xavier Hilaire and Karl Tombre. Robust and accurate vectorization of line drawings. IEEE
Transactions on Pattern Analysis & Machine Intelligence, (6):890-904, 2006.

[20] Ruchin Kansal and Subodh Kumar. A vectorization framework for constant and linear
gradient filled regions. The Visual Computer, 31(5):717-732, 2015.

[21] Tapas Kanungo, Robert M. Haralick, Henry S. Baird, Werner Stuezle, and David Madigan.
A statistical, nonparametric methodology for document degradation model validation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1209-1223, 2000.

[22] Byungsoo Kim, Oliver Wang, A Cengiz Oztireli, and Markus Gross. Semantic segmen-
tation for line drawing vectorization using neural networks. In Computer Graphics Forum,
volume 37, pages 329-338. Wiley Online Library, 2018.

[23] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9601-9611, 2019.

[24] Chengze Li, Xueting Liu, and Tien-Tsin Wong. Deep extraction of manga structural lines.
ACM Transactions on Graphics (TOG), 36(4):117, 2017.

[25] Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabas Poczos, and Ruslan Salakhutdinov.
Point cloud gan. arXiv preprint arXiv:1810.05795, 2018.

34

[26]

[27]

[28]

[35]

[36]

Priyanka Mandikal and Venkatesh Babu Radhakrishnan. Dense 3d point cloud recon-
struction using a deep pyramid network. In WACV, pages 1052-1060. IEEE, 2019.

Albert Matveev, Alexey Artemov, Denis Zorin, and Evgeny Burnaev. 3d parametric wire-
frame extraction based on distance fields. In 2021 4th International Conference on Artificial
Intelligence and Pattern Recognition, AIPR 2021, page 316322, New York, NY, USA, 2021.

Association for Computing Machinery.

Albert Matveev, Ruslan Rakhimov, Alexey Artemov, Gleb Bobrovskikh, Vage Egiazarian,
Emil Bogomolov, Daniele Panozzo, Denis Zorin, and Evgeny Burnaev. Def: Deep estima-

tion of sharp geometric features in 3d shapes, 2022.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Haoran Mo, Edgar Simo-Serra, Chengying Gao, Changqing Zou, and Ruomei Wang. Gen-
eral virtual sketching framework for vector line art. ACM Transactions on Graphics (Proceed-
ings of ACM SIGGRAPH 2021), 40(4):51:1-51:14, 2021.

Vishaal Munusamy Kabilan, Brandon Morris, and Anh Nguyen. Vectordefense: Vector-

ization as a defense to adversarial examples. arXiv preprint arXiv:1804.08529, 2018.

Patryk Najgebauer and Rafal Scherer. Inertia-based fast vectorization of line drawings.
Comput. Graph. Forum, 38:203-213, 2019.

Gioacchino Noris, Alexander Hornung, Robert W Sumner, Maryann Simmons, and
Markus Gross. Topology-driven vectorization of clean line drawings. ACM Transactions on
Graphics (TOG), 32(1):4, 2013.

Open CASCADE Technology OCCT. https://www.opencascade.com/, 2021. Accessed:
2021-06-01.

PrecisionFloorplan. PrecisionFloorplan. http://precisionfloorplan.com. Accessed:
2020-03-05.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and

computer-assisted intervention, pages 234-241. Springer, 2015.

Peter Selinger. Potrace: a polygon-based tracing algorithm. Potrace (online), http://po-
trace.sourceforge.net /potrace.pdf (2009-07-01), 2003.

Edgar Simo-Serra, Satoshi lizuka, and Hiroshi Ishikawa. Mastering sketching: adversarial
augmentation for structured prediction. ACM Transactions on Graphics (TOG), 37(1):11,
2018.

35

https://www.opencascade.com/
http://precisionfloorplan.com

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in

neural information processing systems, pages 5998-6008, 2017.

[40] Oleg Voynov, Gleb Bobrovskikh, Pavel Karpyshev, Saveliy Galochkin, Andrei-Timotei
Ardelean, Arseniy Bozhenko, Ekaterina Karmanova, Pavel Kopanev, Yaroslav Labutin-
Rymsho, Ruslan Rakhimov, et al. Multi-sensor large-scale dataset for multi-view 3d re-
construction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21392-21403, 2023.

[41] Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasacchi, Bin Zhou, Ali Mahdavi-Amiri,
and Hao Zhang. Pie-net: Parametric inference of point cloud edges. Advances in Neural

Information Processing Systems, 33, 2020.

[42] Jiaojiao Zhao, Jie Feng, and Bingfeng Zhou. Image vectorization using blue-noise sam-
pling. In Imaging and Printing in a Web 2.0 World 1V, volume 8664, page 86640H. Interna-
tional Society for Optics and Photonics, 2013.

36

	Dissertation Topic
	Key Results and Contributions
	Publications and Validation of the Work
	Dissertation Structure
	Description of Data and Problem Statement
	Description of Data for Two-Dimensional Drawings
	Description of Data for Three-Dimensional Objects

	Vectorization of Two-Dimensional Images
	Preprocessing of images
	Initial primitives estimation
	Primitive parameters optimization
	Experimental evaluation

	Generation of High-Quality Synthetic Data with Descriptions of Three-Dimensional Objects
	Vectorization of Three-Dimensional Objects
	Description of the Developed Method for Obtaining Three-Dimensional Parametric Curves
	Initialization
	Corner Detection
	Segmentation of curves and angles
	Curve Graph Extraction
	Spline Approximation and Optimization
	Post-processing of Spline-Based Representations

	Evaluation of the Proposed Approach

	Conclusion
	References

