
National Research University

Higher School of Economics

(HSE University)

as a manuscript

Ramon Antonio Rodriges Zalipynis

Array (Tensor) DBMS: Theoretical
Foundations, Software, and

Applications

Dissertation Summary

for the purpose of obtaining academic degree
Doctor of Science in Computer Science

Moscow — 2024

Abstract

Array (Tensor) DBMSs strive to be the best systems for managing, pro-
cessing, and even visualizing large multidimensional arrays (tensors). It is
a young, fast-evolving, and inherently inter-disciplinary area: many core
data types in diverse domains are naturally modeled by arrays (tensors).
This dissertation presents fundamental theoretical, systems, and practical
contributions to the area of Array (Tensor) DBMSs. Namely, we introduce
two novel Research & Development directions: physical world simulations
and tunable queries in Array (Tensor) DBMSs. We also propose a new for-
mal Array (Tensor) DBMS data model, novel algorithms, approaches, ar-
chitectural and implementation aspects for operating on multidimensional
arrays (tensors), which can exceed the speed of state-of-the-art approaches
and technologies by orders of magnitude. The significance of contributions
is demonstrated across a wide variety of practical applications and real-
world data. This dissertation is based on the results presented at premier
international conferences in computer science: VLDB and SIGMOD.

2

Contents

Dissertation Title and Topic . 5
Dissertation & Array (Tensor) DBMS State-of-the-Art 9
Array (Tensor) DBMSs: The Beauty and Impact 11

1 Introduction 14
1.1 Relevance of the Dissertation Topic 14
1.2 Objectives and Goals of this Dissertation 15
1.3 Main Results . 15
1.4 Publications and Probation of the Work 21
1.5 Source Code of the Software 28

2 Theoretical Foundations 29
2.1 A New Formal Array (Tensor) DBMS Data Model 29

2.1.1 Motivation for a New Data Model 29
2.1.2 Tensors or Multidimensional Arrays 30
2.1.3 Multilevel, Distributed Datasets 32

2.2 New Distributed & In Situ Tensor Algorithms 34
2.2.1 Distributed N -d Retiling 35
2.2.2 Distributed K-Way Array (Tensor) Join 36
2.2.3 Aggregation, Chunking & Other Operations 37

2.3 Tunable Queries, Indexing & Data Structure 43
2.3.1 Introducing a New R&D Direction: Tunable Queries 43
2.3.2 Novel Tunable Function Indexing Techniques 44
2.3.3 A New and Fast Hierarchical Data Structure 45

2.4 New R&D: Simulations in Array (Tensor) DBMSs 46
2.4.1 Rationale, Shortcomings & Benefits 46
2.4.2 New Traffic Cellular Automaton (TCA) 47
2.4.3 Challenges & New Enabling Components 49

2.5 New Scalable Data Science Techniques 50
2.5.1 Array (Tensor) Mosaicking Challenges 50
2.5.2 Scaling MAD & IR-MAD 51
2.5.3 Scaling Canonical Correlation Analysis (CCA) . . . 52

3

3 Software: Architectural & Implementation Aspects 53
3.1 ChronosDB: An Innovative Array (Tensor) DBMS 54

3.1.1 ChronosDB Architecture & Components 54
3.1.2 Novel Tensor Management Approaches 55
3.1.3 New & Efficient Query Execution Techniques . . . 57

3.2 BitFun: Fast Answers to Tunable Queries 58
3.2.1 BitFun Architecture 58
3.2.2 Interactive User Interface 59

3.3 SimDB: First Simulations in Array (Tensor) DBMSs . . . 60
3.3.1 Novel Array (Tensor) DBMS Convolution Operator 60
3.3.2 The First Native UDF Language for Tensor DBMSs 61
3.3.3 New Scheduling, Versioning & Locking Mechanisms 62

3.4 The First Array (Tensor) DBMS Entirely in a Web Browser 64
3.4.1 Time to Operate on Tensors in Web Browsers . . . 64
3.4.2 WebArrayDB Organization 64
3.4.3 ArrayGIS: WebGIS Components 66

3.5 FastMosaic: A Novel & Scalable Mosaic Operator 67
3.5.1 End-To-End Mosaicking Workflow 67
3.5.2 Rich and Interactive GUI 68

4 Applications: Real-World Data & Use-Cases Revisited 69
4.1 Earth & Climate Data: Manage, Process & Visualize . . . 70

4.1.1 High-Performance Tensor Management & Processing 70
4.1.2 GUI & DWMTS for Array (Tensor) DBMS 73

4.2 Interactive Data Science: Quick Tensor Recomputing . . . 74
4.2.1 Water Management & Flood Mapping 74
4.2.2 Food Security & Crop Yield Prediction 75
4.2.3 Accelerated Web-Based Processing & Visualization 76

4.3 Road Traffic Simulations: A New End-To-End Approach . 78
4.3.1 Simulation Initialization & Plan Investigation . . . 78
4.3.2 Interactive Visualization & Animation 80
4.3.3 Experiencing Interoperability 80

4.4 Fast & Seamless Tensor Mosaicking: Step-By-Step 81
4.4.1 Creating a Mosaic Plan 81
4.4.2 Sampling, Execution & Heatmaps 82
4.4.3 Transformation (Normalization) 84

5 Conclusion 85

4

Dissertation Title and Topic

R.A. Rodriges Zalipynis is the author of ChronosDB Array (Tensor)
DBMS presented at VLDB 2018 [1] and SIGMOD 2019 [2], BitFun at
VLDB 2020 [3], a novel R&D direction at SIGMOD 2021 [4], a tutorial
at VLDB 2021 [5], WebArrayDB & ArrayGIS [6] and SimDB [7] at
VLDB 2022, and FastMosaic [8] at VLDB 2023.

These are based on a wealth of theoretical foundations and software
mechanisms applicable to the area of Array (Tensor) DBMSs in general.
This is because the theoretical and practical contributions of this Disserta-
tion span a wide range of Array (Tensor) DBMS aspects and applications
that originate from diverse practically important domains, including stor-
age, management, processing, exchange, and visualization of large tensors.

Moreover, new R&D directions were first identified and tackled in this
Dissertation: tunable queries and physical world simulations; this is explic-
itly stated in the respective publications. Finally, the publications demon-
strate how the presented theoretical foundations & software mechanisms
successfully address many significant challenges, including considering in-
dustrial experience, user interaction, and interoperability, as well as open
numerous promising R&D opportunities.

The Dissertation Title consists of several parts related to Array (Ten-
sor) DBMSs that are sequentially covered in the Dissertation which briefly
summarizes key ideas, presented in respective articles and papers, in an
easy-to-read manner. Of course, the reader can find very detailed materials
in the publications, as well as high-quality videos and project homepages
that usually accompany the publications. Let us elaborate on the for-
mulation of the Dissertation Title and its reflection on the Dissertation
Structure. Chapters 1 and 5 – Introduction and Conclusion, respectively.
The roles of Chapters 2, 3, and 4 are outlined below.

5

http://chronosdb.gis.land/
http://bitfun.gis.land/
http://sigmod2021.gis.gg/
http://vldb2021.gis.gg/
https://wikience.github.io/webdb2022
https://wikience.github.io/webdb2022
http://sigmod2021.gis.gg/
https://wikience.github.io/fastmosaic2023

Theoretical Foundations

This chapter establishes novel theoretical foundations in the field of Ar-
ray (Tensor) DBMSs. We start with a new Array (Tensor) DBMS data
model that serves as the basis for all other contributions. Next, we intro-
duce new R&D directions that we identified and tackled: tunable queries
and physical world simulations. Finally, we describe the core ideas be-
hind our new and efficient distributed tensor algorithms, including multi-
dimensional retiling, multi-way join of arrays (tensors), and scalable data
science techniques: Canonical Correlation Analysis (CCA), Multivariate
Alteration Detection (MAD), and Iteratively Re-weighted MAD.

Software

The chapter is devoted to architectural and implementation aspects of
managing and processing multidimensional arrays (tensors) of innovative
Array (Tensor) DBMSs and their components (ChronosDB, BitFun,
SimDB, WebArrayDB, ArrayGIS, and FastMosaic) that make it
possible to outperform state-of-the-art systems by orders of magnitude, ac-
celerate interactive data science, run simulation models completely inside
an Array (Tensor) DBMS, and perform tensor-related operations entirely
inside a Web browser.

Applications

Finally, this chapter demonstrates the significance of our contributions
across a wide range of real-world data and practical applications. This
chapter also presents additional architectural and implementation aspects.
Our algorithms and approaches make it possible to quickly manage, pro-
cess, and visualize Climate & Earth remote sensing data. Algorithms and
approaches also target fast recomputing (updates) of tensors for food se-
curity tasks and rapid response in emergency scenarios. In addition, it is
possible to quickly build array (tensor) mosaics. For the first time using an
Array (Tensor) DBMS, we also demonstrate the simulation of road traf-
fic using DBMS-style array (tensor) management and interoperable data
exchange.

6

Array (Tensor)

To date, the R&D area of Array (Tensor) DBMSs is at the stage of forming
its terminological dictionary. Moreover, it is a relatively young R&D area
and no commonly accepted standards have been established for array (ten-
sor) schema, query languages, the set of supported operations (operators),
and many other Array (Tensor) DBMS aspects [9, 52, 66].

As we stated earlier, Array (Tensor) DBMSs operate on multidimen-
sional arrays (tensors): the formal definition is in section 2.1. However,
here we additionally elaborate on the naming of this class of DBMSs: why
do we use the word combination “Array (Tensor)”?

The history begins from Titan [12] and Paradise [17], one of the
first database systems that specifically focused on array operations. They
targeted Earth remote sensing data, as newly launched satellites challenged
the data management community by generating massive amounts of data,
mostly 2-dimensional and 3-dimensional arrays. At the time, this data was
new to the DBMSs and fundamentally different from the other supported
data types.

It was quickly realized that many core data types in numerous other
domains are naturally modeled by multidimensional arrays (tensors). As
2-dimensional arrays were most common, even one of the earliest systems
was called RasDaMan, which stands for “Raster Data Manager”. How-
ever, it was clear that an array database management system goes far
beyond rasters. That was reflected in the names of subsequent systems,
e.g., “A Multidimensional Array DBMS” [71] or “A query language for
multidimensional arrays” [30].

Although the word “array” does not clearly reflect that a system can
work with an array with more than 2 dimensions, “multidimensional array”
becomes a too lengthy term. Even worse, it is hard to translate “Array
DBMS” in an awkward-free manner into other languages. For at least
these two solid reasons, the term “Array DBMS” should be reconsidered.

Today, we believe that “Tensor DBMS” best reflects the essence of a
database system that manages multidimensional arrays. The trend to-
wards using the word “tensor” is strongly supported not only by the data
management community, but also across a wider research environment [45,
66]. For example, “tensors are natural multidimensional generalizations of
matrices” and “by tensor we mean only an array with d indices” [45].

However, we are experiencing an intermediate period of the gradual
transition to the name “Tensor DBMS”. Hence, in this Dissertation, we

7

still use the terms “Array (Tensor) DBMS” and “array (tensor)” for clarity
as to which systems and objects we refer to and to foster the transition.

The word “tensor” is increasingly used not only for an array with
over two dimensions, but even for matrices (“2-d arrays” or “2-d ten-
sors“) [1]. Technically and semantically, there is little or often no differ-
ence for a state-of-the-art Array (Tensor) DBMS on how to operate on
a 1-dimensional, 2-dimensional, or an N -dimensional array where N ∈ Z
and N > 2 [66]. Therefore, we use the word combination “array (tensor)”
or rarely one of these two words in our Dissertation.

Note that in our data model, a tensor is more than just an array with d
indices, as it supports modeling of a wide variety of data types, including
meshes, irregular grids, and others, section 2.1.

It is also worth mentioning that some researchers use the term “data
cube” [10]. However, it is mostly understood as an object that can be
obtained by issuing respective queries to an Array (Tensor) DBMS [66].

Regardless of the current and possible future variations in the naming of
database systems that manage diverse types of multidimensional arrays,
and the naming of these arrays (rasters, tensors, data cubes, etc.), the
word “tensor” perfectly reflects that an array can be multidimensional,
is an international term, and is widely used in the research community
directly for the purpose of referring to multidimensional arrays.

8

Dissertation & Array (Tensor)
DBMS State-of-the-Art

The history begins fromTitan [12], Paradise [17], andRasDaMan [48],
as we have already mentioned. However, R&D in this area had been
stalling until the big array (tensor) data avalanche. Consequently, ad-
vanced research on array (tensor) management has only recently started
to emerge. This is why we previously noted that Array (Tensor) DBMS is
still a young R&D area [9, 52, 66].

It is possible to categorize array-oriented systems into Array (Tensor)
DBMSs, array (tensor) stores, engines, libraries, tools, and national ini-
tiatives (which have broader goals, but may have array systems inside),
and other classes [52]. An extensive survey of such systems is in [9]. How-
ever, only ChronosDB [54, 55], SciDB [15], and RasDaMan [48] are
well-known and full-fledged Array (Tensor) DBMSs [73]. Among them,
ChronosDB is the only file based Array (Tensor) DBMS: works in situ
and leverages the delegation approach, enabling multiple data management
benefits, including faster data ingestion and interoperability, section 2.2.

Among Array (Tensor) DBMSs [73], only ChronosDB and RasDa-

Man data models are formalized, while ChronosDB data model has a
unique combination of features, section 2.1. While other in situ algorithms
exist [52, 54], our new efficient algorithms and approaches, built on top of
our new data model, outperform state-of-the-art approaches by orders of
magnitude, section 4.1.1.

Indexing is a crucial technique in any DBMS. To date, three types of
Array (Tensor) DBMS indexes exist: (1) cell value selection, (2) hyper-
slabbing, and (3) compute [11, 53, 76, 77]. The first two speed up selecting
cells in a given value and index ranges respectively. The latter accelerates
computations over arrays (tensors) [52]. The compute index type was first
proposed in our work [53] and accelerates queries up to 8×, section 2.3.

Array (Tensor) DBMSs perform array (tensor) storage [26, 28, 46, 53,
66], management [80, 81, 82], processing [59], analysis [13, 14, 25], dissem-

9

ination [9, 55], visualization [7, 24, 55, 63], and machine learning [44, 62,
72, 73]. We identified and explored another new R&D direction in the area
of Array (Tensor) DBMSs: physical world simulations entirely inside an
Array (Tensor) DBMS that provides many benefits and promising R&D
opportunities [56, 61]. This is explicitly noted in the publication [56].

An expressive query language is of utmost importance: for users, it is an
entry point to any DBMS. Operational array (tensor) query languages in-
clude AFL, AQL [15], rasQL [9], Command Line [54], GMQL [22], and the
first native UDF (User Defined Function) language that we proposed [56].

Array (Tensor) DBMSs mostly work on desktop machines, servers, or
computer clusters [15, 48, 54]. We designed WebArrayDB, the first
Array (Tensor) DBMS that runs entirely inside a Web browser and can
accelerate array (tensor) operations over 2× compared to querying a cloud
service alone. To demonstrate its capabilities, we also designed a novel
Web GIS (Geographic Information System) based onWebArrayDB [63].

Certain sections also contain state-of-the-art information on Array (Ten-
sor) DBMSs to provide complementary justifications on the novelty and
impact of our contributions. It is possible to learn more about Array
(Tensor) DBMSs in [9, 52, 66]. All our publications cite related work.

10

Array (Tensor) DBMSs: The Beauty
and Impact

The R&D in Array (Tensor) DBMSs can be broadly categorized into two
main classes: qualitative and quantitative [9, 52, 66]. Qualitative and
quantitative R&D are interrelated and influence each other.

Qualitative R&D mainly focuses on providing benefits to end users that
result from a DBMS-style approach to working with arrays (tensors). For
example, Array (Tensor) DBMSs facilitate organizing and streamlining
pipelines that involve large array (tensor) management, processing, an-
alyzes, visualization, machine learning, simulation, and other aspects by
providing dedicated query languages, data integration, automatic data in-
tegrity maintenance, powerful ETL (Extract, Transform, Load) or data
ingestion, managing distributed datasets in the Cloud, automatic paral-
lelization, interoperability, and much more in a single system.

Quantitative R&D aims to improve performance (accelerate array op-
eration pipelines), reduce array (tensor) storage volumes, reduce I/O rate
(for example, input-output requests per second in the Cloud or latency
in network I/O), reduce memory requirements/footprint (operating, per-
sistent or any other type of memory), improve scalability (e.g., process
more data in a time frame or with an order of magnitude less runtime,
serve more users with the same resources), and many other Array (Ten-
sor) DBMS aspects the success criteria of which are typically expressed
numerically (e.g., speed, volume, quantity).

Many types of techniques exist. For example, it may accelerate an array
operation by requiring more memory or, on the contrary, provide more
compact array storage at the expense of somewhat slower performance.
Quantitative techniques consider all levels of the memory hierarchy, fig. 1a.

Array (Tensor) DBMSs can serve as more convenient and seamless tools
for accelerating array management in diverse research and practical do-
mains. Users can abstract from array storage, I/O, transmission, exchange,

11

(a) Quantitative impact (caches are not shown)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

(b) Array chunking

Figure 1: Illustration of quantitative Array (Tensor) DBMS approaches

and other related problems, rest assured of their efficient solutions, and
build other solutions on top of Array (Tensor) DBMSs.

This Dissertation focuses on quantitative R&D. If a quantitative method
or technique works inside an Array (Tensor) DBMS, the user will not only
benefit from a faster array operation or more compact storage, but also
from all other qualitative Array (Tensor) DBMS benefits.

What is the beauty of quantitative Array (Tensor) DBMS approaches?
So far, we have listed the overall impact of Array (Tensor) DBMSs on
end-users. However, the beauty of these approaches lies in the ways they
reorganize array (tensor) storage, I/O, access order, and other aspects
of array (tensor) management to reach the aforementioned performance
goals. They provide new algorithms, data structures, execution, indexing,
caching, and compression techniques, to name a few.

Data structures and indexes can be static or dynamic, built before query
execution or re-built adaptively at runtime. Moreover, many Array (Ten-
sor) DBMS aspects are completely different compared to other types of
DBMSs, e.g. array joins and indexes are absolutely different from rela-
tional table joins and indexes, sections 2.2.2 and 2.3.2.

Consider a simplified example: a matrix is stored on disk in a row-wise
layout (row by row). It is easy to fully read it with any programming
language into the operating memory, row by row. However, what if the
matrix does not fit into the memory and we read only portions of it that
were specified by user queries? We also do not know which portion will be
requested next, and we would like not only to answer each query quickly,
but also to reduce IOPS (Input/Output Requests, or Operations, Per Sec-
ond) and I/O volumes. If a query requests the dashed matrix area and

12

the same row-wise layout is used, we can read 5 sub-rows each containing
2 cells with 5 I/O requests, fig. 1b. However, if we chunk (group) ma-
trix cells and treat them as I/O units (chunks or groups are separated by
dashed red lines), we will need only 3 I/O requests to answer the same
query. Reducing the number of I/O requests is especially important in the
Cloud as they are billed separately, more in section 2.2.3

It is possible to construct a theoretically optimal (e.g., that will require
the smallest runtime) data structure for some particular (narrow) query
cases. However, the problem is that it is often not known a priori what
array (tensor) layout is optimal because it depends on data characteristics
and workload. Typically, the order, rate, scale, and types of user queries
(or even pipelines consisting of a series of queries) are not 100% known and
are diverse at runtime (especially in a multi-tenant environment). Many
techniques consider certain array peculiarities and workloads to devise very
efficient in practice, but rarely theoretically optimal, solutions in such a
dynamic area as Array (Tensor) DBMS query execution.

13

Chapter 1

Introduction

1.1 Relevance of the Dissertation Topic

A multidimensional array is the primary data type in a wide range of
domains, including climatology, ecology, and remote sensing, as well as
in vital daily tasks related to agriculture, forestry, urban management,
and emergencies [4, 52, 55, 60]. All of these are experiencing tremen-
dous growth of data volumes that require efficient management, process-
ing, analysis, and visualization, to name a few.

For example, Maxar (former Digital Globe), a commercial company,
alone acquires about 80 TB of satellite imagery per day and accumu-
lated over 100 PB of these data, i.e. arrays (tensors), in the Amazon
Cloud [34]. Sentinels is a family of European satellite missions. About
203 TiB of Sentinel products are disseminated daily with total downloads
of 80.5 PiB/year [67]. ECMWF (European Centre for Medium-Range
Weather Forecasts) has an archive with 360 PB of main data and 363 mil-
lion files. It increases by 287 TB/day and disseminates 215 TB daily [19].

Array (Tensor) DBMS is a young and fast-evolving area. Array (Ten-
sor) DBMSs are specifically tailored to perform efficient management and
other relevant operations on large multidimensional arrays (tensors). Ad-
vanced array (tensor) management research is just emerging and many
R&D opportunities still “lie on the surface” [52]. Hence, this Dissertation
explores various promising R&D opportunities and contributes to the de-
velopment of more efficient and effective solutions to the aforementioned
important practical tasks at the same time.

The common ultimate objective, or the supergoal of R&D in this area
is to make Array (Tensor) DBMSs the best systems for managing large
multidimensional arrays (tensors). For over 10 years, R.A. Rodriges Za-
lipynis has deliberately been working in different R&D directions in the

14

context of Array (Tensor) DBMSs to advance them in diverse directions,
as well as to introduce new R&D directions for Array (Tensor) DBMSs.

Degree of Development of the Dissertation Topic

The Array (Tensor) DBMS area can be viewed as young by right: no com-
monly accepted standards have yet been established, architectures and
implementations still to be improved and matured, and many R&D op-
portunities are attractive and unexplored [9, 52]. Array (Tensor) DBMSs
are just expanding their presence in numerous R&D domains [58, 62, 65].
Hence, this Dissertation is a timely contribution to the development of the
Array (Tensor) DBMS research and development area.

1.2 Objectives and Goals of this Dissertation

Improve the performance (e.g., reduce runtime, I/O rates, memory re-
quirements) of multidimensional array (tensor) management, processing,
analysis, and simulations based on Array (Tensor) DBMSs by developing
new approaches, algorithms, and data structures for Array (Tensor) DBMS
query execution, indexing, storage re-organization, and other aspects in
order to provide efficient array (tensor) operations in combination with
Array (Tensor) DBMS benefits (e.g., query language, DBMS-style data
management, interoperability) for research and practical domains whose
data are modeled by multidimensional arrays (tensors).

1.3 Main Results

Theoretical and Practical Significance of the Dissertation is con-
firmed by publications in leading computer science conferences and edi-
tions (section 1.4), as well as successful applications of the Dissertation
results to real-world data and practically important domains (chapter 4).

The following list specifies the novelty and significance of our results.
In summary, we achieved the following:

� Established new theoretical foundations in the area of Array (Ten-
sor) DBMSs by presenting novel

– Array (Tensor) DBMS data model leveraged by our new effi-
cient algorithms, approaches, architectural and implementation

15

aspects that together outperform existing solutions by tens, hun-
dreds, and thousands of times, section 2.1

– R&D directions that open a wide range of new R&D opportunities
and provide numerous benefits (e.g., DBMS-style data manage-
ment, visualization, interoperability): tunable queries & simula-
tions entirely inside Array (Tensor) DBMSs, sections 2.3 and 2.4.1

– type (class, category) of Array (Tensor) DBMS indexes: com-
pute index that accelerates computations over arrays (tensors);
previous work speeds up value and range queries, section 2.3.1

– the first native UDF (User Defined Function) language for Array
(Tensor) DBMSs and a new convolution operator to extend their
functionality, e.g. enable simulations entirely inside an Array
(Tensor) DBMS for the first time, sections 3.3.1 and 3.3.2

– efficient distributed array (tensor) algorithms that are signifi-
cantly faster than state-of-the-art techniques: N -d retiling,K-way
join, aggregation, resampling, reshaping, and others, section 2.2

– efficient (in terms of runtime) indexing techniques and fast hier-
archical data structure to quickly recompute tensors that are out-
puts of tunable mathematical functions, sections 2.3.2 and 2.3.3

– scalable (iterate in linear time, obtain CCA canonical variables
& IR-MAD transformation coefficients in the same pass over the
input data) data science techniques for Array (Tensor) DBMSs:
CCA (Canonical Correlation Analysis), MAD (Multivariate Al-
teration Detection), and IR-MAD (Iteratively Re-weighted MAD),
section 2.5

� Introduced new architectural and implementation aspects that, in
combination with our theoretical results

– outperform state-of-the-art systems by orders of magnitude (in
terms of runtime), e.g. SciDB, supervised by M. Stonebraker,
an ACM Turing Award Recipient (“Nobel Prize of Computing”)

– accelerate interactive data science (e.g., exploratory analysis, tun-
able function computations, mosaicking) on arrays (tensors) due
to accelerating respective operations, section 2.3.2

– make it possible for the first time to run simulations entirely inside
an Array (Tensor) DBMS using our new components: UDF lan-
guage, convolution operator, scheduling, and others while retain-
ing the Array (Tensor) DBMSs benefits (see below), section 3.3

16

https://en.wikipedia.org/wiki/Michael_Stonebraker
https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/Turing_Award

– enable running an Array (Tensor) DBMS completely inside a Web
browser (for the first time) to reduce increased response times of
array (tensor) operations that arise due to excessive client-server
communications in state-of-the-art systems, section 3.4

� Demonstrated the significance of our contributions on a wide variety
of real-world data and practical applications:

– manage, process, and visualize Climate & Earth remote sensing
data with exceptional performance due to our novel techniques:
by up to 1024× faster compared to SciDB, a state-of-the-
art system supervised by M. Stonebraker, an ACM Turing Award
Recipient (“Nobel Prize of Computing”), section 4.1

– recompute tensors by up to 8× faster and operate in Web-
browsers over 2× faster in food safety and rapid response sce-
narios due to our new and efficient indexing techniques, data
structure, architectural and implementation aspects, section 4.2

– run simulations entirely in an Array (Tensor) DBMS for the first
time: a new, complex road traffic model using the aforementioned
components with almost the same performance as hand-
written code combined with DBMS-style benefits, including
tensor management, processing, and visualization, section 4.3

– create high-quality seamless array (tensor) mosaics (that reduce
the visibility of stitches) with our new scalable approach that can
run an order of magnitude faster than the popular Python’s
scikit-learn library for the purpose of array mosaicking, section 4.4

We analyzed, both research and industrial, state-of-the-art array (ten-
sor) data models, storage formats, array-oriented systems, DBMSs, query
languages, schemata, algorithms, and approaches to storage, management,
processing, visualization, and interoperability, identified their strengths
and limitations in order to propose new and more efficient techniques [51,
52, 54, 57, 64].

In order to demonstrate the significance of our contributions, we also

� identified real-world applications that heavily rely on arrays, e.g. Cli-
mate & Earth remote sensing R&D utilizes big arrays on a daily basis

� developed auxiliary software to facilitate the ETL process (Extract,
Transform, Load) of ingesting the data into software systems

17

https://en.wikipedia.org/wiki/Michael_Stonebraker
https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/Turing_Award

� collected and imported real-world array (tensor) data into Array (Ten-
sor) DBMSs, e.g. climate reanalysis and Earth remote sensing data

� developed software components to automatically deploy computer
clusters in the Cloud, scale them as necessary

� conducted experiments on diverse real-world array (tensor) data and
computer clusters of different sizes in the Cloud, analyzed, compared,
and presented the results

� designed specialized interactive Web GUIs (Graphical User Interfaces)
to showcase the application of Array (Tensor) DBMSs and their com-
ponents to concrete real-world applications and data, sections 3.2.2,
3.4.3, 3.5.2 and 4.1.2

Methodology, Methods of the Dissertation Research. We used
both theoretical and experimental methods. Our methods include, but are
not limited to: analysis, synthesis, formalization, simulation, experiment,
and comparison.

Author’s contribution constitutes almost 100%, as R.A. Rodriges
Zalipynis is the sole author of almost all publications and projects.

The contributions include, but are not limited to: ideas, vision, data
model, approaches, algorithms, system (software) architecture and design,
data and application choice, experiments, text, figures, publications, work
presentations, home-pages, and videos. In some minor cases, the contri-
butions are explicitly stated in the publications, section 1.4.

Main Results Submitted for Defense

� A novel Array (Tensor) DBMS Data Model with the following unique
combination of features: (1) the treatment of arrays in multiple
files arbitrarily distributed over cluster nodes as a single array, (2) for-
malized industrial experience to leverage it in the algorithms, (3) a
rich set of data types (Gaussian, irregular grids, etc.), (4) subarray
mapping to a raster file is almost 1:1 but still independent from a
format, section 2.1

� New and Efficient Distributed, In Situ Array (Tensor) Algorithms
(K-way join, aggregation, resampling, chunking, and other) that en-
able significant performance boost (tens, hundreds, and thou-
sands of times) on a computer cluster and real-world data compared
to state-of-the-art approaches, sections 2.2 and 4.1

18

� New and Efficient Hierarchical Data Structure and Tunable Function
Indexing Techniques that provide up to 8× acceleration on real-
world data for executing tunable Array (Tensor) DBMS queries that
were first identified and tackled in this Dissertation, sections 2.3, 4.2.1
and 4.2.2

� Novel architectural and implementation aspects that efficiently or-
ganize and demonstrate the execution of new tunable function
indexing techniques and hierarchical data structure that are up to
8× faster on real-world data for recomputing outputs of tunable
Array (Tensor) DBMS queries, sections 3.2 and 4.2

� A novel Traffic Cellular Automaton (TCA) that challenges Array
(Tensor) DBMS principles: identifies and poses new challenges whose
solutions will increase the efficiency of simulations entirely inside
Array (Tensor) DBMSs (e.g., vehicles have several properties, local
transition rules operate on multiple input/output arrays, check for di-
verse constraints, the need for a new convolution operator, scheduling,
locking, and versioning mechanisms), sections 2.4.2 and 4.3.2

� A new, scalable way to perform Canonical Correlation Analysis (CCA),
a popular Data Science technique, in linear time and obtain CCA
canonical variables & IR-MAD transformation coefficients in the same
pass over the input data (the mosaic operator) that can run an order
of magnitude faster than the popular Python’s scikit-learn library
in the context of the Data Ingestion phase in Array (Tensor) DBMSs,
sections 2.5, 3.5 and 4.4

� Novel implementation aspects that make it possible to efficiently or-
ganize and demonstrate the execution of scalable Data Science
techniques on real-world data: Multivariate Alteration Detection (MAD),
Iteratively Re-weighted MAD (IR-MAD), and Canonical Correlation
Analysis (CCA) that possesses the aforementioned properties (run-
time, memory, outputs), sections 3.5 and 4.4

� Novel architectural and implementation aspects of ChronosDB, an
innovative Array (Tensor) DBMS, that provide efficient array (ten-
sor) management, processing, and visualization; ChronosDB out-
performs SciDB by up to 75× on average. ChronosDB is al-
ways faster and can outperform SciDB by up to 1024×. SciDB
is supervised by M. Stonebraker, an ACM Turing Award Recipient
(“Nobel Prize of Computing”), sections 3.1.1 and 4.1.2

19

� Novel Array (Tensor) Management Approaches and Distributed Query
Execution Techniques for Array (Tensor) DBMSs that operate with
array (tensor) data in situ and organize efficient execution of the al-
gorithms proposed in this Dissertation by up to 1024× faster on
a computer cluster and real-world data compared to state-of-the-art,
sections 3.1.2, 3.1.3 and 4.1.1

� A new convolution operator for Array (Tensor) DBMSs and its im-
plementation aspects that, unlike conventional convolution operators,
supplies a kernel several input windows and allows a kernel to mod-
ify an arbitrary number of cells throughout multiple output windows
to support efficient simulations in Array (Tensor) DBMSs, sec-
tions 3.3.1 and 4.3.1

� The First Native UDF (User Defined Function) Language for Array
(Tensor) DBMSs that, unlike DBMS query languages and general-
purpose programming languages, makes it possible for the first time
to express simulation logic code for Array (Tensor) DBMSs which
explicitly enables the use of efficient native UDF execution facilities
in Array (Tensor) DBMSs, sections 3.3.2 and 4.3

� New Scheduling, Versioning, and Locking Mechanisms for Array (Ten-
sor) DBMSs that make it possible for the first time to efficiently run
simulations in Array (Tensor) DBMSs with performance compet-
itive to hand-written code, but with all benefits to users that
provides an Array (Tensor) DBMS, sections 3.3.3 and 4.3

� Novel implementation aspects of SimDB and ChronosDB (e.g.,
workflow, Traffic Cellular Automaton implementation, initialization,
proactive simulation plan investigation, interactive animation) that
make it possible to organize and demonstrate efficient simulations
entirely inside an Array (Tensor) DBMS for the first time, section 4.3

� Novel architectural and implementation aspects of WebArrayDB,
the firstArray (Tensor) DBMS that runs entirely in aWeb browser
&ArrayGIS, innovative Web GIS (Geographic Information System)
based on WebArrayDB; together they can be over 2× faster on
real-world data compared to querying only a popular Cloud service for
disseminating and processing arrays (tensors), sections 3.4 and 4.2.3

20

1.4 Publications and Probation of the Work

This dissertation is based on the following publications.
PVLDB – is an open-access journal ranked Q1, see Scimago: top 15

in Computer Science as of May 2023. Each accepted article is offered a
presentation slot at the next available VLDB conference: vldb.org/2021

VLDB – is a premier annual international conference for data manage-
ment and database researchers, vendors, practitioners, application devel-
opers, and users; ranked CORE A* (the highest) by the CORE rankings

SIGMOD – is a premier international conference on data management,
databases, and data structures (CORE A*); e.g., B-tree, R-tree, and
RAID arrays were presented at SIGMOD: https://2021.sigmod.org

According to regulations of the Dissertation Council in Computer Sci-
ence (HSE University, 06/2022), at least 10 publications, indexed by WOS
(Web of Science), Scopus, are listed below. Articles and papers are in:

� PVLDB journal (Q1, WOS, Scopus): [1], [3], [5], [6], [7], and [8]

� SIGMOD proceedings (CORE A*, WOS, Scopus): [2] and [4]

� Lecture Notes in Computer Science, LNCS (Q2, WOS, Scopus): [9],
[11], [12], and [13]

� Communications in Computer and Information Science, CCIS (Q3,
WOS, Scopus): [14] and [16]

� Conference proceedings (WOS, Scopus): [10] and [15]

The defense must be based on at least 7 of them, here: [1], [2], [3], [4],
[6], [7], [8] (1st tier) and [11], [12], [13], [14], [15] (2nd tier).

PVLDB (PROCEEDINGS OF THE VLDB ENDOWMENT) is also
included in the HSE University ≪List A≫ (Top Journals, ISSN: 2150-8097).
In addition, VLDB & SIGMOD are included in the ≪List ACONF≫ of the
HSE University (Leading Conferences in Computer Science).

Contributions. R.A. Rodriges Zalipynis is the sole author of almost
all publications. Otherwise, contributions are stated explicitly.

All listed publications are devoted to Array (Tensor) DBMSs. In addi-
tion, all journal articles and conference papers included in this Dissertation
were published after the Author earned his Ph.D. degree in 2013.

First-tier publications (all are indexed both by WOS & Scopus):

21

https://www.scimagojr.com/journalrank.php?category=1701
https://vldb.org/2021
http://portal.core.edu.au/conf-ranks/?search=vldb&by=all&source=CORE2021&sort=atitle&page=1
https://2021.sigmod.org/

1. R.A. Rodriges Zalipynis. ChronosDB: Distributed, File Based,
Geospatial Array DBMS. PVLDB , 11(10): 1247–1261, 2018. DOI ·
PDF · Article, Q1 Journal, indexed by WOS & Scopus

ChronosDB outperforms SciDB by up to 75× on average.
ChronosDB is always faster and can outperform SciDB
by up to 1034× ChronosDB is a cloud-native DBMS.
SciDB is developed by Paradigm4 and M. Stonebraker, an
ACM Turing Award Recipient (“Nobel Prize of Computing”)

Homepage: http://chronosdb.gis.land

2. R.A. Rodriges Zalipynis. ChronosDB in Action: Manage, Process,
and Visualize Big Geospatial Arrays in the Cloud. SIGMOD 2019,
P. 1985–1988. DOI · CORE A*, WOS & Scopus

Presents a new distributed WMTS server directly in-
side ChronosDB and new ChronosDB components en-
abling users to interact with ChronosDB and appreciate its
benefits: (1) Web GUI, (2) execution plan explainer (investi-
gate the generated DAG), and (3) dataset visualizer (display
ChronosDB datasets on an interactive Web map).

Homepage: http://chronosdb.gis.land

3. R.A. Rodriges Zalipynis. BitFun: Fast Answers to Queries with
Tunable Functions in Geospatial Array DBMS. PVLDB , 13(12):
2909–2912, 2020. DOI · PDF · Article, Q1 Journal, indexed by
WOS & Scopus

A new class of Array (Tensor) DBMS queries is iden-
tified & tackled: tunable queries. BitFun provides novel
strategies to continuously re-index tensors to efficiently an-
swer queries with similar mathematical functions. It can be
up to 8× faster than computing the results from scratch.

Homepage: http://bitfun.gis.land
Video: https://youtu.be/uxGuZU8yEvE (7 min.)

4. R.A. Rodriges Zalipynis. Convergence of Array DBMS and Cel-
lular Automata: A Road Traffic Simulation Case. SIGMOD 2021,
P. 2399–2403 · open access · DOI · CORE A*, WOS & Scopus

22

https://doi.org/10.14778/3231751.3231754
http://www.vldb.org/pvldb/vol11/p1247-zalipynis.pdf
https://www.paradigm4.com/
https://en.wikipedia.org/wiki/Michael_Stonebraker
https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/Turing_Award
http://chronosdb.gis.land
https://doi.org/10.1145/3299869.3320242
http://chronosdb.gis.land
http://doi.org/10.14778/3415478.3415506
http://www.vldb.org/pvldb/vol13/p2909-zalipynis.pdf
http://bitfun.gis.land
https://youtu.be/uxGuZU8yEvE
http://doi.org/10.1145/3448016.3458457

A novel Research & Development direction in the area
of Array (Tensor) DBMS is presented. For the first time, we
enabled an Array (Tensor) DBMS to simulate the physical
world. The approach brings powerful parallelization, data
fusion, array processing, and interoperability to name a few.
ChronosDB, for example, simulates a complex road traffic
model with multiple lanes, road intersections & traffic lights.

Homepage: http://sigmod2021.gis.gg/
Video: https://youtu.be/3g1m1fNL6P4 (8 min.)

Video 20 min.: dl.acm.org/doi/10.1145/3448016.3458457

5. R.A. Rodriges Zalipynis. Array DBMS: Past, Present, and (Near)
Future. PVLDB , 14(12): 3186–3189, 2021. DOI · PDF · Article,
Q1 Journal, indexed by WOS & Scopus

The first comprehensive tutorial on Array (Tensor) DBMS
R&D . Presents numerous promising R&D opportunities.

Duration: 90 minutes (1.5 hours), included in the
main conference program, main conference day. Only
8 tutorials were accepted to VLDB 2021: prooflink

Homepage: http://vldb2021.gis.gg/

The homepage provides high-quality video (1.5 hours)

6. R.A. Rodriges Zalipynis, N. Terlych. WebArrayDB: A Geospatial
Array DBMS in Your Web Browser. PVLDB , 15(12): 3622–3625,
2022. DOI · PDF · Article, Q1 Journal, indexed by WOS & Scopus

The first Array (Tensor) DBMS that can run completely in-
side aWeb browser: WebArrayDB. The article also presents
ArrayGIS, a new Web GIS based on WebArrayDB. The
systems can be over 2× faster compared to querying only
Sentinel-Hub, a popular Cloud service for disseminating Sen-
tinel data (recently acquired by Planet).

R.A. Rodriges Zalipynis contributions (stated on page�3625
of the article): ideas, approaches, software architecture &
design, libraries’ choice, the paper.

Homepage: https://wikience.github.io/webdb2022
Video: https://youtu.be/NnpNR8GArj0 (5 min.)

23

http://sigmod2021.gis.gg/
https://youtu.be/3g1m1fNL6P4
https://dl.acm.org/doi/10.1145/3448016.3458457
https://doi.org/10.14778/3476311.3476404
https://vldb.org/pvldb/vol14/p3186-zalipynis.pdf
https://vldb.org/2021/?program-schedule-tutorials
http://vldb2021.gis.gg/
https://doi.org/10.14778/3554821.3554859
https://vldb.org/pvldb/vol15/p3622-zalipynis.pdf
https://spacenews.com/planet-acquires-slovenian-startup-sinergise/
https://wikience.github.io/webdb2022
https://youtu.be/NnpNR8GArj0

Try ArrayGIS and WebArrayDB for free: http://webdb.gis.gg

7. R.A. Rodriges Zalipynis. SimDB in Action: Road Traffic Simula-
tions Completely Inside Array DBMS. PVLDB , 15(12): 3742–3745,
2022. DOI · PDF · Article, Q1 Journal, indexed by WOS & Scopus

The first Array (Tensor) DBMS running end-to-end sim-
ulations completely inside itself: from data preparation to
simulation to computing statistics.

Tensor DBMSs can bring numerous benefits to simulations
via a “DBMS approach”, e.g., powerful parallelization and
interoperability, while simulations expand the Tensor DBMS
landscape and open a wide range of R&D opportunities.

Homepage: https://wikience.github.io/simdb2022
Video: https://youtu.be/NnpNR8GArj0 (5 min.)

8. R.A. Rodriges Zalipynis. FastMosaic in Action: A New Mosaic
Operator for Array DBMSs. PVLDB , 16(12): 3938–3941, 2023.
DOI · PDF · Article, Q1 Journal, indexed by WOS & Scopus

FastMosaic is a new Array (Tensor) DBMS mosaic opera-
tor, equipped with our new, scalable way to perform Canoni-
cal Correlation Analysis (CCA) in linear time, deriving CCA
canonical variables together with mosaic transformation co-
efficients in the same pass over the input data.

The CCA algorithm can run orders of magnitude faster
for the purpose of array (tensor) mosaicking compared to the
popular Python scikit-learn library.

CCA is a popular tool for finding correlations in multidi-
mensional datasets. CCA is widely used in Data Science for
dimensionality reduction and discovering latent variables.

Homepage: https://wikience.github.io/fastmosaic2023
Video: https://youtu.be/DXC4r5DCd6k (15 min.)

According to regulations of the Dissertation Council in Computer Sci-
ence, at least 4 first-tier publications must be without co-authors or the
applicant must be the main co-author. Here, all first-tier publications ex-
cept one (7 of 8) are without co-authors and R.A. Rodriges Zalipynis is
the main co-author of one article.

24

http://webdb.gis.gg
https://doi.org/10.14778/3554821.3554889
https://vldb.org/pvldb/vol15/p3742-zalipynis.pdf
https://wikience.github.io/simdb2022
https://youtu.be/NnpNR8GArj0
https://doi.org/10.14778/3611540.3611590
https://www.vldb.org/pvldb/vol16/p3938-zalipynis.pdf
https://wikience.github.io/fastmosaic2023
https://youtu.be/DXC4r5DCd6k

Second-tier publications (all are indexed both by WOS & Scopus):

9. R. A. Rodriges Zalipynis (2021) Towards Machine Learning in
Distributed Array DBMS: Networking Considerations, Ma-
chine Learning for Networking: Third International Conference, MLN
2020, Paris, France, November 24–26, 2020, Revised Selected Pa-
pers, Lecture Notes in Computer Science (LNCS), Vol. 12629,
P. 284–304, Springer, 2021. DOI – WOS, Scopus, Q2

10. R. A. Rodriges Zalipynis (2019) Evaluating Array DBMS Com-
pression Techniques for Big Environmental Datasets, Proceed-
ings of the 2019 IEEE 10th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), P. 859–863. IEEE, 2019. DOI – WoS,
Scopus

11. R. A. Rodriges Zalipynis (2018) Generic Distributed In Situ Ag-
gregation for Earth Remote Sensing Imagery, Proceedings of
Analysis of Images, Social Networks and Texts – 7th International
Conference, AIST 2018, July 5–7, 2018, Revised Selected Papers.
Lecture Notes in Computer Science (LNCS), Vol. 11179, P. 331–
342, Berlin: Springer, 2018. DOI – WOS, Scopus, Q2

12. R. A. Rodriges Zalipynis (2018) Distributed In Situ Processing
of Big Raster Data in the Cloud, Perspectives of System Infor-
matics – 11th International Andrei P. Ershov Informatics Conference,
PSI 2017, June 27–29, 2017, Revised Selected Papers, Lecture Notes
in Computer Science (LNCS), Vol. 10742, P. 337–351, Springer,
2018. DOI – WOS, Scopus, Q2

13. R.A. Rodriges Zalipynis, E. Pozdeev, A. Bryukhov Array DBMS
and Satellite Imagery: Towards Big Raster Data in the Cloud,
International Conference on Analysis of Images, Social Networks and
Texts (AIST), Revised Selected Papers. Lecture Notes in Com-
puter Science (LNCS), Vol. 10716, P. 267–279, Springer, 2017.
DOI – WOS, Scopus, Q2

Best talk award, certificate: PDF

R.A. Rodriges Zalipynis contributions (stated on page �277
and on the Springer Web Portal):

all text, figures, design and implementation of algorithms
andChronosServer, ChronosServer data model, Azure

25

http://doi.org/10.1007/978-3-030-70866-5_19
http://doi.org/10.1109/IDAACS.2019.8924326
http://doi.org/10.1007/978-3-030-11027-7_31
http://doi.org/10.1007/978-3-319-74313-4_24
http://doi.org/10.1007/978-3-319-73013-4_25
http://wikience.org/rodriges/rodriges_aist2017_best.pdf

management code, SciDB import code, experimental setup,
experiments.

14. R.A. Rodriges Zalipynis, A. Bryukhov, E. Pozdeev (2017) Retro-
spective Satellite Data in the Cloud: An Array DBMS Ap-
proach, Supercomputing. RuSCDays 2017. Communications in
Computer and Information Science (CCIS). Revised Selected
Papers. Vol. 793, P. 351–362. Springer. DOI – WOS, Scopus, Q3

R.A. Rodriges Zalipynis contributions (stated on page �361
and on the Springer Web Portal):

all text, figures, design and implementation of algorithms
andChronosServer, ChronosServer data model, Azure
management code, SciDB import code, experimental setup,
experiments.

15. R. A. Rodriges Zalipynis (2017) Array DBMS in Environmental
Science: Sea Surface Height Data in the Cloud, Proceedings of
the 2017 IEEE 9th International Conference on Intelligent Data Ac-
quisition and Advanced Computing Systems: Technology and Applica-
tions (IDAACS), P. 1062–1065, IEEE, 2017. DOI – WOS, Scopus

16. R. A. Rodriges Zalipynis (2016)ChronosServer: Fast In Situ Pro-
cessing of Large Multidimensional Arrays with Command
Line Tools, Supercomputing. RuSCDays 2016. Revised Selected Pa-
pers. Communications in Computer and Information Science
(CCIS). Vol. 687, P. 27–40, Springer, 2016. DOI – WOS, Scopus,
Q3

Conference presentations:
Conference name, city, presentation title, year:

� The 49th International Conference on Very Large Data Bases (Van-
couver, Canada). FastMosaic in Action: A New Mosaic Operator for
Array DBMSs, 2023

� The 48th International Conference on Very Large Data Bases (Sydney,
Australia). WebArrayDB: A Geospatial Array DBMS in Your Web
Browser, 2022

� The 48th International Conference on Very Large Data Bases (Sydney,
Australia). SimDB in Action: Road Traffic Simulations Completely
Inside Array DBMS, 2022

26

http://doi.org/10.1007/978-3-319-71255-0_28
http://doi.org/10.1109/IDAACS.2017.8095248
http://doi.org/10.1007/978-3-319-55669-7_3

� The 20th International Conference ≪Modern Problems of Earth Re-
mote Sensing from Space (Physical foundations, methods and tech-
nologies for monitoring the environment, potentially hazardous phe-
nomena and objects)≫ (Moscow, Russia). ChronosDB: high perfor-
mance processing of Earth remote sensing data, 2022

� ACM SIGMOD/PODS International Conference on Management of
Data (Xi’an, Shaanxi, China). Convergence of Array DBMS and
Cellular Automata: A Road Traffic Simulation Case, 2021

� The 47th International Conference on Very Large Data Bases (Copen-
hagen, Denmark). Array DBMS: Past, Present, and (Near) Future,
2021

� The 46th International Conference on Very Large Data Bases (Tokyo,
Japan). BitFun: Fast Answers to Queries with Tunable Functions in
Geospatial Array DBMS, 2022

� 3rd International Conference on Machine Learning for Networking
(MLN’2020) (Paris, France). Towards Machine Learning in Distributed
Array DBMS: Networking Considerations, 2020

� ACM SIGMOD/PODS International Conference on Management of
Data (Amsterdam, Netherlands). ChronosDB in Action: Manage,
Process, and Visualize Big Geospatial Arrays in the Cloud, 2019

� IEEE 10th International Conference on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications
(IDAACS) (Metz, France). Evaluating Array DBMS Compression
Techniques for Big Environmental Datasets, 2019

� The 44th International Conference on Very Large Data Bases (Rio
de Janeiro, Brasil). ChronosDB: Distributed, File Based, Geospatial
Array DBMS, 2018

� The 7th International Conference on Analysis of Images, Social Net-
works, and Texts (AIST’2018) (Moscow, Russia). Generic Distributed
In Situ Aggregation for Earth Remote Sensing Imagery, 2018

� Perspectives of System Informatics - 11th International Andrei Ershov
Informatics Conference, PSI 2017 (Moscow, Russia). Distributed In
Situ Processing of Big Raster Data in the Cloud, 2017

27

� Russian Supercomputing Days (Moscow, Russia). Retrospective Satel-
lite Data in the Cloud: An Array DBMS Approach, 2017

� 9th IEEE International Conference on Intelligent Data Acquisition
and Advanced Computing Systems: Technology and Applications
(IDAACS’2017) (Bucharest, Romania). Array DBMS in Environ-
mental Science: Sea Surface Height Data in the Cloud, 2017

� Analysis of Images, Social Networks and Texts. 6th International
Conference, AIST 2017 (Moscow, Russia). Satellite Imagery and Ar-
ray DBMS: Towards Big Raster Data in the Cloud, 2017

� Russian Supercomputing Days (Moscow, Russia). In-situ processing
of big raster data with command line tools, 2016

1.5 Source Code of the Software

The architectural and implementation aspects of the software are among
the results of this Dissertation. However, the following software or their
source code are not part of or results of this Dissertation: ChronosDB [54,
55], BitFun [53], SimDB [56, 61],WebArrayDB&ArrayGIS [63] and
FastMosaic [59].

28

http://chronosdb.gis.land/
http://bitfun.gis.land/
http://sigmod2021.gis.gg/
https://wikience.github.io/webdb2022
https://wikience.github.io/webdb2022
https://wikience.github.io/fastmosaic2023

Chapter 2

Theoretical Foundations

2.1 A New Formal Array (Tensor) DBMS Data Model

We had been improving the model for several years [51, 57, 64]. It is now
solid [52, 54] and is a basis for the results described in this work, including
new R&D directions, appearing on top of the model without its modifica-
tions due to its thoroughness. This formal model makes it possible to put
Array (Tensor) DBMSs on a solid theoretical footing and leverage indus-
trial experience. For example, the model enables strict formal definitions
of tensor datasets and operations, as well as to work with arrays in situ (in
their native file formats). In turn, this enables building other theoretical
foundations on top of this model. For example, such strict and formal defi-
nitions make it possible to realize various mechanisms that enable efficient
simulations entirely inside an Array (Tensor) DBMS, sections 3.3 and 4.3.

2.1.1 Motivation for a New Data Model

Array (Tensor) DBMS data models try to capture and generalize the diver-
sity of large arrays: 1-d time-series, 2-d geospatial grids, tracks, swaths, or
other arrays where a dimension represents coordinates (e.g., time, height,
model �), 3-d spatio-temporal cubes like astronomical observations or
biomedical data, unstructured meshes, and generally any data that can be
modeled by multidimensional arrays (tensors).

However, arrays are traditionally stored in files, not databases. Such
files have complex naming, diverse coordinate systems, formats, and sup-
ported data types, to name a few. It is also important that a dataset is
almost always split into multiple files. Moreover, the dramatic increase in
array data volumes stimulates the use of computer clusters for distributed
array management, processing, analysis, and visualization.

29

Industrial array (tensor) data models provide a uniform access to an
array (tensor) that can be represented in different storage formats or ser-
vice APIs. The most widely used industry-standard array data models
are CDM, GDAL, and ISO, mappable to each other to some extent [39].
These models resulted from decades of considerable practical experience,
but share a key drawback: they work only with a single file, not with a
set of files as a single array. The most well-known research models and
algebras for dense multidimensional, general-purpose arrays are AML [33],
AQL [30], and RAM [71]. They are mappable to Array Algebra [8].

The creation of a new formal data model was motivated by several
features that are not simultaneously present in the existing data mod-
els [54]: (1) the treatment of arrays in multiple files arbitrarily distributed
over cluster nodes as a single array, (2) formalized industrial experience
to leverage it in the algorithms, (3) a rich set of data types (Gaussian,
irregular grids, etc.), (4) subarray mapping to a raster file is almost 1:1
but still independent from a format.

Our model has several levels. A user perceives a large multidimensional
array at the logical level as a single object, section 2.1.2. A set of system-
level tensors (subarrays) is distributed among cluster nodes and stored
as ordinary files in diverse file formats at the second model level, sec-
tion 2.1.3. An operation with a user-level logical array (tensor) is mapped
to a sequence of operations with respective system-level subarrays in our
algorithms, section 2.2. More information on the benefits and properties
of our new data model are in the introduction, sections 2 and 4 of [54].

Section 2.2 showcases that our new and efficient algorithms can leverage
industrial experience by delegating portions of work for a single cluster
node to external software. Chapter 4 demonstrates how the operations and
algorithms based on our new data model serve for efficient management,
processing, visualization, and analyzes of diverse real-world array (tensor)
data in numerous real-world applications.

2.1.2 Tensors or Multidimensional Arrays

Now we introduce the logical level of our data model [52, 54], fig. 2.1.
An N -dimensional array (N -d array or tensor) is the mapping A : D1×

D2 × · · · × DN 7→ T, where N > 0, Di = [0, li) ⊂ Z, 0 < li is a finite
integer, and T is a numeric type1. li is said to be the size or length of ith

1A C++ type according to ISO/IEC 14882 can be taken to be specific about value ranges, size in
bytes, and other properties

30

dimension2. Let us denote the N -d array (tensor) by

A⟨l1, l2, . . . , lN⟩ : T (2.1)

By l1 × l2 × · · · × lN denote the shape of A, by |A| denote the size of A
such that |A| =

∏
i li. A cell or element value of A with integer indexes

(x1, x2, . . . , xN) is referred to as A[x1, x2, . . . , xN], where xi ∈ Di. Each
cell value of A is of type T. A missing value is denoted by NA.

An array (tensor) may be initialized after its definition by enumerating
its cell values. For example, the following defines and initializes a 2-d array
(matrix) of integers: A⟨2, 2⟩ : int = {{1, 2}, {NA, 4}}. In this example,
A[0, 0] = 1, A[1, 0] = NA, |A| = 4, and the shape of A is 2× 2.

Indexes xi are optionally mapped to specific values of ith dimension by
coordinate arrays A.di⟨li⟩ : Ti, where Ti is a totally ordered set, di[j] <
di[j + 1], and di[j] ̸= NA for ∀j ∈ Di. In this case, A in eq. (2.1) can be
also defined as

A(d1, d2, . . . , dN) : T (2.2)

A hyperslab A′ ⊑ A is an N -d subarray of A. The hyperslab A′ is
defined by the notation

A[b1 : e1, . . . , bN : eN] = A′(d′1, . . . , d
′
N) (2.3)

where bi, ei ∈ Z, 0 ⩽ bi ⩽ ei < li, d
′
i = di[bi : ei], |d′i| = ei − bi + 1, and for

all yi ∈ [0, ei − bi] the following holds:

A′[y1, . . . , yN] = A[y1 + b1, . . . , yN + bN] (2.4a)

d′i[yi] = di[yi + bi]. (2.4b)

Equations (2.4a) and (2.4b) state that A and A′ have a common coordinate
subspace over which cell values of A and A′ coincide. The dimensionality
of A and A′ is the same. In hyperslab definitions, eq. (2.3), we will omit
“: ei” if bi = ei or “bi : ei” if bi = 0 and ei = |di| − 1.

Arrays (tensors) X and Y overlap iff ∃Q : Q ⊑ X ∧ Q ⊑ Y . Array
(tensor) Q is called the greatest common hyperslab ofX and Y and denoted
by gch(X, Y) iff ∄W : (W ⊑ X) ∧ (W ⊑ Y) ∧ (Q ⊑ W) ∧ (Q ̸= W). An
array (tensor) X covers an array (tensor) Y iff Y ⊑ X.

We call the array (tensor) depicted in fig. 2.1 as a user-level array (ten-
sor): a logical representation of a possibly very large N -d array (tensor)
that may not fit into a single machine, be it operating memory, persistent,
or any other storage. The array (tensor) in fig. 2.1 has 3 dimensions and

2Here and further on i ∈ [1, N] ⊂ Z

31

Figure 2.1: An illustration of a user-level array (tensor)

3 coordinate arrays that map dimension indexes into temporal and spatial
coordinates. The hyperslab in fig. 2.1 is a time series for a point with
coordinates (50°, 30°).

Typically, a DBMS can provide a schema for its object(s). For example,
relational DBMSs can produce a schema for their tables. As our model is
designed for Array (Tensor) DBMSs, a user-level array (tensor) can also
have a schema described in [52, 54] and section 3.1.2. The model is
implemented in ChronosDB, whose users avoid learning a new schema
notation and inspect arrays (tensors) in a way they are accustomed to.

2.1.3 Multilevel, Distributed Datasets

The second level of our model consists of a set of system-level tensors
(subarrays) distributed among cluster nodes and stored as ordinary files
in diverse file formats [52, 54], fig. 2.2. A user-level array (tensor) is never
materialized and stored explicitly: an operation with a user-level object is
mapped to a sequence of operations with respective subarrays.

Datasets can be raw and regular. No shape restrictions on raw system-
level arrays (tensors) are imposed making it possible to represent very
complex real-world datasets like scattered, overlapping satellite scenes.
For regular datasets, among other characteristics, we require that their
subarrays meet certain criteria that can be used to design efficient algo-

32

rithms. For example, subarrays can overlap, but according to a pattern.
Raw datasets can be ingested (“cooked”) into regular datasets.

Formally, a raw dataset Draw = (A,P raw) has a user-level array (tensor)
A(d1, d2, . . . , dN) : T, and a set of system-level arrays (subarrays) P raw =
{(A′, B,E,wid)}, where A′ ⊑ A, B⟨N⟩ : int = {b1, b2, . . . , bN}, E⟨N⟩ :
int = {e1, e2, . . . , eN} such that A′ = A[b1 :e1, b2 :e2, . . . , bN :eN], wid is an
identifier of a cluster node storing A′.

A regular dataset D = (A,P, S, ρ, r0) has a user-level array (tensor)
A(d1, d2, . . . , dN) : T, a set of system-level arrays (subarrays) P = {(A′, B,
E,wid, key)}, where A′, B, E, wid mean the same as for P raw, key⟨N⟩ :
int = {k1, k2, . . . , kN}, ki ∈ Z, A′ ⊑ A[hb

1 :h
e
1, . . . , h

b
N :he

N], where

hb
i = max(r0i + ki × si − ρi, 0), (2.5a)

he
i = min(r0i + (ki + 1)× si − 1 + ρi, |A.di| − 1), (2.5b)

S = (s1, s2, . . . , sN) is the largest possible shape for ∀p ∈ P , ρ = (ρ1, ρ2, . . . ,
ρN) is an overlap between subarrays, and r0 = (r01, r

0
2, . . . , r

0
N) is a reference

index, si, r
0
i ∈ Z, si > 0, ρi ∈ [0, si div 2) ⊂ Z, and ∄p, q ∈ P : p.key =

q.key ∧ p = q. Note that Draw and D share A. Let us refer to subarray A′

by key as D⟨⟨key⟩⟩ or D⟨⟨k1, k2, . . . , kN⟩⟩.
A regular dataset is shown in fig. 2.2. Array (tensor) A(time, lat, lon)

with shape 6 × 2 × 6 is divided by 2-d planes into 9 subarrays (this is
very common in practice), where S = (2, 2, 2), r0 = (4, 0, 2), overlap is not
shown. Subarrays with the same color reside on the same cluster node.
The values of the coordinate arrays are shown next to each index. The
key ⟨⟨−1, 0, 1⟩⟩ refers to the subarray A[2 : 3, 0 : 1, 4 : 5] for Jan 03-04,
lat = 20° . . . 30°, lon = 35° . . . 40°.

This means that array (tensor) A is separated by (N−1)-d hyperplanes
on N -d subspaces. A system-level array may not fully cover the subspace
in which it is located. Note that not all subspaces must contain an object.
Subarrays can overlap, but only overlapping cells can be inside the same
subspace. Finally, all subarray keys are unique. We treat an empty sub-
space as a subarray with all cells equal to NA. This is one of the ways how
our model supports large sparse arrays.

The model also has the third level: chunks. This makes the systems
based on the model even more flexible in terms of adapting to dynamic
workloads due to efficient execution of the “chunking” operation, sec-
tions 2.2.3 and 4.1.1.

33

lat

lon

time

020°

130°

0
15°

1
20°

2
25°

3
30°

4
35°

5
40°

0 1970 Jan 01
1 1970 Jan 02

2 1970 Jan 03
3 1970 Jan 04

4 1970 Jan 05
5 1970 Jan 06

(a) A User-Level Array (Tensor)

-1 0 klon1

5 1985 Jan 06
4 1985 Jan 05

time

klat
0

0
ktime

3 1985 Jan 04
2 1985 Jan 03

-1

0

15°

1

20°

2

25°

3

30°
lon4

35°

5

40°

1 1985 Jan 02
0 1985 Jan 01

-2lat

020°

130°

(b) Corresponding System-Level Arrays [54]

Figure 2.2: User-Level and System-Level Arrays (Tensors) (best viewed in color)

Note that we omit parts of the model that we do not use in the subse-
quent sections of this dissertation. The complete formal definition of our
model is in [54].

2.2 New Distributed & In Situ Tensor Algorithms

The model presented in section 2.1 makes it possible to formally define
tensor operations (operators) and devise distributed algorithms and their
efficient execution techniques on computer clusters, possibly in the Cloud.

We formed the set of array (tensor) operations to implement by ana-
lyzing their importance regarding providing essential and extended array
(tensor) management and processing capabilities. We provide justification
for each operation. In other words, the selected operations are building
blocks that can be used to construct complex analytic pipelines, see savi

pipeline as an example (section 3.1.3) with its execution plan (section 3.4
of [54]), as well as other applications based on these operations, chapter 4.

One of the main differences between our new algorithms and other al-
gorithms is that they can manage and process tensors in situ, directly
in numerous file formats: subarrays can be stored as ordinary files on
cluster nodes without importing into an internal DBMS format. This en-
ables many benefits, including the possibility of partially delegating array
(tensor) operations to existing elaborate and quality-assured software (see
Introduction of [54]), thus leveraging industrial experience. However, de-
signing an efficient system that works with data in situ and utilizes the
delegation approach “goes well beyond invoking separate instances of the
same function at every node” as noted about ChronosDB in [66].

The pseudo-codes of the algorithms are quite large [51, 54, 57, 60, 64],
so we present here formal definitions of operations and key ideas behind

34

the algorithms. The pseudo-codes are based on our new formal data model
(section 2.1) and have lines highlighted in light gray to indicate the lever-
aged industrial experience, among other goals. The algorithms can perform
a wide variety of distributed operations in a very efficient manner: up to
1034× faster than SciDB (developed by Paradigm4 and M. Stonebraker,
an ACM Turing Award Recipient), section 4.1.1.

2.2.1 Distributed N-d Retiling

The distributedN -d retiling is one of the most important tensor operations
that appears at the heart of many other vital functions that are key to
Array (Tensor) DBMSs. For example, the retiling can be used to “cook” a
regular dataset from a raw dataset, to transform a regular dataset, as well
as for K-way joins, making it a fundamental array (tensor) operation [54].

As input, the N -d retiling takes raw or regular dataset D = (A,P)
and retiling parameters S ′ = (s′1, s

′
2, . . . , s

′
N), ρ

′ = (ρ′1, ρ
′
2, . . . , ρ

′
N), r

0 =
(r01, r

0
2, . . . , r

0
N) (target shape, overlap, and reference indexes respectively).

As output, the retiling generates a new regular dataset D′ = (A,P ′, S ′, ρ′, r0).
Note that D and D′ share A.

k0
2−1 0 1

k
0
20 1 2 3 4 5 6

k0
1

−1

0

k
0
1

−4

−3

−2

−1

r01

r01

lat

0

1

2

3

4

5

6

7

8

9

10

11

12

r02r02

lon−2−1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 2.3: Retiling example [54]

The key idea behind the proposed algorithm is as follows. We cut each
system-level subarray p ∈ P onto smaller pieces P ′ = {p′ : p′ ⊑ p} (sub-
sub-arrays) and assign each piece a new key. Next, we merge all pieces
with the same key into a single, new system-level tensor (new subarray
in a new, output dataset). Each piece, using its key, is associated with a

35

cluster node. Hence, all pieces with the same key are gathered and merged
on the same node in our distributed algorithm which is structured in a way
that can delegate hyperslabbing (cutting a piece) and merging (assembling
a set of pieces into a subarray) to an external software [54].

Figure 2.3 illustrates the retiling algorithm on a 2-d case. Consider
a regular dataset D = (A,P, S, ρ, r0), where A(lat, lon) is a 2-d array
(matrix), S = (5, 6), ρ = (0, 0), r0 = (5, 6). The shape of A is 10 × 18.
In addition, A consists of 6 subarrays whose bodies are separated by thick
blue lines. Subarrays may be located on different cluster nodes. Gray
dotted lines separate matrix cells. The key range for the subarrays is
k01 ∈ [−1, 0], k02 ∈ [−1, 1].

We retile the dataset D into D′ = (A,P ′, S ′, ρ′, r0), where S ′ = (3, 3),
ρ′ = (1, 1), r0 = (12,−1). Dashed red lines separate new subarray bodies.
The algorithm will yield 28 new subarrays with key range k01 ∈ [−4,−1],
k02 ∈ [0, 6]. For instance, the hatched area indicates subarray D′⟨⟨−3, 2⟩⟩ =
A[2 :6, 4:8]. Note that not all new system-level arrays will have the shape
5 × 5 (5 = s′1 + ρ′1 × 2). Hence, some subarray will not completely cover
their respective subspaces, e.g. D′⟨⟨−1, 6⟩⟩ = A[8 : 9, 16 : 17]. Reference
coordinates r0i and r0i are highlighted in pink on axes lat and lon . We
plot input and output subarray keys on axes k0i and k0i respectively.

2.2.2 Distributed K-Way Array (Tensor) Join

For K ∈ N, many K-ary tensor operations require the K-way join [51,
54, 57, 60, 64]. For example, Array (Map) Algebra is widely used in
the industry and constitutes a large portion of Array (Tensor) DBMS
workloads [52, 66]. It may require the K-way array (tensor) join for 2 or
more input arrays. The distributed K-way array (tensor) join is based on
the distributed N -d retiling, section 2.2.1.

The following formal definition of the K-way array join is from [54].
The K-way join ▷◁: ⊙, κ, A1, A2, . . . , AK 7→ A▷◁ takes as input a join

type ⊙ ∈ {inner,outer}, a mapping κ : T1,T2, . . . ,TK 7→ T▷◁, and N -d
arrays Aj(d

j
1, d

j
2, . . . , d

j
N) : Tj, j ∈ [1, K] such that ∃d▷◁i : dji ⊑ d▷◁i for ∀i, j.

The K-way join yields the N -d array A▷◁(d
▷◁
1 , d

▷◁
2 , . . . , d

▷◁
N) : T▷◁ such

that A▷◁[x1, x2, . . . , xN] = κ′(a1, a2, . . . , aK), where xi ∈ [0, |d▷◁i |), aj =
Aj[y

j
1, y

j
2, . . . , y

j
N] if ∃y

j
i : d

j
i [y

j
i] = d▷◁i [xi]; aj = NA otherwise.

Operation κ′ formally defines the difference between the two join types.
If aj = NA for ∀j, κ′ returns NA regardless of the ⊙ value. If ⊙ = inner
and ∃j : aj = NA, κ′ returns NA. Otherwise κ′ returns κ(a1, a2, . . . , aK). For

36

algebraic calculations where any operation on a set of cells must return NA

if at least one of the cell values is missing, inner join is helpful. When at
least one non-missing value contributes to the resulting cell, e.g., a K-day
cloud-free composite of satellite imagery, outer join is useful [54].

A distributed 2-way array (tensor) join is illustrated in fig. 2(e) in [54]
that shows detailed information on the 2-d retiling and 2-d join stages,
along with key values assigned to each entity that participates in the exe-
cution plan. The tuples in the graph contain the keys of subarrays.

Among other things, this join is necessary as part of a complex analytic
pipeline that uses Array (Map) Algebra, section 3.1.3. The distributed
2-way array (tensor) join is performed on Band4 and Band5 arrays with
different shapes of subarrays. Band5 requires the distributed 2-d retiling
during the join (in this case, K = N). The algorithm is expressed in such
a way that can delegate the calculation of κ on the subarrays with the
same key to an external, optimized software [54].

2.2.3 Aggregation, Chunking & Other Operations

Aggregation

Aggregation frequently occurs during the analysis of real-world array data.
For example, given a 4-d array A(time, elevation, lat, lon), aggregate ar-
rays A′(time, lat, lon) and A′′(time, elevation, lat) can represent the aver-
age over all available vertical levels and a zonal average respectively.

Array aggregation can happen over an arbitrary subset of array axes [60].
The aggregate of an N -d array A(d1, d2, . . . , dN) : T over a set of axes
daggr ⊂ {d1, d2, . . . , dN} is the K-d array Aaggr(dy1, . . . , dyK) :T such that
K = N − |daggr|, yk < yk+1, yk ∈ [1, N], dyk /∈ daggr, Aaggr[xy1, . . . , xyK] =
faggr(cells(A[g(1), g(2), . . . , g(N)])), where ∀xyk ∈ [0, |dyk|), g(i) = 0 :
|di| − 1 if di ∈ daggr, otherwise g(i) = xi, cells : A′ 7→ T is a multiset
of all cell values of an array A′ ⊑ A, faggr : T 7→ w ∈ T is an aggregation
function. Note that the condition K > 0 always holds, otherwise the result
is not an array but a scalar.

For example, we can aggregate the array (tensor) in fig. 2.1 over the
time axis, lon axis, lat axis, or lat and lon axes at the same time, fig. 2.4.

It is challenging to perform aggregation (and other operations) in a dis-
tributed fashion, especially when subarrays are in complex array (tensor)
file formats, including NetCDF, GeoTIFF, HDF, and others [60].

Recall that system-level arrays (tensors) with the same color are located
on the same cluster node, fig. 2.2b. The aggregation algorithm consists of

37

lat

lon

020°

130°

240°

350°

0
15°

1
20°

2
25°

3
30°

(a) Aaggr(lat, lon)

lat

time

020°

130°

240°

350°

0 1970 Jan 01
1 1970 Jan 02

2 1970 Jan 03
3 1970 Jan 04

(b) Aaggr(time, lat)

lon

time

0
15°

1
20°

2
25°

3
30°

0 1970 Jan 01
1 1970 Jan 02

2 1970 Jan 03
3 1970 Jan 04

(c) Aaggr(time, lon)

time

0 1970 Jan 01
1 1970 Jan 02

2 1970 Jan 03
3 1970 Jan 04

(d) Aaggr(time)

Figure 2.4: Aggregation examples for the tensor in fig. 2.1 [60]

lat

0

1

0 1 2 3 lon4 5

Figure 2.5: Intermediate aggregation of system-level tensors in fig. 2.2b (time axis) [60]

two phases. First, system-level tensors (subarrays) are aggregated in par-
allel on the cluster nodes, creating local intermediate subarrays, fig. 2.5.
Intermediate keys for the interim subarrays are also generated appropri-
ately. Next, the intermediate subarrays are distributed among the cluster
nodes using a mapping policy and the final result is computed (not a sin-
gle array, but a set of subarrays distributed over the cluster nodes). Our
aggregation algorithms are built in a way that is capable of delegating
computing faggr to an external software [54, 60].

Chunking

Chunking is one of the most important operations, as it allows Array
(Tensor) DBMSs to adapt to dynamic workloads. The performance of an

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

(a) No chunking

0 1 2 3 4 5 6 7 8 9

(b) Exact 2× 2 chunking

0 1 2 3 4 5 6 7 8 9

(c) Inexact 2× 2 chunking

Figure 2.6: Array (tensor) chunking [54]

38

operation can differ by orders of magnitude depending on the configuration
of chunks, section 4.1.1. System-level arrays (tensors) consist of chunks,
I/O units (the third level of the model). Chunking alters the storage layout
of chunks and their shapes.

The exact chunking reorganizes array cells such that the cells with in-
dexes (x1, . . . , xN) and (y1, . . . , yN) belong to the same chunk iff xi div ci =
yi div ci for ∀i, fig. 2.6(b). Inexact chunking performs exact chunking of
system-level arrays (subarrays) [54].

Let us read a 5 × 2 slice from 2-d array (subarrays are separated by
thick blue lines), fig. 2.6. For the row-major storage layout, we can spend
5 I/O requests to read 5 strips sized 1×2, fig. 2.6(a). However, only chunks
with the required data are read from a chunked array. The exact chunking
operates within the logical, user-level array (tensor) while inexact chunking
relies on the system-level indexing, fig. 2.6(b,c).

No single chunk shape is optimal for all access patterns. It is usually
not possible to “guess” a priori a good chunk shape for an arbitrary case:
chunk shapes are often tuned experimentally. Array (Tensor) DBMSs must
be capable to quickly chunk tensors to support the tuning and to adapt
to dynamic workloads.

Hyperslabbing

Hyperslabbing is an extraction of a hyperslab from an array (tensor), sec-
tion 2.1. Its efficient execution is far from straightforward: the hyper-
slabbing performance can vary by orders of magnitude depending on the
subarray shapes and the layouts of their cells which are typically tuned
experimentally, by trial and error, section 4.1.1.

The hatched area marks the hyperslab A′ = A[2 :7, 2 :11], fig. 2.7. A is
a logical 2-d array A(lat, lon) with 15 subarrays separated by thick lines.
Subarrays possibly reside on different cluster nodes and can be from a raw
or a regular dataset. We reduce hyperslabbing of a logical array (tensor) to
hyperslabbing the respective system-level arrays (tensors). First, we filter
subarrays that do not overlap with A′, e.g. A[0 : 1, 0 : 4]. We also migrate
subarrays to a new dataset that are entirely inside A′, e.g. A[4 : 5, 5 : 7].
The remaining subarrays are hyperslabbed to complete the operation.

We can delegate hyperslabbing to feature-rich and highly optimized ex-
ternal software tools. The detailed hyperslabbing pseudo-codes (different
versions) are in [54, 57]. Chunking and hyperslabbing are extremely ef-
ficient in ChronosDB, section 4.1.1. They can be orders of magnitude

39

lat

lon

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2.7: Hyperslabbing [57]

faster than SciDB, even when SciDB is appropriately tuned with chunk-
ing beforehand [54].

lat

lon

Level 0
original array

Level 1
1/2 resolution

Level 2
1/4 resolution

(a) Multiresolution pyramid, 3 levels [51]

lon

lat

0

1

2

3

0 1 2 3 4 5 6 7 8

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

22 23 24

25 26 27

28 29 30

31 32 33

34 35 36

lon

lat

0 1 2 3

0

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 Layout of ′A[0 :2, 2:3]

4 1 5 2 6 3

Layout of A′[2 :3, 0:2]

4 5 6 1 2 3

A′(lon, lat)

A(lat, lon)

(b) Array (Tensor) reshaping [54, 57]

Figure 2.8: Illustration of downsampling and reshaping in Array (Tensor) DBMSs

Resampling

Resampling is a core operation for numerous applications [50]. Upsam-
pling, downsampling, and interpolation are typical representatives of re-
sampling. In turn, Multiresolution Pyramid illustrates downsampling.
Figure 2.8a depicts 3 levels of such pyramid.

Usually, large arrays (tensors) are visualized interactively with the help
of multiresolution pyramids. Typically, a series of zoom levels is defined,
e.g. Z = {0, 1, . . . , 16}. A visualizer switches its current zoom level when
a user zooms in/out. At zoom level z ∈ Z, the tensor is shown with 2z×
less resolution than the original. A multiresolution pyramid is the stack of
arrays (tensors) for all zoom levels, fig. 2.8a. This technique considerably
reduces network traffic and system load making this functionality essential
for an Array (Tensor) DBMS.

40

Formally, given a 2-d array A(d1, d2) : T, its coarser version is the array
A′(d′1, d

′
2) : T′ such that d′i⟨⌈li⌉⟩ = {di[0], di[2], . . . , di[⌊li⌋ × 2]}, where

li = |di|/2 and A′[x′1, x
′
2] = avg({A[x1, x2] : xi div 2 = x′i∧A[x1, x2] ̸= NA})

for ∀xi, avg is the average and avg(∅) = NA. We assume that di stores the
smallest border cell coordinates.

Interpolation estimates a value at a coordinate (y1, . . . , yN) for an array
A(d1, . . . , dN), where yi ∈ (di[j], di[j + 1]) ⊂ Ti, and j ∈ [0, |di| − 1) ⊂ Z.
For example, array resolution can be doubled by interpolation when yi =
(di[j] + di[j + 1])/2 [54].

With our novel data model and in situ approaches, we support many
resampling techniques [50, 54]. However, SciDB provides only averaging
nearby array (tensor) values.

Reshaping

The reshaping operation changes the order of tensor dimensions, fig. 2.8b.
This operation does not just impact the indexing of tensor cells, it has
much deeper consequences in terms of Array (Tensor) DBMSs. Reshaping
alters the tensor storage layout according to the given order of dimensions.

For example, reshaping helps to achieve the fastest hyperslabbing along
a dimension e.g. reading a time series A[x1, x2, 0:|time| − 1] of a 3-d array
A(lat, lon, time) vs. A(time, lat, lon). This is because usually the last
dimension of N -d arrays (tensors) varies the fastest: cells along the Nth
dimension are stored sequentially in memory: see storage layouts of A and
A′ in fig. 2.8b. For a row-major layout, we can spend 3 I/O operations to
read A[0 : 2, 2] in contrast to only 1 I/O operation to read the same data
from A′[2, 0:2].

Formally, the reshaping operation Ψ:A, π 7→ A′ takes as input an N -d
array A(d1, . . . , dN) : T and the permutation mapping π : i 7→ j, where
i, j ∈ [1, N] ⊂ Z, π(i) ̸= π(j) for i ̸= j, and

⋃
i{π(i)} = [1, N]. The

reshaping operation outputs the N -d array A′(dπ(1), . . . , dπ(N)) : T such
that A[x1, . . . , xN] = A′[xπ(1), . . . , xπ(N)], where xi ∈ [0, |di|) ⊂ Z for all i.

Reshaping a user-level array can be reduced to reshaping its system-
level arrays (subarrays) individually by delegating the reshaping of system-
level arrays (subarrays) to external tools.

Convolution

The convolution operation Ξ : A,K 7→ Aconv for a 2-d array A(d1, d2) : T
and a kernel K⟨k1, k2⟩ : T, where ki ⩽ |di|, and ki mod 2 = 1 for all

41

A(lat, lon)

0 1 1 1 0

1 3 1 0 1

0 3 0 1 0

0 1 3 1 1

1 0 1 2 3

lat

lon

0

1

2

3

4

0 1 2 3 4

1 −8 −1

3 −7 −2

6 0 −2

Aconv(lat
′, lon′)

lat′

lon′
1

2

3

1 2 3

Figure 2.9: An illustration of convolution with K2 kernel

i, produces the 2-d array Aconv(d
′
1, d

′
2) : T such that d′i = di[ki div 2 :

|di| − ki div 2− 1], and

Aconv[x1, x2] =
∑

∀x′
1∈[0,k1)

∀x′
2∈[0,k2)

K[x′1, x
′
2]× A′[x′1, x

′
2] (2.6)

where A′ = A[x1− k1/2 : x1+ k1/2, x2− k2/2 : x2+ k2/2], and ki/2 ⩽ xi <

|A.di| − ki/2 for all i (the division “/” is integer) [64].
Convolution is frequently used for array processing [50]. For example,

edge detection with the Sobel OperatorK1⟨3, 3⟩ = {{−1,−2,−1}, {0, 0, 0},
{1, 2, 1}} and K2⟨3, 3⟩ = {{−1, 0, 1}, {−2, 0, 2}, {−1, 0, 1}} happens as fol-
lows. First, local gradients are calculated at each array cell along axes
d1 and d2: Ad1 = Ξ(A,K1) and Ad2 = Ξ(A,K2), fig. 2.9. Then, array
Aedges =

√
A2

d1 + A2
d2 will contain higher values for cells classified as edges

and lower values for other types of cells [64].
It is possible to run convolution for each 2-d p ∈ P using an external

software provided that the retiling was applied to the input dataset with
ρi ⩾ 1 for ∀i. Therefore, the convolution can be efficiently applied to each
system-level array (subarray) in parallel without data exchange between
cluster nodes because subarrays overlap.

We also introduce another, new convolution operation (operator) in
section 3.3.1.

Array (Tensor) Mosaicking

Please refer to sections 2.5, 3.5 and 4.4 for the definition of array (tensor)
mosaicking and its respective techniques.

42

2.3 Tunable Queries, Indexing and Data Structure

2.3.1 Introducing a New R&D Direction: Tunable Queries

Dozens of parameterized math functions are applied daily to tensors to
tackle vital practical tasks, including urban planning, agriculture monitor-
ing, forestry control, and rapid response for disaster relief [4, 78], fig. 2.10.

savi =
nir− r

nir+ r+ L
× (1 + L) arvi� =

nir− (r− γ (b− r))

nir+ (r− γ (b− r))
pvi =

cos(α)× nir

−sin(α)× r

gari� =
nir− [g− γ (b− r)]

nir+ [g− γ (b− r)]
tsavi =

a(nir− ar− b)

r+ anir− a b
tvi =

√
nir− r

nir+ r
+ 0.5L

avi = tan−1

[
λ3 − λ2

λ2

1

(nir− r)

]
+ tan−1

[
λ2 − λ1

λ2

1

(g− r)

]
wdrvi =

αnir− r

αnir+ r

Figure 2.10: Examples of Typical Math Functions with Tunable Parameters [53]

As a typical example, consider Soil-Adjusted Vegetation Index (savi,
fig. 2.10) which aims to minimize soil brightness influence. nir and r are
2-d arrays with intensities of reflected solar radiation in the near-infrared
and visible red spectra respectively. L is a soil fudge factor varying from 0
to 1 depending on the soil [78]. The user may tune L many times to find
appropriate savi values for a given area of interest.

BitFun tackles an important class of queries not explicitly considered
before in the context of Array (Tensor) DBMSs: tunable queries. BitFun

explicitly focuses on the fact of tunability [53]. At the time of the Bit-
Fun invention, modern Array (Tensor) DBMSs were not equipped with
mechanisms of indexing tensor cells: SciDB [15], TileDB [46], RasDa-
Man [48], PostGIS [47], and Oracle Spatial [43]. Array indexing
approaches did not explicitly consider tunable scenarios [11, 76].

Before BitFun, state-of-the-art Array (Tensor) DBMSs approaches
treated two subsequent queries of computing savi with slightly different L
values (e.g. 0.7 and 0.8) as two distinct queries. This triggered computing
savi for the new L value from scratch despite the fact that usually only a
small fraction of the resulting tensor (array) will differ significantly from
the previous result. This led to wasting I/O and compute resources [53].

�Input reflectances can be corrected for the molecular effects

43

2.3.2 Novel Tunable Function Indexing Techniques

We developed novel indexing techniques for 3 types of tunable queries:
(1) computing f(τ) values, (2) classification of f(τ), (3) inequality evalu-
ation f(τ) < const, where τ is a tunable parameter and f(τ) is a differen-
tiable, possibly non-linear function [53]. Let us briefly describe key ideas
of (1) by taking savi as an example.

(a) nir = 700, r = 100 (b) nir = 2, r = 0

Figure 2.11: savi values for the whole range of L ∈ [0, 1]

Let us fix nir and r values. Now savi becomes a function of only 1
variable. If we look even closer, we will notice that savi is almost a line
in the vast majority of cases, that is, for most combinations of nir and r

values, fig. 2.11. In general, savi is not an affine function. There are nir

and r values for which savi exhibits slightly non-linear behavior, fig. 2.11b.
However, even in such cases, our techniques can perform efficient indexing
with good precision.

We can approximate savi by a significantly simpler expression, a linear
fit: aL + b, where a, b ∈ R. To construct it, we need two pairs of values
of L and savi to compute a and b. As indexing is interleaved with query
answering in a DBMS (computing f(τ)), we can already have one of the
pairs for each array cell. We can derive the second pair by selecting some L
in its value range. However, not any L can be used to compute a and b, as
the potential approximation error can exceed the user-provided tolerance.

The solution to [savi(L)− (aL+ b)]′dL = 0 yields the maximum error.
We obtain several roots after solving and simplifying the solution: L1,2 =
±(

√
a(nir− r)(nir+ r− 1)∓a(nir+r))/a. Afterwards, we can use L1,2

to compute the potential error and make further indexing decisions [53].
Now we have a set of pairs a, b for each cell. Next we assign a unique

ID = (a, b) to ∀f = aL + b such that a, b = a×, b × 10| lg(Υ)|, where Υ is
the user-specified precision. Next, our novel data structure indexes {(ID,
Freq)}, where Freq is the frequency of ID occurrence, section 2.3.3.

44

2.3.3 A New and Fast Hierarchical Data Structure

Our novel hierarchical data structure can index the objects {(ID, Freq)}
defined in section 2.3.2. The data structure is fast to create and read [53]
and makes it possible to answer tunable queries by up to 8× faster com-
pared to previous approaches, section 4.2.

1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 0

4 bits Direct # Next level marker

Level 1
indexing
2𝑚1 − 1 = 24 − 1
unique values

0 0 1 1 1 1 1 1 1 1 0 0

Next level

Level 2
indexing
2𝑚2 − 1 = 24 − 1
unique values

indexing
2𝑚3 − 1 = 22 − 1
unique values

Level 3 0 1 0 0 1 0 0 0

2 bits

Figure 2.12: Bitmap Index Example [53]

Let E = {e1, e2, . . . , en} be the set of objects (e.g. functions), A⟨l1, l2⟩ :
E is a 2-d array (tensor) to be indexed (the array/tensor notation is defined
in section 2.1.2), n ⩽ |A| and Freq(ej) is the count of ej in A, where
j ∈ [1, n]. Level i (Li) is a 1-d array where each cell is a fixed-length code
of mi bits, where mi ⩽ ⌈log2 |A|⌉. The index is hierarchical with at most
K levels, where K ∈ N, fig. 2.12.

For example, the structure in fig. 2.12 indexes A as follows. The first
4 bits 1011 at level 1 map to e12 (10112 = 1110) assuming that Freq(ej)
⩾ Freq(ej+1). Bits 1111 take us to level 2 to find out the object index
(11112 = 2m1 − 1). This is the first such combination at level 1, so we
should retrieve the first m2 bits 0011 from level 2 to continue. These
bits index possibly less frequent object e16 (2

m1 − 2 + 1 = 15).
The index uses less than l1×l2×log2 |E| bits to code all possible objects.

In practice, it is possible to build an index which takes 4× less space than
the input arrays. This considerably saves I/O, especially with limited
IOPS, Input/Output Operations per Second (e.g., in the Cloud).

The motivation behind the index is that real-world arrays do not typ-
ically contain random data. For example, a typical Landsat 8 satellite
scene with ≈ 64× 106 cells and diverse land cover, can be indexed only by
≈ 650 unique linear fits of savi, 50% of which may approximate 99% of
cells and show an exponential usage frequency distribution.

45

2.4 New R&D Direction: Physical World Simula-

tions Entirely Inside Array (Tensor) DBMSs

2.4.1 Rationale, Shortcomings & Benefits

Now we present a novel Research and Development direction in the area
of Array (Tensor) DBMS that opens a wide range of promising research
opportunities [56, 61]. Array (Tensor) DBMSs manage large multidimen-
sional array (tensor) storage, processing, and even visualization and ma-
chine learning in some cases. Physical world simulations have been tra-
ditionally implemented on diverse types of grids and meshes that can be
modeled as N -d arrays (tensors). As multidimensional arrays are at the
core of Array (Tensor) DBMSs, it is logical to apply these systems to
simulations in order to benefit from Array (Tensor) DBMS capabilities.

Various grids, meshes, swaths, and many other data types are stored
in computer systems during simulations or data exchange. Many of such
data types, even exotic ones, can be represented in well-known array data
models and conventions (detailed examples are in [6, 39]), mappable to
our new data model, section 2.1.

From one point of view, simulation scenarios open a wide range of
new R&D opportunities and expand the area of Array (Tensor) DBMS
applications. From a modeler perspective, an Array (Tensor) DBMS can
provide numerous benefits and DB-style simulation data management. We
leveraged our data model, section 2.1, and started integrating simulation
into Array (Tensor) DBMSs from Cellular Automata (CA). We pioneered
the incorporation of simulation capabilities into an Array (Tensor) DBMS
using Traffic Cellular Automata (TCA) at SIGMOD 2021 [56].

Currently, the application of an Array (Tensor) DBMS (SimDB, sec-
tion 3.3) to CA simulations has some shortcomings. To date, SimDB
introduces scheduling overhead to CA simulations and users need to write
2 types of UDFs (User Defined Functions): in Java and a new, but rela-
tively simple language. We believe these shortcomings are very minor and
future R&D efforts will alleviate or even eliminate them. Hence, numerous
benefits outweigh a few ‘cons’ against using SimDB.

We showed that SimDB Array (Tensor) DBMS can be used for end-to-
end CA simulations, from initialization to computing the resulting statis-
tics. It turns out that SimDB is an excellent choice for this workload.
This immediately showcases numerous benefits of using an Array (Tensor)
DBMS, and SimDB in particular, for CA simulations:

46

� Data Ingestion and Fusion. CA may use diverse datasets as in-
puts, so SimDB can readily prepare (e.g., ingest, resample, and slice)
data for simulations.

� Automatic Parallelization. SimDB runs the simulation in parallel,
managing all necessary data exchanges between cluster nodes in the
Cloud.

� Debugging UDFs. It is easy to debug step-by-step the UDFs uti-
lized by SimDB, prepared for a CA model.

� Interactive visualization is essential for data understanding, so
SimDB provides CA lattice imagery via the open, popular protocol,
called OGC WMTS [75].

� Data management. A user can archive, query, and compare simu-
lation data with the help of SimDB.

� Interoperability. SimDB storage layer is built on top of raw files
in standard formats. Simulation arrays are full-fledged, georeferenced
GeoTIFF files readily accessible to other software.

� End-to-End Simulations. SimDB serves all phases of the simula-
tions within the single system, even computing statistics (the goal of
simulations).

2.4.2 New Traffic Cellular Automaton (TCA)

To enable simulations in Array (Tensor) DBMSs, we started with the area
of road traffic simulations, as they are quite important in practice and
used to plan road changes, optimize traffic lights, analyze throughput,
and integrate objects, to name a few [3]. In addition, CA road traffic
models can be very complex CA models which are challenging to simulate.

We based on the literature (a good survey of CA road traffic models
is in [32]) to investigate which entities (e.g., vehicles, traffic lights, road
intersections) can be represented by a cellular automaton. We designed a
new Traffic Cellular Automaton (TCA) that is sufficiently complex in order
to challenge Array (Tensor) DBMS principles, section 2.4.3. The solutions
to the challenges will increase the efficiency of simulations entirely inside
Array (Tensor) DBMSs, help them become more robust systems in general,
and provide researchers and practitioners in the simulation domain benefits
specific to Array (Tensor) DBMSs, section 2.4.1.

Our CA model has 4 traditional components: the physical environment,
cells’ states and neighborhoods, and local transition rules [56], fig. 2.13.

47

𝑠𝑖 𝑑𝑖𝑗 = 5

𝐿

𝑅
𝑑𝑘𝑝 = 2

𝑠𝑘

𝑠𝑞

𝑊 𝐸

↑ 𝑆

𝑠𝑏

𝑠𝑐

𝑠𝑗

𝑙𝑖 = 3
→ →

𝑑𝑞𝑇𝐿 = 5

𝑇𝐿
𝑑𝑏𝑐 = 2

𝑠𝑝

Figure 2.13: Traffic Cellular Automaton [56]

In turn, the physical environment of our model represents the entire
road network as a 2-d lattice (a 2-d array). The distinctive features of the
physical environment of our model are listed below and rely on fig. 2.13.

� A lattice has diverse cell types, e.g., vehicles & impassable parts.
� We support multiple traffic lights located throughout the lattice (TL).
� We account for vehicles of different lengths (denoted by l∗).
� Vehicles can have different moving directions, speeds (denoted by s∗).
� The model considers road intersections (RI) regulated by traffic lights.
� Vehicles can change their moving directions at RI (see sb).
� Each road can consist of multiple lanes; vehicles are allowed to change
lanes, e.g. in order to overtake a slower-moving vehicle (see sj).

� It is possible to locate vehicles on any cell of a road.

Cells’ states and neighborhoods have the following peculiarities.

� Cells change their states at discrete time steps (iterations).
� All cells in a certain window constitute the local neighborhood of a
cell, including the cell itself, 5 cells back and forward (see sj).

� Local transition rules are applied to all cells simultaneously (drivers
make decisions independently of each other, in parallel, but obeying
some generally accepted rules).

A large and diverse set of local transition rules are responsible for the
correct evolution of the TCA in time and can be categorized as follows.

� Move Forward Rules account for vehicle lengths and include accelera-
tion, braking, randomization, and movement rules that avoid vehicle
collisions and account for individual driver behavior.

� Lane Change Rules allow for left and right lane changes. They check
for constraints for inter-vehicle distance (e.g., dij) and vehicle speeds.

� Traffic Light Rules help to avoid collisions at RIs. Traffic lights can
be red, yellow, and green. Vehicles can queue in front of traffic lights.

� Road Crossing Rules regulate vehicle behavior at RIs. Vehicles check
for diverse constraints & can turn left/right (see dbc).

48

2.4.3 Challenges & New Enabling Components

It might seem that Array (Tensor) DBMSs can readily run CA simula-
tions, as they have a common data model. However, such simulations
pose sophisticated design challenges to Array (Tensor) DBMSs. We solved
multiple design challenges to enable CA simulations possible inside Array
(Tensor) DBMSs related to iterative workloads, CA transition rules, par-
allel execution, and other challenges which we briefly summarize below.

Design Challenge 1. How to support arbitrary cellular automata
local transition rules in Array (Tensor) DBMSs?

A CA rule looks like a well-known convolution operator [64]. However,
a CA rule is much more complex: it is a procedure that (1) is applied for
each cell of several input arrays, (2) checks for constraints, (3) may update
several cells within the neighborhood.

To support arbitrary CA rules, we introduced a new convolution oper-
ator for Array (Tensor) DBMSs, section 3.3.1.

Note that we cannot simply extend our Array (Tensor) DBMS model to
store tuples in a cell as it will lose compatibility with industrial software,
popular, standardized file formats, and the ability to work in situ. Some
formats support records, but they are complex and rarely used in practice.

Design Challenge 2. How to efficiently (natively) support iterations
directly inside an Array (Tensor) DBMS?

Iterations are inherent to physical world simulations. Python/C++
UDFs (User Defined Functions) are supported by some Array (Tensor)
DBMSs, so a user may code iterations in these languages. However, such
UDFs are black-boxes that Array (Tensor) DBMSs cannot optimize [36].
Existing query languages are unable to express iterations. Running itera-
tions query by query requires a query output to be completely materialized
before the next query. In addition, holistic optimizations for several iter-
ations ahead are unavailable as the overall picture is unclear.

To solve this challenge, we introduced the first native Array (Tensor)
DBMS language for UDFs, section 3.3.2.

Design Challenge 3. How to correctly and efficiently execute a
native UDF for an Array (Tensor) DBMS?

Although the UDFs written using our new language look relatively
small, they are challenging to execute. We introduced numerous new
Array (Tensor) DBMS components, including proactive simulation plans,
versioning, and locking to solve the challenge, section 3.3.3.

49

2.5 New Scalable Data Science Techniques

Machine Learning (ML) and Data Science (DS) are just paving their ways
to Array (Tensor) DBMSs [52, 72]. Although the integration of ML and
DS techniques into an Array (Tensor) DBMS is facing multiple challenges,
it also has numerous benefits. One of such major advantages is the absence
of time-consuming data movements between Array (Tensor) DBMSs and
ML/DS systems in order to run ML/DS algorithms on data under the
management of an Array (Tensor) DBMS. An example of an important
practical application is the fast creation of a high-quality seamless mosaic.

2.5.1 Array (Tensor) Mosaicking Challenges

The mosaic operator, found in Array (Tensor) DBMSs, ingests a massive
collection of overlapping tensors into a single large tensor, called mosaic.
The operator can apply sophisticated ML/DS techniques to generate a
high quality seamless mosaic: the visible contrasts between the values of
cells taken from input overlapping tensors is reduced as much as possible.

For example, ChronosDB has the mosaic command [54], Oracle

Spatial provides the SDO GEOR AGGR.mosaicSubset procedure [42], and
RasDaMan is equipped with the mosaic recipe [49].

High-quality mosaicking techniques rely on advanced approaches. For
example, IR-MAD (Iteratively Re-weighted MAD), where MAD stands for
Multivariate Alteration Detection, utilizes Canonical Correlation Analysis
(CCA) [29]. CCA is a popular approach for determining correlations in
multidimensional datasets [23]. CCA is widely used in Data Science for
dimensionality reduction and discovering latent variables.

However, the performance bottleneck becomes a major challenge when
applying such advanced techniques to increasingly growing tensor volumes.
Recent surveys have identified speed as a key challenge and improvement
aspect of next generation mosaicking techniques [29, 31].

As an example, consider the following use-case. A single tensor, a satel-
lite scene, often does not fully cover the area of interest. In this case, the
mosaic operator, equipped with Data Science techniques, is used to fuse
a large collection of input tensors into a single seamless mosaic, a large
multidimensional array where the visibility of stitches between individ-
ual input arrays is reduced as much as possible. To produce high-quality
mosaics, algorithms resort to the advanced techniques mentioned above.
Figures 4.15 and 4.16 illustrate the input scenes and the resulting mosaic.

50

2.5.2 Scaling MAD & IR-MAD

FastMosaic enhances IR-MAD (using a new, scalable way to CCA), as it
can run with no or little manual interaction: an important property for Big
Data applications. IR-MAD can also produce high-quality tensor mosaics,
even for complex value distributions of overlapping input cells [29].

Figure 2.14: FastMosaic Structure

Figure 2.14 presents the FastMosaic structure. As input, FastMo-

saic takes a set of overlapping arrays (tensors) and performs pair-wise
fusion of overlapping arrays (tensors). We treat M cell pairs of two over-
lapping arrays (tensors) as a pair of random variables X and Y of dimen-
sion K (X and Y represent the subject and the reference array/tensor
respectively): Xk = {Xk,1, Xk,2, . . . , Xk,M}, where Xk,j is the value of cell
j ∈ [1,M] and spectral band k ∈ [1, K]. We define Y in the same way [59].

For each cell pair, MAD estimates the probability of no change Pj

using our new, scalable way to perform CCA (section 2.5.3) on weighted
Xkw and Ykw, where w = {w1, w2, . . . , wM}. IR-MAD iterates while w
changes significantly. Cells with Pj > Θ ∈ [0.95, 0.99] are called invariant.
The relative normalization builds an orthogonal regression on invariant
cells Yk = βkXk + ϵk, where βk, ϵk ∈ R, to get K pairs of transformation
coefficients βk, ϵk to apply to all cells of the subject array (tensor). Finally,
the transformed array (tensor) is fused with the reference one; this larger
array (tensor) replaces the pair in the input set. These steps are repeated
until only one array (tensor) appears in the set: the resulting mosaic.

Section 4.4 demonstrates step-by-step construction of a mosaic on real-
world geospatial arrays (tensors).

51

2.5.3 Scaling Canonical Correlation Analysis (CCA)

Recall that CCA maximizes the correlation corr(aTX, bTY) by seeking
coefficients a and b. Random variables U = aTX, V = bTY are called a pair
of canonical variables. We designed linear-time formulae to compute U, V
together with IR-MAD transformation coefficients βk, ϵk (section 2.5.2) in
the same pass over the input data in O(M ×K2 +K3), fig. 2.15.

Figure 2.15: CCA Compute Graph: Proposed Approach [59]

The idea is to collect certain statistics (takes over 95% of total runtime
on real-world data) to compute U, V and βk, ϵk (5% of total runtime), all
in the same pass. This equips Array (Tensor) DBMSs with a scalable and
high-quality mosaic operator. First, we compute σX,k =

∑M
j Xk,jwj, the

weighted sum of cells for band k: σX = {σX1
, σX2

, . . . , σXK
}. Then we

compute σXY , a matrix of weighted sums of products X and Y : σXY =
XT

k (Yk ⊙ w), σXX = XT
k (Xk ⊙ w), σY Y = Y T

k (Yk ⊙ w), where ⊙ is a cell-
wise product. In addition, we compute ΣXY , ΣXX , and ΣY Y , matrices of
weighted covariances (formulae for ΣXX and ΣY Y are similar):

ΣXY =
σXY∑
w − 1

− σXσ
T
Y∑

w(
∑

w − 1)

We use these statistics to compute matrices ma,mb, vectors a0, b as
eigenvectors of matrices ma,mb, derive a and M = {M1,M2, . . . ,MK},
where Mk = ((Uk − Vk) − Mk)/std(Mk) to estimate P (no change) =
χ2
cdf

(∑
M 2

k

)
and get βk, ϵk in the same pass. Complete formulae are in [59].

52

Chapter 3

Software: Architectural &
Implementation Aspects

In the context of systems research, it is insufficient to propose theoretical
results on their own: we must also have appropriate architectures and
implementations, presented in this chapter, to ensure and reinforce the
algorithmic impact and compete with popular software systems. The novel
aspects provide DBMS-style tensor management and efficiently organize
our tensor algorithms and techniques to yield significant accelerations.

The results of this chapter are new architectural and implementation
aspects of ChronosDB (section 3.1), BitFun (section 3.2), SimDB (sec-
tion 3.3), WebArrayDB (section 3.4.2), ArrayGIS (section 3.4.3), and
FastMosaic (section 3.5). Chapter 4 presents additional aspects.

ChronosDB outperforms SciDB by up to 75× on average. It is
always faster and can outperform SciDB by up to 1024×. SciDB is
developed by the Paradigm4 company under the supervision of M. Stone-
braker, an ACM Turing Award Recipient (“Nobel Prize of Computing”).

BitFun is equipped with novel tensor indexing strategies to continu-
ously re-index tensors during queries with similar mathematical functions.
It can be up to 8× faster than computing the results from scratch.

SimDB is the first Array (Tensor) DBMS that can run end-to-end sim-
ulations entirely inside itself: from data preparation to simulation to com-
puting statistics, with runtime competitive to hand-written code.

WebArrayDB is the first Array (Tensor) DBMS that runs completely
inside a Web browser. ArrayGIS is a new Web GIS based on WebAr-
rayDB. In tandem, they can be over 2× faster than querying only
Sentinel-Hub, a popular Cloud service for providing Sentinel data.

FastMosaic is a new Array (Tensor) DBMS operator that can run
an order of magnitude faster for array (tensor) mosaicking than the
popular software library.

53

3.1 ChronosDB: An Innovative Array (Tensor) DBMS

3.1.1 ChronosDB Architecture & Components

Figure 3.1 presents the ChronosDB architecture with some of its key
components and peculiarities.

workerworker

Formal Data Model

Formal Algorithms

Execution engine

Query Language Operations

Q. Planner

ChronosDB is by up to 75x faster than SciDB on average

Computer Cluster

Command Line Tools

Clients

Files

Network

ordinary files
accessible to any other software

Highly optimized tools, BUT for a single machine

ABSTRACTS from the tools, files, file partitioning, …

GeoTIFF is an effort by 160+
companies and organizations

DELEGATE significant portions of work to the tools

re-partition and stream input/output
files between the nodes and tools DAG

• work with ChronosDB like with tools in a console
• a rich set of extremely efficient tensor operations

Files

NCO GDAL

Image
Magick

GeoTIFFGeoTIFF

Figure 3.1: ChronosDB Architecture: A Bird’s Eye View

The formal data model abstracts from the files and treats related files
as a single large tensor, section 2.1. Files can be distributed among cluster
nodes and processed in parallel. This enables ChronosDB to work on a
computer cluster of commodity hardware, possibly in the Cloud, and base
its storage layer on established, standardized file formats [54].

Moreover, unlike other DBMSs, ChronosDB works in situ (directly
with diverse file formats like NetCDF and GeoTIFF) and omits the time-
consuming import phase into an internal DBMS format. This approach
provides powerful storage capabilities, including efficient support of diverse
data types, missing values, and numerous compression techniques out-of-
the-box. In addition, ChronosDB arrays are readily accessible to any
other software as a set of ordinary files. For example, to Geographic In-
formation Systems (GISs), R, Python, and many other software that can
read such files.

54

The model also facilitates designing formal tensor management, pro-
cessing, and visualization algorithms, section 2.2. They are designed to
work in situ and delegate significant portions of work the elaborate and
optimized command line tools, section 4.1.1. Novel architectural and im-
plementation aspects make it possible for the algorithms implemented in
ChronosDB to run with exceptional efficiency [54].

In particular, ChronosDB features a sophisticated query planner and
execution engine. ChronosDB re-partitions and streams input/output
files between the nodes and tools to scale out the processing. For this
purpose, execution plans are built, section 3.1.3. ChronosDB exploits
multi-core CPUs and can benefit from multi-disk cluster nodes.

Finally, from the user perspective, it is easy to work with ChronosDB
even for a novice, as it provides a query language resembling the syntax
of well-known command line tools. We showcase this in section 3.1.2.

3.1.2 Novel Tensor Management Approaches

Let us form a dataset to serve as a running example: 24937×38673 arrays
r and nir, the mosaic of a set of 4× 8 Landsat 8 scenes, bands 4 (visible
red, r) and 5 (near-infrared, nir), paths 191–198, rows 24–27, 01–15 July
2015, GeoTIFF. Landsat is the longest continuous space-based record of
Earth’s land running from 1972 onwards [27]. Amazon and Google provide
Landsat scenes via commercial clouds due to Landsat’s popularity [18].

Unlike any existing Array (Tensor) DBMSs, ChronosDB maintains a
hierarchical Dataset Namespace to make it easier to navigate in a large
number of datasets. For example, the fully qualified name of a dataset can
look like Landsat8.Level 1.SurfaceReflectance.Band4 (dots separate
the names of dataset collections, the dataset name is the last).

System-level tensors (subarrays, files of diverse formats) can be placed
on cluster nodes by manual copying or via a special ChronosDB com-
mand. In contrast to parallel or distributed file systems, ChronosDB

always keeps a file entirely on a node. It is possible to replicate a subarray
over several nodes for fault tolerance and load balancing.

Workers are designed to discover their datasets upon startup. They
receive the dataset hierarchy from the coordinator node and scan their
local storage systems to report the dataset properties back. They obtain
this information by parsing subarray file names or reading file metadata.

ChronosDB performs Dataset Ingestion before querying a given dataset
(a set of files in a certain format). Whereas existing Array (Tensor) DBMSs

55

convert files (or require a third-party tool to convert the files) into an in-
ternal DBMS format, ChronosDB works with files in situ, in their orig-
inal formats. In this way, ChronosDB eliminates a time-consuming and
error-prone phase of format conversion that may run longer than a typical
query over the given data. ChronosDB makes some assumptions about
the given files, e.g., the same set of metadata keys.

Typically, data providers disseminate their products as a set of files that
already satisfy the criteria for ChronosDB regular datasets. However,
even if ChronosDB classifies the files as its raw dataset, it is possible
to quickly “cook” them into a regular dataset by specific ChronosDB
commands. The ingestion of a raw dataset is still orders of magnitude
faster compared to the state-of-the-art import procedures [54].

Array (Tensor) DBMSs can also print an array (tensor) schema, a no-
tion which is also found in other, e.g. relational, DBMSs. Array (ten-
sor) schema notations greatly differ between Array (Tensor) DBMSs. The
ChronosDB schema for Band4 from our running dataset is presented
below and is from [54].

gdalinfo Landsat8.Level_1.SurfaceReflectance.Band4
Driver: GTiff/GeoTIFF
Size is 38673, 24937
Coordinate System is:
PROJCS["WGS 84 / UTM zone 32N", ...skipped... AUTHORITY["EPSG","32632"]]
Origin = (-53110.000000000000000,5878570.000000000000000)
Pixel Size = (30.000000000000000,-30.000000000000000)
Metadata:

AREA_OR_POINT=Area
Corner Coordinates:
Upper Left (-53110.000, 5878570.000) (0d47’37.30"E, 52d46’20.14"N)
Lower Left (-53110.000, 5130460.000) (1d50’34.16"E, 46d 6’11.15"N)
Upper Right (1107080.000, 5878570.000) (17d59’48.38"E, 52d42’52.21"N)
Lower Right (1107080.000, 5130460.000) (16d50’57.11"E, 46d 3’26.67"N)
Center (526985.000, 5504515.000) (9d22’26.95"E, 49d41’33.18"N)
Subarray=2048x2048 Block=2048x1 Type=UInt16, ColorInterp=Gray

NoData Value=0

The meaning of the fields in output above is the same as for the well-
known gdalinfo tool that handles only one file at a time. As gdalinfo
is quite popular, most users avoid learning a new array schema notation
and inspect ChronosDB tensors in a way they are accustomed to, unlike
with other Array (Tensor) DBMSs.

Metadata Management in ChronosDB takes place via the commands
that mirror the functionality of the respective command line tools. For
example, ChronosDB provides the capabilities of ncatted (attribute
editor, NCO) to append, create, delete, modify, and overwrite internal file
metadata [41]. However, unlike the ncatted tool, the ncatted command
applies to a potentially large number of files simultaneously.

56

3.1.3 New & Efficient Query Execution Techniques

We illustrate our new efficient query execution techniques for Array (Ten-
sor) DBMSs using the following complex analytic pipeline that is detailed
in section 3.4 of [54]. As input, we take r and nir arrays (tensors) with dif-
ferent subarray shapes to avoid their collocation on cluster nodes and trig-
ger the distributed retiling that involves network exchange (section 2.2.1):

1. Interpolate 2× Band4 7→ Warp4
2. Interpolate 2× Band5 7→ Warp5
3. Perform 2-way array (tensor) join of Warp4 and Warp5 7→ SAVI
4. Downsample 64× SAVI 7→ SAVIoutlook

First, the 2× interpolation is performed (section 2.2.3) which outputs
are joined (section 2.2.2) to compute savi (section 2.3). Finally, a small
1209× 780 “quick outlook” array (tensor) (64× less than the join output)
is derived to visually estimate the result.

Let us refer to the above scenario as the savi pipeline.
ChronosDB builds and works according to execution plans. They are

used to determine the order of producing subarrays and their exchange
between workers. It is possible to build such plans due to the formal data
model and formal algorithms that have well-defined inputs/outputs.

Formally, an execution plan is a directed acyclic graph G = (V,E),
where E = {((Di, key

j
i), (D′, keym)) : Di⟨⟨keyji ⟩⟩ is required to compute

D′⟨⟨keym⟩⟩}. For an array operation, Di is an input dataset and D′ is the
output dataset. The formal dataset definition is in section 2.1. Execution
plans are static (immutable at runtime) which makes it easier to reason
about the data flow. An execution plan example is in section 3.4 of [54].

ChronosDB commands cannot be nested, but output datasets can be
inputs to another commands. This clear and easy-to-use approach is not
a limitation or performance penalty. ChronosDB does not materialize
the whole output of a command before launching the next command.

In the pipeline, Warp4, -5, and SAVI can be Intermediate Datasets.
They can be reused in the pipeline, but cannot be registered as permanent
datasets. Intermediate Datasets are subject for diverse optimizations [54].

Intermediate (or even resulting) system-level tensors may grow too large
or become too small. This may cause load imbalance or increase runtime.
ChronosDB can rewrite execution plans to avoid this. If we find opera-
tions that yield subarrays whose sizes deviate 2× of a given threshold, we
insert the retiling to merge/split small/large subarrays. To maintain load
balance, a retiling can also be inserted into the execution plan.

57

3.2 BitFun: Fast Answers to Tunable Queries

BitFun is a ChronosDB [54, 55] component that provides novel bitmap
indexing techniques for queries with tunable mathematical functions and
novel, space-efficient hierarchical bitmap index structure to support tun-
able indexing. BitFun features a specialized architecture, a novel indexing
workflow, a specifically designed user interface (section 3.2.2), as well as a
number of important applications (section 4.2).

3.2.1 BitFun Architecture

Figure 3.2: BitFun Architecture [53]

As BitFun is a ChronosDB component, its primary language is Java,
but it also uses Python for its Web server. Java lacks symbolic computing
libraries. Hence, BitFun utilizes SymPy in order to find derivatives,
solve equations, simplify expressions, and perform other required steps
according to the BitFun approach, section 2.3.2.

Jython and similar tools are limited in functionality compared to SymPy.
Therefore, as part of BitFun, we developed a Web server in Python in
order to submit formulas, related parameters and retrieve the SymPy
output via our self-designed RESTful API.

BitFun evaluates symbolic expressions hundreds of millions of times.
Hence, BitFun translates the SymPy output into Java code and runs a
compiler to produce Java bytecode. The code serves as part of diverse in-
dexing procedures and is soon compiled into machine code. Consequently,
the native code executes much faster than evaluating expressions in sym-
bolic form. BitFun architecture is depicted in fig. 3.2.

58

3.2.2 Interactive User Interface

The Web interface is designed to (a) showcase the BitFun performance in
query answering that relies on innovative indexing approaches, (b) make it
possible for users to investigate the novel index structure and explore in-
dexing workflow insights, (c) provide an opportunity to extend user knowl-
edge of Array (Tensor) DBMSs and real-world tunable query applications.

Figure 3.3: BitFun Web GUI with Some of its Components

The Web interface consists of (1) the syntax-highlighted editor for cre-
ating and submitting queries; (2) 2-d and 3-d charts showing the properties
of the index, the indexing process, and the specifics of the query answering;
visual components (3) to help with expression tuning and (4) to provide
lesson guidance; (5) interactive map featuring query results and input data.

The GUI also provides engaging lessons centered around real-world ap-
plications. To succeed, the user should find the correct mathematical
function parameter value by experimentally tuning it. Each new param-
eter value triggers the rendering of a new interactive map based on the
result of re-applying the function to an input array (tensor).

BitFun can be up to 8× faster than computing the results from scratch.
The appropriate map view is produced as a result of using the correct
parameter value. The goal is to illustrate fast computations due to novel
indexing techniques. During a lesson, the user gets interactive hints.

More information on the lessons and interface components, i.e., tune
slider, tune hints, plots, index info box, interactive map, etc. is in [53].

59

3.3 SimDB: Physical World Simulations Completely

Inside Array (Tensor) DBMS

SimDB solves key design challenges (section 2.4.3) to enable end-to-end
Cellular Automata simulations entirely inside an Array (Tensor) DBMS
for the first time via new Array (Tensor) DBMS components [56, 61].

3.3.1 Novel Array (Tensor) DBMS Convolution Operator

To support arbitrary Cellular Automata (CA) simulations, we introduced
a new convolution operator for Array (Tensor) DBMSs, fig. 3.4.

Let us formally define the convolution operator Ξ, leveraging our novel
Array (Tensor) DBMS data model, section 2.1. The operator Ξ : K,A1, A2,
. . . , An 7→ B1, B2, . . . , Bm takes n input and yields m output 2-d arrays,
all shaped l1 × l2. A kernel K⟨k1, k2⟩ is the mapping K : ax1 , a

x
2 , . . . , a

x
n 7→

bx1 , b
x
2 , . . . , b

x
m of n input (windows of Aj, fig. 3.4) and m output 2-d arrays,

all shaped 2k1 + 1 × 2k2 + 1, indexed by (y1, y2) : yi ∈ [−ki,+ki] ⊂ Z,
axj [y1, y2] = Aj[x1 + y1, x2 + y2], j ∈ [1, n], axj [y1, y2] = NA if xi + yi /∈ Di,
ki ⩽ |li| div 2, Bq[u1, u2] ∈ {bxq [y1, y2] : xi + yi = ui} (choose the latest
produced value), where q ∈ [1,m], x = (x1, x2), xi, ui ∈ Di [56].

interface ConvolveWindow<T> {
enum Degrees

{_0, _90, _180, _270}

int getArrayX(); // x1
int getArrayY(); // x2
int xWindowSize(); // k1
int yWindowSize(); // k2
int xSubarraySize(); // l1
int ySubarraySize(); // l2
T rotate(Degrees degrees);
Random random();
void move(int x, int y);

}

Figure 3.4: Illustration of the Novel Convolution Operator and Its Interface [56, 61]

Users provide the logic as UDFs in a high-level language, currently in
Java. SimDB iterates over arrays, forms read/write windows, equipped
with helper functions, fig. 3.4. Unlike a traditional convolution, our oper-
ator feeds a convolution UDF several input windows and allows the UDF
to modify an arbitrary number of cells within multiple output windows.
This enables the operator to produce several output arrays [56, 61].

60

3.3.2 Native UDF Language for Array (Tensor) DBMSs

To efficiently and natively support simulations directly and entirely inside
an Array (Tensor) DBMS, addressing Challenge � 2, we introduced the
first native Array (Tensor) DBMS language for UDFs [56, 61], fig. 3.5.

Figure 3.5: Part of the TCA simulation native Array (Tensor) DBMS UDF [61]

SimDB UDFs are easy to code: they consist of commands with a syntax
similar to command line tools. This syntax is familiar to most users. A
part of the UDF for TCA simulations is in fig. 3.5. The traffic simulation
consists of the following steps repeated in a loop multiple times:

1. Each vehicle is advanced several steps forward

2. Each vehicle decides whether to turn left and possibly turns left

3. Each vehicle decides whether to turn right and possibly turns right

4. Traffic lights change their color

5. The timer advances

To keep the initial arrays, tca.speed and tca.length are copied to
intermediate $speed and $length arrays managed with optimizations.

The calc command runs a convolution operator supplied as a Java
UDF, section 3.3.1. SimDB compiles the Java UDF to bytecode for faster
execution. calc accepts/produces an arbitrary number of input/output
arrays. The -ot parameter specifies T, section 2.1. Quantiles :in and
:out distinguish between the in/out arrays as their number is not fixed.

An iteration ends by appending new 2-d arrays $speed and $length to
3-d arrays speedh and lenh along the virtual time axis.

Virtual axes were also introduced as part of making simulations possible
and efficient entirely inside an Array (Tensor) DBMS [56].

61

3.3.3 New Scheduling, Versioning & Locking Mechanisms

Although the UDF looks small in fig. 3.5, it is challenging to execute.
Hence, we immediately face Challenge � 3. We had to teach SimDB, a
ChronosDB Array (Tensor) DBMS extension, to schedule execution in
a new way by building Proactive Simulation Plans (PSPs) [56, 61].

merge

scheduled on
workers

to be
generated

0 1 2 3 …

next unit to
schedule

st
ep

s current
simulation
step

Figure 3.6: Proactive Simulation Plan [61]

For example, during loop unrolling, the same array name appears 100
times: e.g., the last calc command deletes current $speed array and cre-
ates a new array with the same name. We must be able to keep and
address all arrays (deleted and new) and write/read all of them simulta-
neously when we build and execute a simulation plan.

SimDB uses strict formal definitions of array (tensor) operations, sec-
tion 2.2 and compiler techniques to build and execute PSPs for several
iteration steps ahead. This lets SimDB avoid redundant materializations
and reduce scheduling overheads; e.g., “scheduled on workers” tasks can
be executed without communicating with the coordinator, fig. 3.6.

Figure 3.7: Exclusive Locking States: circles are states, arrows are allowed transitions

To physically maintain several arrays (tensors) with the same name dur-
ing runtime, we introduced array (tensor) versioning and locking mecha-
nisms that work in tandem. SimDB refers to an array (tensor) by its
name and version, operating simultaneously on both deleted and new ar-
rays (tensors): (n, v), where n is a fully qualified name (section 3.1.2) and
v ∈ Z is version. Datasets of different versions but the same name are
stored separately. In this way, we build PSPs that contain deleted arrays
(tensors) upon which depend other arrays (tensors) [56, 61].

62

Unlike ChronosDB, SimDB maintains two new additional dataset
types: staging and permanent. Given a name n it is possible to acquire
an exclusive or non-exclusive lock on n. The latter allows UDFs to share
a dataset for read-only purposes. The former allows UDFs to control the
dataset state (fig. 3.7) and prevent other UDFs from modifying the dataset.
Locked datasets become staging: their metadata is in a special repository,
not visible to users. A staging dataset can become permanent, see below.

The lifecycle of a SimDB dataset is as follows. A UDF command must
ask the Dataset Pool to acquire an exclusive lock for name n and the latest
version if it is going to perform a stage: discover (section 3.1.2), read,
remove, or create a dataset named n. To overwrite, perform remove &
create stages. Note that remove is a new stage compared to ChronosDB,
causing the most complexity. Read is also supported by non-exclusive
locks, so we omit its description. Any stage on a dataset is not immediate,
e.g. it is impossible to immediately delete a large distributed dataset, so
intermediate states exist, fig. 3.7. A commit operation finishes any stage.

If an exclusive lock on n is successful, a new staging dataset is created
in state 1 if no permanent dataset named n exists or in state 2 otherwise.
A UDF command can perform the create stage: 1 initiate create 7→ 5
specify the metadata, fill the dataset with new subarrays, commit 7→ 3
successfully register the metadata & subarrays 7→ 2. Similarly for remove:
2 initiate remove 7→ 7 commit 7→ 8 successfully apply the changes in the
Dataset Pool 7→ 9. The metadata and subarrays of a deleted dataset
still physically exist and can be referred to by the UDF commands that
have previously accessed them. If a dataset named n is deleted, a UDF
command can create a new dataset named n with a new version v′, but
possibly with completely different metadata: via states 10, 11, and 12.
Note that v is the same in all states. State 12 indicates that (n, v) cannot
go any stage further: it is deleted and possibly a newer version exists.

Once a lock is released (e.g., when a UDF completes) and a permanent
dataset (n, v) does not exist, SimDB registers a staging dataset in state
2 as permanent. Otherwise, SimDB overwrites (n, v) if a newer dataset
exists (n, v′) or deletes (n, v) if its staging state is 9. SimDB garbage
collector physically deletes subarrays of other staging datasets.

When users code UDFs, they are not required to know anything about
dataset versions, locking, or scheduling: all mechanisms in this section are
transparent to users. They enable efficient simulations, but required deep
modifications to our Array (Tensor) DBMS [56, 61].

63

3.4 The First Array (Tensor) DBMS Entirely in a

Web Browser

3.4.1 Time to Operate on Tensors in Web Browsers

Big tensor data with its rapid growth stimulates the development of client-
server applications, especially Web-based. Therefore, Web browsers are be-
coming increasingly popular platforms for client applications that provide
capabilities of working with tensors: Web GISs (Geographic Information
Systems). However, Web GISs are far from being mature because they
largely underutilize the power of modern Web browsers.

Contemporary Web GISs perform all array (tensor) processing on the
server side. They use diverse protocols, open and/or proprietary, to submit
queries (array/tensor processing commands) to the Cloud (server side) and
retrieve results in small portions (e.g., 2-d image tiles to display in a Web
browser on the client side). This increases response times, up to several
seconds, significantly degrading the user experience [63].

Companies claim that only 0.1s of reduction in latency can influence the
user journey and ultimately increases conversion rates [37]. ArrayGIS

and WebArrayDB, our novel Web GIS and Web-based Array (Tensor)
DBMS, prove that Web GISs can submit loads of tensor-related queries to
an Array (Tensor) DBMS that runs entirely in a Web browser in order to
significantly reduce query response times.

ArrayGIS relies on WebArrayDB. They can be over 2× faster com-
pared to querying only Sentinel-Hub [68], a Cloud service for disseminating
and processing very popular Sentinel data, section 4.2.3.

3.4.2 WebArrayDB Organization

WebArrayDB is the first Array (Tensor) DBMS in pure JavaScript that
runs entirely in a Web browser [63], fig. 3.8.

Spring

Figure 3.8: WebArrayDB and ArrayGIS Architectures [63]

64

Data formats. WebArrayDB utilizes both types of formats: those
carrying raw data and imagery, e.g. GeoTIFF and PNG. The former
formats are quite complex and were traditionally used by desktop software,
but recent advancements in Web development have made it possible to
operate with GeoTIFF and similar formats in a Web browser.

Data Ingestion. AsWebArrayDB runs in a Web browser, it expects
other web services (not local files) to be its primary data sources. We-
bArrayDB can ingest GeoTIFF tiles via the popular OGC WMTS (Web
Map Tile Service) [75]. WebArrayDB performs (1) on-the-fly tile-by-
tile conversion of GeoTIFF files to the structure supported by OpenLayers
(for visualization), and (2) saves raw tiles into theWebArrayDB storage
engine for future use.

Storage Engine. WebArrayDB stores raw data tiles as BLOBs
directly via a Web browser API: tiles, N -d arrays (tensors), along with
certain metadata, e.g., URL key and extent. WebArrayDB keeps on the
client side only a limited array data volume, controlled by a parameter.
When the space exhausts, the least frequently used tensor tile is deleted.

Query Parsing. WebArrayDB exploits an SQL-like query syntax:

SELECT (band8 - band4)/(band8 + band4)
INTO NDVI
FROM WMTS (https://services.sentinel-hub.com/ogc/wmts/

<personal_api_key>?REQUEST=GetCapabilities)

The query computes ndvi, a popular vegetation index [78]. Unlike a
conventional SQL, the query takes tensors as input: Sentinel bands 8 and
4 (2-d arrays). The FROM clause instructs WebArrayDB to retrieve the
inputs from a remote service via the WMTS protocol. As a result, the
query also generates tensors. In this case, a 2-d array called ndvi. It will
be saved by the storage engine inside the Web browser.

Query Execution plans consist of the following phases: (1) load,
(2) join, (3) compute, and (4) render. ArrayGIS and WebArrayDB

work in tandem: the former requests the latter to emit only those resulting
tensor tiles that will be immediately visible to the user. When the user
pans or zooms the map, ArrayGIS andWebArrayDB quickly generate
new resulting tiles on-the-fly. Array joins and GPU can be used.

Array Joins. When a query involves multiple arrays (tensors), a
K-way array (tensor) join may be required [52]. WebArrayDB sup-
ports extracting input tensors (1) from a WMTS response or (2) different
layers. An output tensor is tiled using the smallest input tile. Instead of
full retiling [54], WebArrayDB emits tiles incrementally [63].

65

3.4.3 ArrayGIS: WebGIS Components

ArrayGIS is an innovative Web GIS (Geographic Information System)
with an interactive Web GUI [63], fig. 3.9. WebArrayDB is the engine
of ArrayGIS. A distinctive ArrayGIS feature is that it can operate on
raw tensor data directly in a Web browser, as we showcase in section 4.2.3.

Figure 3.9: ArrayGIS GUI [63]

Layer Library allows users to manage 2-d and 3-d layers via WMS,
WFS, and WMTS protocols. GeoTIFF or ordinary images are supported.

Value under cursor tool displays source raw cell values on mouse click
events. It is lightning-fast as it happens without client-server communica-
tion since ArrayGIS can work with raw source data.

RGB Tool provides predefined color palettes that users can modify or
create a new one (e.g., add/remove/re-arrange colors, change opacity). A
layer in new colors is re-rendered in a split second, as ArrayGIS can
set/tune color palettes without client-server communication.

Map Algebra is a popular analysis language [70] and one of the most
frequent Array (Tensor) DBMS workloads [52]. ArrayGIS and WebAr-
rayDB accept SQL queries with Map Algebra expressions and run fast
computations directly in a Web browser.

The WebArrayDB and ArrayGIS performance can be experienced
via GUI responsiveness and interactive statistical charts in the GUI.

ArrayGIS and a video about it are freely available via its homepage1.
1https://wikience.github.io/webdb2022

66

https://wikience.github.io/webdb2022

3.5 FastMosaic: A Novel, Scalable Mosaic Operator

3.5.1 End-To-End Mosaicking Workflow

FastMosaic realizes techniques from section 2.5, fig. 3.10. In the text we
use M and K instead of N and k as in [59]. Two mosaicking modes are
available, designed for different purposes. Each mode generates a mosaic.

Sampling
Tool

Interactive
Map Tool

𝑋

𝑌

NetCDF

𝑘

𝑁

𝐴
𝐵 𝐴

𝐵′

Input Output: Seam-
less mosaic

Slider Tool

𝑃(𝑛𝑜
𝑐ℎ𝑎𝑛𝑔𝑒)

Heatmap
Tool

Figure 3.10: FastMosaic Workflow Overview (2 input arrays) [59]

The fist mode, a manual plan, runs in batch on all input arrays using a
previously created mosaic execution plan. The user interacts with Fast-

Mosaic to provide a plan and get a large output mosaic as a result built
on all input arrays according to the plan. This mode invites experiment-
ing with the impact caused by the order of adding tensors to the overall,
final mosaic. This is because transformation coefficients are computed for
tensor pairs. Hence, they superimpose during the mosaicking which leads
to a non-linear transformation of input tensors.

The second mode, a step-by-step user guidance, takes only two tensors
as input: the mosaic execution plan that instructs FastMosaic to fuse
two tensors. This mode enables users to perform in-depth investigation of
FastMosaic internals at each step of the mosaicking process.

In the detailed, step-by-step mode (fig. 3.10), the user can explore input
tensors on an interactive map. The user must initiate a series of steps to
construct a mosaic of two overlapping tensors. First, the user runs the
Sampling Tool to extract cells from the overlapping area of two tensors:
X and Y (M×K arrays, whereM is the number of overlapping cells andK
is the dimensionality of A and B, without spatial dimensions). Next, the
user launches CCA and other algorithms to generate the map of no change
probabilities which can be interactively explored. Finally, the Mosaic Tool
can apply transformation coefficients and build the final seamless mosaic.

67

3.5.2 Rich and Interactive GUI

The FastMosaic GUI (Graphical User Interface) has several windows:
the Main Window, Guidelines Window, Console Window, Coefficients Tool
Window, and Correlations Plot Tool Window. In addition, the user sees
the folder for storing the data during the work of FastMosaic, fig. 3.11.

Figure 3.11: A Screenshot of FastMosaic GUI

The Guidelines Window contains detailed instructions with illustrations
for the user on how to perform step-by-step construction of a seamless mo-
saic (create mosaic execution plan, run data sampling, and other FastMo-

saic algorithms), as well as guidelines on how to interactively investigate
inputs and outputs.

The Console Window is read-only and prints important information
during the work of FastMosaic algorithms. For example, the Console
Window displays mosaic execution plans and canonical correlation coef-
ficients together with final transformation coefficients as human-readable
text during the CCA, MAD, and IR-MAD execution.

The Coefficients Tool Window makes it possible to set parameters for
executing CCA, MAD, and IR-MAD.

The Correlations Plot Tool Window contains a highly interactive plot
that is updated at each iteration step during the FastMosaic execution.
The window displays correlations of pairs of canonical variables. With this
tool, the user can investigate the convergence of the algorithm.

In this section we presented a high-level, bird’s eye view of the FastMo-
saic interface. The respective details of its functioning are in section 4.4
that dives into the step-by-step mosaicking process.

68

Chapter 4

Applications: Real-World Data &
Use-Cases Revisited

How are the contributions presented earlier applicable to important practi-
cal use-cases? We utilize real-world data and demonstrate the efficiency of
new theoretical techniques and software architectural & implementation
aspects. This is an evaluation on real-world data and problems and an
additional way to showcase the practical significance of our contributions.

We refer to this study as “revisiting” real-world use-cases, as the prob-
lems we address can be solved in other ways. For example, practition-
ers can use batch-style scripts or MPI programs for a supercomputer.
However, such approaches suffer from data management problems [9, 54].
Therefore, Array (Tensor) DBMSs, with inherent qualitative and quanti-
tative DBMS-style advantages, are attractive alternatives in one cases or
enabling systems for the others due to the need of managing large tensor
volumes, e.g. in national initiatives [9].

Array (Tensor) DBMSs propose new ways to tackle the problems, in-
creasingly more robust and efficient compared to existing frameworks [54].
In many cases, an Array (Tensor) DBMS can become a new enabling tool
which is faster, easier, and more scalable compared to existing solutions.

Even if Array (Tensor) DBMSs will not completely obsolete some par-
ticular systems, they can definitely serve as excellent complements to the
world of approaches to big multidimensional array management, process-
ing, visualization, and other tensor-related tasks. Hence, Array (Tensor)
DBMSs are altering already existing pipelines developed for real-world use-
cases, as well as enable new opportunities, especially taking into account
the rapid and continuous increase of tensor volumes [9].

A contemporary role of Array (Tensor) DBMSs is to provide their
qualitative and quantitative benefits (page �11) to pipelines that involve
large multidimensional arrays (tensors).

69

4.1 Earth and Climate Data: Manage, Process, and

Visualize

4.1.1 High-Performance Tensor Management & Processing

The new data model (section 2.1), novel array (tensor) algorithms (sec-
tion 2.2), and management approaches (section 3.1.2) are implemented in
ChronosDB and outperform SciDB by up to 75× on average. They are
always faster and can outperform SciDB by up to 1024×. At the time of
comparison, SciDB was the only freely available distributed Array (Ten-
sor) DBMS [54]. SciDB is developed by Paradigm4 and M. Stonebraker,
an ACM Turing Award Recipient (“Nobel Prize of Computing”).

We deployed computer clusters that consists of 4, 8, 16, and 32 virtual
machines in the Cloud. ChronosDB and SciDB were deployed on their
own computer clusters in the Cloud. Please, refer to [54] for detailed char-
acteristics of the hardware and software used for performance evaluation.
To get maximum performance for SciDB, we thoroughly tuned it [54].

/

(a) 1× 94× 192 7→ 730× 2× 2 (b) 100× 20× 16 7→ 730× 2× 2

(c) [, 0 : 20, 0 : 20], 1× 94× 192 (d) [, 0 : 20, 0 : 20], 100× 20× 16

Figure 4.1: (a, b) chunking, (c, d) hyperslabbing [0 : 46751, 0 : 20, 0 : 20], The horizontal
axes plot the number of cluster nodes.

70

We experimented with the Landsat dataset from section 3.1.2. The
raw dataset had to be retiled into a regular dataset in ≈30 seconds on
the 8-node cluster. For SciDB, for each scene band, we had to merge
several GeoTIFF files into a single large mosaic. SciDB imported such a
mosaic in ≈2 hours on a powerful server to avoid burning Cloud time. On
the contrary, ChronosDB operates with GeoTIFF files in situ, without
import into an internal DBMS format.

/

(a) Reshaping (b) Pyramid 1024 & 4096

(c) Wind speed (d) Interpolation 1024 & 2048

(e) ndvi (f) savi 1024 & 4096

Figure 4.2: a & b mean that a×a SciDB chunks and b× b ChronosDB subarrays were
used. The horizontal axes plot the number of cluster nodes.

71

We also formed a dataset of eastward (u-wind) and northward (v-wind)
wind speeds at 10 meters above surface between 1979–2010 (32 years) from
NCEP/DOE AMIP-II Reanalysis (R2) [40]. These are Gaussian grids in
the NetCDF3 format.

ChronosDB operates on NetCDF files directly, in situ. ChronosDB
can readily query the data in NetCDF, but we had to develop a dedicated
software to import the data into SciDB. The import took over 45 hours
on a powerful server to avoid wasting Cloud time.

We evaluated cold and hot query runs: a query is executed for the first
and the second time respectively. ChronosDB benefits from native OS
caching and is much faster during hot runs. This is especially useful for
continuous experiments with the same data, section 2.3.1. There is no
significant runtime difference between cold and hot SciDB runs.

The resulting performance for chunking and hyperslabbing are pre-
sented in fig. 4.1. Figure 4.2a reports the performance of reshaping (time,

lat, lon) 7→ (lon, lat, time). The ratio is up to 26×. We benchmarked the
creation of 3 levels of the multiresolution pyramid (fig. 4.2b) and the 2×
interpolation (fig. 4.2d). ChronosDB outperforms SciDB by up to 97×
and 12× respectively.

Wind speed (ws) at each grid cell and time point is calculated as ws =√
u-wind2 + v-wind2. The ratio is up to 25× (fig. 4.2c).
The calculation of ndvi demonstrates the distributedK-way array (ten-

sor) join, section 2.2.2. SciDB fails to compute ndvi on 1- and 2-node
clusters with a not enough memory error. ChronosDB is exceptionally
superior to SciDB (up to 37×).

We also benchmarked computing savi (not only savi itself, but the
complete complex execution plan: the savi pipeline, section 3.1.3). In
the result, ChronosDB is from 32× to 47× faster than SciDB, fig. 4.2f.
This proves ChronosDB to be efficient for complex analytic pipelines.

The reader can find more details on the performance evaluation in [54].

72

4.1.2 GUI & DWMTS for Array (Tensor) DBMS

Utilizing ChronosDB, it is possible to interactively visualize large vol-
umes of array (tensor) data. Web GUI and a specialized, proprietary
DWMTS (Distributed WMTS) implementation provided by ChronosDB
out-of-the-box facilitate the aforementioned goal [55].

Figure 4.3: ChronosDB Web GUI [55]

The ChronosDB Web GUI has three main parts: (1) ChronosDB
Console, (2) Console Output, and (3) Interactive Map, fig. 4.3. It is pos-
sible to edit several scripts in the ChronosDB Console (syntax highlight
is supported), submit a single line or a code fragment for execution. The
Web GUI establishes a session with ChronosDB via a custom network
protocol. A GUI 7→ ChronosDB message carries a script, ChronosDB
7→ GUI messages carry the script output, attached to the Console Output.

Visualization is essential for data understanding. The Interactive Map
displays ChronosDB datasets. Users can switch base layers, add/remove
arrays from the map, and adjust their color schemes. ChronosDB vi-
sualizes arrays by rendering subarrays and delivering imagery via WMTS
(Web Map Tile Service), a popular OGC protocol for serving georefer-
enced map tiles over the HTTP [75]. Any interactive web map or desktop
software that supports WMTS can visualize ChronosDB datasets.

ChronosDB analyses a WMTS tile request and provides the rendered
image directly from the node on which the subarray resides. Most popular
WMTS servers work on a single machine. ChronosDB enables large
array (tensor) visualization while reducing data movement between the
nodes. ChronosDB facilitates users to feel input data, as well as visually
evaluate derivative data resulting from script execution [55].

73

4.2 Fast Interactive Data Science: Quick Tensor Re-

computing (Updates)

Data scientists can experience increased response times from software that
enables working with big arrays (tensors) interactively. As a user typically
spends their time waiting for such responses in front of a computer, each
successive data processing delay, even within 1–2 seconds, increases human
fatigue and thereby reduces work quality and data understanding.

Here we describe several important practical applications that benefit
from BitFun, WebArrayDB, andArrayGIS [53, 63], heavily boosting
tensor updates (up to 8×) in response to manual or automatic inputs.

4.2.1 Water Management & Flood Mapping

This application illustrates fast evaluation of f(τ) < const due to novel
indexing techniques, section 2.3.2. To map a flood, we create a water
mask: a 2-d array with two cell values: 1 (water) and 0 (no water).

(a) The Arkansas River with its most noticeable tributaries (b) Zoomed ndvi box

Figure 4.4: The area for the BitFun Water Lesson (River Flood Mapping)

We selected the Arkansas river basin as an example. At 1,469 miles
(2,364 km), the Arkansas is the 6th and 45th longest river in the U.S. and
the world, respectively. Its drainage basin covers 161,000 sq miles (417,000
sq km) and has a total fall of 11,400 feet (3,500 m) [5]. Figure 4.4b (May 28,
2019; Landsat 8) zooms the pink box in fig. 4.4a.

In the spring of 2019, the Southern and Central U.S. experienced se-
vere flooding. The problem was most acute in late May along the Arkansas
River. Every county in Oklahoma was in a state of emergency, and evacua-
tions were ordered or recommended in several communities in Arkansas [38].

74

Remote sensing data is widely used in practice to forecast river floods,
assess the damage caused, identify flood prone areas, select places for
protective dams, and rapid-response for disaster relief [4].

ndvi values close to zero or negative represent zones with the presence
of water, section 2.3.1. The task is to quickly create an accurate water
mask by tuning τ in f(τ) = ndvi− τ < 0. As a reference, the analyst sees
the RGB map, resulting mask, and the set of points of two colors (ground
truth) located in flooded and non-flooded areas [53].

The challenge is to tune τ such that for most ground truth points that
indicate flood and no-flood, water mask values are 1 and 0, respectively.
The selected area serves as a good example, as the Arkansas River Basin
occupies a relatively large area. BitFun quickly re-creates the water mask
for this area each time the user tunes τ [53]1.

4.2.2 Food Security & Crop Yield Prediction

Now we illustrate the fast computing of f(τ) due to novel indexing tech-
niques, section 2.3.2. Values of f(τ) are required for a crop yield model.

Figure 4.5: Saudi Arabia: Center Pivot Irrigation Systems (Wadi Al-Dawasir area, to the
south of Riyadh, the capital city, 11/Feb/2016, RGB, Landsat 8 Collection 1 Level 2)1

Vegetation indexes are heavily used in ML/AI & Food Security: classi-
fication [16], segmentation [79], drought threats [74], cropland health [21],
precision agriculture [35], crop yield prediction [2], to name a few.

savi is used for arid regions (such as Saudi Arabia’s agricultural fields)
with sparse vegetation and exposed soil surfaces [78]. savi performs much

1BitFun Homepage: http://bitfun.gis.land

75

http://bitfun.gis.land

better than other vegetation indexes, as it aims to minimize soil bright-
ness influence by introducing its tunable parameter L, a soil fudge factor
varying from 0 to 1 depending on the soil, section 2.3.1.

Center pivot irrigation is popular in the arid and hyper-arid regions of
the Earth. In Saudi Arabia, fig. 4.5, the main crops grown in winter are
wheat, potato, tomato and melon. Fodder crops are grown throughout the
year. Circles are cultivated in the desert with temperatures up to 43°C [2].

Center (or Central) Pivot Irrigation is a method for irrigating crops
using sprinklers rotating around a central pivot [69]. This type of irrigation
uses less labor (lower costs) compared to other irrigation types and can
reduce water runoff, soil erosion, and compaction.

A BitFun lesson [53] takes [2] as an example: the authors build em-
pirical crop yield models for pivots of the Saudi Agricultural Development
Company (INMA) in the area, fig. 4.5. It is possible to feed different savi
values to the models depending on the L value. The challenge is that the
value of L is not known beforehand and is tuned experimentally. BitFun
provides novel indexing techniques to avoid computing savi from scratch.

BitFun quickly re-computes savi for a large area each time the user
tunes L to check whether new, adjusted savi values for this new L are
more appropriate for the models. Moreover, as the crop yield is estimated
up to some digits after the floating point, the BitFun ability to specify
precision is very helpful here and significantly accelerates computations2.

4.2.3 Accelerated Web-Based Processing & Visualization

Web GISs (Geographic Information Systems) are vivid examples of how
tensor processing and visualization are becoming commodities via Web
Browsers. Whereas other Web GISs use Web Browsers just as thin clients,
displaying only server-rendered read-only images, WebArrayDB and
ArrayGIS operate on raw data entirely inside a Web Browser, section 3.4.

Figure 4.6: WebArrayDB and ArrayGIS Lessons: Initial States and Solutions [63]

2BitFun Homepage: http://bitfun.gis.land

76

http://bitfun.gis.land

Figure 4.7: Latency: WebArrayDB vs. Sentinel-Hub

We illustrate accelerated Web-based computations in two lessons [63]:
mapping water bodies and assessing agricultural crops, fig. 4.6. Although
the scenarios are somewhat reminiscent of those described in sections 4.2.1
and 4.2.2, the underlying acceleration techniques are different [63].

The Water Lesson, in particular, showcases near instantaneous updates
of array color palettes by keeping raw array data in the Web Browser.
WebArrayDB, the foundation of ArrayGIS, enables access to source
tensor data without client-server interactions, unlike other Web GISs. We
also use the popular ndvi index as a water indicator, section 4.2.1, but for
Rome (Italy) and Sentinel-2 data. Users see the ground truth and submit
queries SELECT ndvi < β, where β is a tunable parameter, fig. 4.6.

ArrayGIS is an innovative Web GIS, a front-end for WebArrayDB.
ArrayGIS features interactive Web GUI and is freely accessible at https:
//wikience.github.io/webdb2022 Hence, it is easy to reproduce the
lessons and confirm the advantages of ArrayGIS and WebArrayDB.

Users can inspect the WebArrayDB & ArrayGIS performance by
exploring interactive charts in the Database Statistics infobox [63]. Fig-
ure 4.7 is a screenshot from the Database Statistics infobox.

ArrayGIS relies on WebArrayDB. They can be over 2× faster com-
pared to querying only Sentinel-Hub [63], a popular Cloud service for dis-
seminating and processing Sentinel data, fig. 4.73.

Detailed guidelines on the lessons in the ArrayGIS GUI are in [63].
Video presentations of BitFun,WebArrayDB andArrayGIS can also
be found on their home pages [53, 63].

3Note that WebArrayDB retrieves data (typically tiles 256× 256 or 512× 512) over wmts directly
to a Web browser; there is no intermediary. Client machine: Intel Core i5 1.6 GHz, 8 GB RAM, 256 GB
SSD, Chrome 100 (64-bit), Windows 10, Internet up to 100 MBit/s (WiFi).

77

https://wikience.github.io/webdb2022
https://wikience.github.io/webdb2022

4.3 Road Traffic Simulations: An Array (Tensor)

DBMS End-To-End Approach

This section guides through a step-by-step, end-to-end Cellular Automata
simulations by SimDB (section 3.3) in its interactive GUI [61], fig. 4.8. We
also showcase the benefits of using SimDB for the simulations to answer
the question why SimDB is an excellent choice for this workload.

We rely on the article [61] and the web page of [56] with very detailed
examples4. In addition, we also encourage to visit the homepage of [61]
where the link to the respective video is also located5.

Users can create a road network via a constructor. The road network
is converted to input arrays. Native Array (Tensor) DBMS UDFs are
used to initialize the simulation and generate proactive simulation plans.
Integrating native and Java UDFs is also supported, section 3.3. SimDB
can animate arrays on an interactive map and is interoperable. The goal of
a simulation is to derive statistics from arrays with simulation history (e.g.,
speedh and lenh, section 4.3.1) for decision support. SimDB facilitates
simulations with its powerful capabilities.

Figure 4.8: SimDB End-to-End Simulation Overview [61]

4.3.1 Simulation Initialization & Plan Investigation

The physical environment and cells’ states can be modeled as 2-d arrays.
New Array (Tensor) DBMS components are partially driven by our new
flexible convolution operator & native UDF language enabling us to apply
local transition rules & code the simulation logic respectively, section 3.3.

As input, we create and initialize at least three 2-d arrays shaped lat×
lon (more arrays can serve as inputs, e.g. weather conditions, elevation):

4http://sigmod2021.gis.gg (also contains the code for our TCA implementation)
5https://wikience.github.io/simdb2022

78

http://sigmod2021.gis.gg
https://wikience.github.io/simdb2022

(a)

public void setSpeed(ConvolveWindows w) {
double val = w.input(0).get(0, 0);
Double output = null;
if (val == 1 || val == 0) {

output = (double) w.input(0).random().nextInt(4);
} else {

if (val == 4) { // traffic lights
int rnd = w.output(0).random().nextInt(2);
output = (double) (200 + rnd + 1);

}
}
w.output(0).set(output, 0, 0);

}

(b)

Figure 4.9: (a): Part of a Proactive Plan, (b) UDF for Assigning a Speed for a Vehicle [61]

� tca.lane: road grid, cells: −1: impassable, 0/1: west-east/south-
north moving direction, 2: road intersections, 3: traffic lights

� tca.speed: initial vehicles’ speeds further updated by the TCA rules
(0 – indicates that a vehicle is not moving, positive values are speeds)

� tca.length: vehicles’ lengths (a vehicle of any length is modeled by
a cell having its rear bumper)

Note that we do not store vehicle positions explicitly as they are im-
plicitly coded by cell coordinates.

Typically, the goal of a simulation is to derive statistics. Hence, we
incrementally build history 3-d arrays (time× lat× lon): speedh and lenh

(vehicles’ speeds and lengths for each time step) by appending tca.speed

and tca.length along the virtual time axis, section 3.3.2.
The initialization has two sequential phases: (1) decide whether a cell

is occupied by a vehicle, (2) assign a length and a speed to each vehicle.
The UDF for setting a vehicle’s speed is in fig. 4.9b. We assign a

random speed to a cell after we assure whether the convolution window
that is centered at this cell permits placing a vehicle. Along the way, we
also assign the number of ticks to traffic lights if we encounter them.

SimDB also makes it possible to interactively investigate Proactive Sim-
ulation Plans (PSPs, section 3.3.3) to get insights of its scheduling and
execution capabilities. Plans are exposed in the Graph Modeling Lan-
guage [20]. SimDB lays out tasks on the plane to avoid clutter, assigns
colors, and annotates them with extensive statistics: task assignment, net-
work I/O, dataset info, etc. It is possible to zoom/pan PSPs, create statis-
tics, filter, highlight tasks and their dependencies in Gephi [20], fig. 4.9a.

79

4.3.2 Interactive Visualization & Animation

Visualization is essential for data understanding. SimDB provides arrays
via the open, popular, standard WMTS protocol [75] and displays them
in its interactive GUI, fig. 4.10. It is possible to add/remove arrays (e.g.
tca.lane) to/from the map, pan, zoom & adjust their color palettes (map
layers in fig. 4.10 are transparent, so colors slightly merge).

Figure 4.10: SimDB GUI: Interactive Visualization and Animation [61]

SimDB animates history arrays, so users can watch modeling at work:
how vehicles move along the roads, queue at traffic lights, turn at road
intersections, change speed, and overtake each other [61], fig. 4.10.

4.3.3 Experiencing Interoperability

SimDB storage layer relies on raw files in standard formats, e.g. GeoTIFF.
Hence, tensors are readily accessible to other software as well-known binary
files or rendered images. For example, to view a tensor on an interactive
Quantum GIS map, add a SimDB dataset as a WMTS layer, fig. 4.11.

Figure 4.11: A SimDB Array in Quantum GIS [61]

More information is in [61] and homepages of [56, 61].

80

4.4 Fast, Seamless Tensor Mosaicking: Step-By-Step

FastMosaic can guide users step-by-step through the end-to-end work-
flow (section 3.5.1) of constructing a seamless mosaic on input tensors via
an interactive and rich GUI (section 3.5.2). Here we briefly describe the
main steps of the mosaicking workflow. We encourage the reader to check
the FastMosaic homepage6 for the video showcasing all phases.

4.4.1 Creating a Mosaic Plan

First, we must define the mosaic plan using the Mosaic Plan Tool in the
interface. The user interactively builds a tree, the mosaic execution plan,
by drawing arrows to connect array pairs and set the fusion order. At step
� i, the tensor at the start of arrow � i joins the mosaic built so far,
fig. 4.12a.

(a) Mosaic Execution Plan

{"type":"FeatureCollection",
"features":[{
"type":"Feature",

"geometry": {
"type":"LineString",

"coordinates":

[[510598.029, 3043050.697],

[357855.877, 3042011.635]]

},
"properties": {"id": 0},
"id":0

}]
}

(b) A Tiny Mosaic Plan in GeoJSON

Figure 4.12: Illustrations of Mosaic Execution Plans

Figure 4.12a shows an execution plan for the batch mode, which fuses
tensors in the given order. Tensors, Landsat 8 satellite scenes, are repre-
sented as footprints. The subject tensor is at the beginning of an arrow,
so FastMosaic calculates transformation coefficients for subject tensors.

Mosaic execution plans are stored in the GeoJSON format. Figure 4.12b
presents an execution plan that will fuse two tensors in the step-by-step
mode (arrow � 4 in fig. 4.12a).

Once the plan is defined, FastMosaic is ready to sample the data for
estimating no-change probabilities and proceed to the next steps.

6https://wikience.github.io/fastmosaic2023

81

https://wikience.github.io/fastmosaic2023

4.4.2 Sampling, Execution & Heatmaps

Once the reference and subject arrays (tensors) are defined, we are ready
to create X and Y arrays (fig. 3.10) with the Sampling Tool in the GUI
for the input to canonical correlation analysis. The tool creates a NetCDF
file with the sampled cell values from overlapping cells of the inputs.

(a) Correlations of Canonical Variables

P
(n

o
ch

a
n
ge
)
co

lo
r
m
a
p

(b) P (no change) Heatmap

Figure 4.13: Interactive Plot and Heatmap

Next, we can use X and Y to execute CCA, MAD, IR-MAD, generate
the map of no change probabilities and the regression coefficients. Recall
thatX and Y areM×K arrays, whereM is the number of overlapping cells
and K is the dimensionality of input arrays (tensors), excluding spatial
dimensions (the number of bands, in the case of Landsat 8 scenes).

During the execution, the user can visually track the convergence of
the algorithm with the interactive plot updated at each iteration step,
fig. 4.13a. In addition, the coefficients also appear in the GUI console.
The line � i plots the correlation of the pair � i of canonical variables.

The options for the algorithms are described in the article [59] and
shown in the video, section 4.4: (1) CCA implementation: the proposed or
Python scikit-learn, and the stopping condition: (2) correlation threshold
(the significance of the change in correlations of canonical variables), or
(3) the maximum number of CCA iterations.

The user can see that our CCA runs considerably faster compared to
the Python scikit-learn both for real-world and synthetic data: it can be
about 30× faster even for two overlapping Landsat 8 scenes (M ≈ 6×106,
K = 7), fig. 4.15, and can be over 30× faster for samples from normal
distribution, fig. 4.14.

We generated random input variables using the normal distribution. For
example, let X is a random variable sampled from the standard normal
distribution, where the mean is 0 and the variance is 1: X ∼ N(0, 1).
We can create the other variable as Y = X + Z, where Z ∼ N(0, 0.5)

82

Figure 4.14: CCA: FastMosaic VS. Python’s ”scikit-learn” [59]

(the parameters of the distribution can vary without much impact on the
runtime). We also varied M , the number of input K-sized vectors (sample
size) and set K = 8 (recall that we use M and K instead of N and k

as in [59], because N denotes the number of tensor dimensions in this
Dissertation), fig. 4.147. For M = 106, the runtime of Python’s CCA and
FastMosaic is 5056.7 ms and 127.8 ms, respectively; the ratio is 39.57.

The default tolerance parameter of Python’s CCA implementation make
it run significantly slower, so in our experiments we set 0.01 for tolerance
(the same as for FastMosaic). The subsequent increase of the toler-
ance is hardly acceptable. The same parameters were used to compare
the performance of Python’s CCA and FastMosaic on Landsat 8 satel-
lite scenes. Let UP , VP and UF , VF be pairs of canonical variables gen-
erated by Python’s CCA and FastMosaic respectively. We found that
|corr(UP , UP) − corr(UF , UF)| < 10−u for u = 2 and above, where u ∈ Z
both for synthetic and real-world data. This confirms that both methods
are of comparable quality regarding their outputs (canonical variables).

The correlations of the variables can be tracked using the interactive
chart, fig. 4.13a. Correlation values and coefficients generated step-by-step
can also be found in the FastMosaic video, see Article � 8.

As we have computed the P (no change) array, we can generate the
respective heatmap to thoroughly inspect cells in the overlapping area
that are likely invariant, fig. 4.13b. FastMosaic saves the heatmap in
GeoTIFF, so it is possible to interactively explore it in a GIS (Geographic
Information System) software, for example, the popular Quantum GIS.

7Intel Core i7 2.60 GHz, 64 GB RAM, 512 GB NVMe, Win 10, sklearn (scikit-learn) version 1.4.0.

83

4.4.3 Transformation (Normalization)

Finally, we can build the mosaic. As we have 2 input arrays (tensors) for
the step-by-step mode, we need only K pairs of coefficients βk, ϵk ∈ R to
transform the subject array (tensor) B⟨lat, lon,K⟩ (on the right, fig. 4.15)
βzB[x, y, z]+ϵz (z, k ∈ [1, K], section 2.5.2) to generate a seamless mosaic.

Figure 4.15: Input Satellite Scenes (paths 167 and 168, row 41): RGB

Figure 4.16: Seamless Array (Tensor) Mosaic for the Input Data in fig. 4.15

It is apparent that the visual transition between the scenes is abrupt and
looks like a stitch, fig. 4.15. It is challenging to build a high-quality mosaic:
a simple contrast tuning is not sufficient to fix this. Clearly, FastMosaic
features scalable CCA, MAD, IR-MAD to quickly build seamless mosaics
that look like a single continuous image in natural colors, fig. 4.16.

84

Chapter 5

Conclusion

The conclusion outlines the outcomes of the completed R&D, recommen-
dations, and prospects for further development of the topic.

In the area of Array (Tensor) DBMSs, we have established novel the-
oretical foundations, introduced novel architectural and implementation
aspects, and demonstrated the significance of our contributions on real-
world data and important practical applications. The results included
in this Dissertation are presented at premier international conferences in
computer science: VLDB and SIGMOD.

A detailed list of the results is in section 1.3. The main results submitted
for defense are also in section 1.3.

As we noted, the area of Array (Tensor) DBMS is young by right, so
the work in this area has just commenced. Array (Tensor) DBMSs could
account for other data types like spatial polygons, relational tables, and
graphs, or work within polystore systems. More attention is required to
utilize novel hardware, e.g. NVM and GPU. One of the most perspective
R&D directions is the exploration of novel Array (Tensor) DBMS appli-
cations, like simulations. Applications pose unique challenges to Array
(Tensor) DBMSs helping them to become more robust systems in general.

Data Science and Machine Learning are just paving their way to Ar-
ray (Tensor) DBMSs, whose one of the major advantages is native tensor
support. It is attractive to run DS/ML directly inside an Array (Tensor)
DBMS to avoid costly data exchanges with DS/ML systems.

Right now, there are the best conditions to begin making contributions
to the R&D area of Array (Tensor) DBMSs.

85

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, et al. TensorFlow: a system for
large-scale machine learning. In OSDI, pages 265–283, 2016.

[2] K. A. Al-Gaadi, A. A. Hassaballa, E. Tola, et al. Prediction of potato crop yield
using precision agriculture techniques. Plos One, 11(9):e0162219, 2016.

[3] AnyLogic. anylogic.com/road-traffic, 2024.

[4] ArcGIS book. learn.arcgis.com/en/arcgis-imagery-book, 2024.

[5] Arkansas River. newworldencyclopedia.org/entry/Arkansas_River, 2024.

[6] V. Balaji, A. Adcroft, and Z. Liang. Gridspec: a standard for the description of
grids used in Earth system models. arXiv preprint arXiv:1911.08638, 2019.

[7] L. Battle, R. Chang, and M. Stonebraker. Dynamic prefetching of data tiles for
interactive visualization. In SIGMOD, pages 1363–1375, 2016.

[8] P. Baumann and S. Holsten. A comparative analysis of array models for databases.
Int. J. Database Theory Appl., 5(1):89–120, 2012.

[9] P. Baumann, D. Misev, V. Merticariu, and B. P. Huu. Array databases: concepts,
standards, implementations. Journal of Big Data, 8(1):1–61, 2021.

[10] P. Baumann, D. Misev, V. Merticariu, B. P. Huu, and B. Bell. DataCubes: a tech-
nology survey. In IGARSS, pages 430–433. IEEE, 2018.

[11] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani. Parallel data analysis directly
on scientific file formats. In SIGMOD, pages 385–396, 2014.

[12] C. Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, and J. Saltz. Titan: a
high-performance remote-sensing database. In ICDE, pages 375–384, 1997.

[13] D. Choi, H. Yoon, and Y. D. Chung. Resky: efficient subarray skyline computation
in array databases. Distributed and Parallel Databases, 40(2-3):261–298, 2022.

[14] D. Choi, H. Yoon, and Y. D. Chung. Subarray skyline query processing in array
databases. In SSDBM, pages 37–48, 2021.

[15] P. Cudré-Mauroux, H. Kimura, K.-T. Lim, J. Rogers, et al. A demonstration of
SciDB: a science-oriented DBMS. PVLDB, 2(2):1534–1537, 2009.

[16] V. S. da Silva, G. Salami, M. I. O. da Silva, E. A. Silva, J. J. Monteiro Junior,
and E. Alba. Methodological evaluation of vegetation indexes in land use and land
cover (LULC) classification. Geology, Ecology, and Landscapes, 4(2):159–169, 2020.

[17] D. J. DeWitt et al. Client-server Paradise. In VLDB, pages 558–569, 1994.

[18] Earth on AWS. https://aws.amazon.com/earth/, 2024.

86

anylogic.com/road-traffic
learn.arcgis.com/en/arcgis-imagery-book
newworldencyclopedia.org/entry/Arkansas_River
https://aws.amazon.com/earth/

[19] ECWMF report. https://www.ecmwf.int/en/computing/our-facilities/
data-handling-system, 2022.

[20] GML. https://gephi.org/users/supported-graph-formats/, 2024.

[21] A. T. Hammad and G. Falchetta. Probabilistic forecasting of remotely sensed crop-
land vegetation health and its relevance for food security. Science of the Total
Environment, 838:156157, 2022.

[22] O. Horlova, A. Kaitoua, and S. Ceri. Array-based data management for genomics.
In ICDE, pages 109–120, 2020.

[23] H. Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377,
1936.

[24] C. E. Kilsedar and M. A. Brovelli. Multidimensional visualization and processing
of big open urban geospatial data on the web. ISPRS International Journal of
Geo-Information, 9(7):434, 2020.

[25] B. Kim, K. Koo, U. Enkhbat, S. Kim, J. Kim, and B. Moon. M2bench: a database
benchmark for multi-model analytic workloads. PVLDB, 16(4):747–759, 2022.

[26] S. Ladra, J. R. Paramá, and F. Silva-Coira. Scalable and queryable compressed
storage structure for raster data. Information Systems, 72:179–204, 2017.

[27] Landsat missions. https://landsat.usgs.gov/, 2024.

[28] É. Leclercq et al. Polystore and tensor data model for logical data independence
and impedance mismatch in big data analytics. In LNCS, pages 51–90. 2019.

[29] X. Li, R. Feng, X. Guan, et al. Remote sensing image mosaicking: achievements
and challenges. IEEE Geoscience and Remote Sensing Magazine, 7(4):8–22, 2019.

[30] L. Libkin, R. Machlin, and L. Wong. A query language for multidimensional arrays:
design, implementation, and optimization techniques. In ACM SIGMOD Record,
volume 25 of number 2, pages 228–239, 1996.

[31] B. A. Lungisani, C. K. Lebekwe, A. M. Zungeru, and A. Yahya. The current state
on usage of image mosaic algorithms. Scientific African:e01419, 2022.

[32] S. Maerivoet and B. De Moor. Cellular automata models of road traffic. Physics
reports, 419(1):1–64, 2005.

[33] A. P. Marathe and K. Salem. Query processing techniques for arrays. VLDBJ,
11(1):68–91, 2002.

[34] Maxar AWS re:Invent, 80 TB/day. https://youtu.be/mkKkSRIxU8M, 2017.

[35] V. Mazzia, L. Comba, et al. UAV and machine learning based refinement of a
satellite-driven vegetation index for precision agriculture. Sensors, 20(9):2530, 2020.

[36] P. Mehta, S. Dorkenwald, D. Zhao, et al. Comparative evaluation of big-data sys-
tems on scientific image analytics workloads. PVLDB, 10(11):1226–1237, 2017.

[37] Milliseconds make millions. https://www2.deloitte.com/content/dam/Deloitte/
ie/Documents/Consulting/Milliseconds_Make_Millions_report.pdf, 2020.

[38] NASA EO. earthobservatory.nasa.gov/images/145108/floods- in- the-
arkansas-river-watershed, 2019.

[39] S. Nativi, J. Caron, B. Domenico, and L. Bigagli. Unidata’s common data model
mapping to the ISO 19123 data model. Earth Sci. Inform., 1:59–78, 2008.

87

https://www.ecmwf.int/en/computing/our-facilities/data-handling-system
https://www.ecmwf.int/en/computing/our-facilities/data-handling-system
https://gephi.org/users/supported-graph-formats/
https://landsat.usgs.gov/
https://youtu.be/mkKkSRIxU8M
https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Consulting/Milliseconds_Make_Millions_report.pdf
https://www2.deloitte.com/content/dam/Deloitte/ie/Documents/Consulting/Milliseconds_Make_Millions_report.pdf
earthobservatory.nasa.gov/images/145108/floods-in-the-arkansas-river-watershed
earthobservatory.nasa.gov/images/145108/floods-in-the-arkansas-river-watershed

[40] NCEP-DOE AMIP-II Reanalysis. http : / / www . esrl . noaa . gov / psd / data /
gridded/data.ncep.reanalysis2.html, 2024.

[41] NCO. http://nco.sourceforge.net/, 2024.

[42] Oracle database release. https://docs.oracle.com/en/database/oracle/
oracle-database/21/geors/image-processing-virtual-mosaic.html, 21c.

[43] Oracle SG. oracle.com/database/technologies/spatialandgraph.html, 2024.

[44] C. Ordonez, Y. Zhang, and S. L. Johnsson. Scalable machine learning computing a
data summarization matrix with a parallel array DBMS. Distributed and Parallel
Databases, 37(3):329–350, 2019.

[45] I. Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[46] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson. The TileDB array data
storage manager. PVLDB, 10(4):349–360, 2016.

[47] PostGIS. http://postgis.net/, 2024.

[48] RasDaMan home. http://rasdaman.org/, 2024.

[49] RasDaMan mosaic. https://doc.rasdaman.org/05_geo- services- guide.
html#data-import-recipe-mosaic-map, 2024.

[50] J. A. Richards. Remote Sensing Digital Image Analysis: An Introduction. Springer-
Verlag Berlin Heidelberg, 5th edition, 2013.

[51] R. A. Rodriges Zalipynis. Array DBMS in environmental science: satellite sea sur-
face height data in the cloud. In IDAACS, pages 1062–1065. IEEE, 2017.

[52] R. A. Rodriges Zalipynis. Array DBMS: past, present, and (near) future. PVLDB,
14(12):3186–3189, 2021.

[53] R. A. Rodriges Zalipynis. BitFun: fast answers to queries with tunable functions in
geospatial array DBMS. PVLDB, 13(12):2909–2912, 2020.

[54] R. A. Rodriges Zalipynis. ChronosDB: distributed, file based, geospatial array
DBMS. PVLDB, 11(10):1247–1261, 2018.

[55] R. A. Rodriges Zalipynis. ChronosDB in action: manage, process, and visualize big
geospatial arrays in the Cloud. In SIGMOD, pages 1985–1988, 2019.

[56] R. A. Rodriges Zalipynis. Convergence of array DBMS and cellular automata: a
road traffic simulation case. In SIGMOD, pages 2399–2403, 2021.

[57] R. A. Rodriges Zalipynis. Distributed in situ processing of big raster data in the
Cloud. In volume 10742 of LNCS, pages 337–351. Springer, 2017.

[58] R. A. Rodriges Zalipynis. Evaluating array DBMS compression techniques for big
environmental datasets. In IDAACS, volume 2, pages 859–863, 2019.

[59] R. A. Rodriges Zalipynis. FastMosaic in action: a new mosaic operator for Array
DBMSs. PVLDB, 16(12):3938–3941, 2023.

[60] R. A. Rodriges Zalipynis. Generic distributed in situ aggregation for earth remote
sensing imagery. In volume 11179 of LNCS, pages 331–342. Springer, 2018.

[61] R. A. Rodriges Zalipynis. SimDB in action: road trafic simulations completely inside
Array DBMS. PVLDB, 15(12):3742–3745, 2022.

88

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
http://nco.sourceforge.net/
https://docs.oracle.com/en/database/oracle/oracle-database/21/geors/image-processing-virtual-mosaic.html
https://docs.oracle.com/en/database/oracle/oracle-database/21/geors/image-processing-virtual-mosaic.html
oracle.com/database/technologies/spatialandgraph.html
http://postgis.net/
http://rasdaman.org/
https://doc.rasdaman.org/05_geo-services-guide.html#data-import-recipe-mosaic-map
https://doc.rasdaman.org/05_geo-services-guide.html#data-import-recipe-mosaic-map

[62] R. A. Rodriges Zalipynis. Towards machine learning in distributed array DBMS:
networking considerations. In volume 12629 of LNCS, pages 284–304. Springer,
2021.

[63] R. A. Rodriges Zalipynis and N. Terlych. WebArrayDB: A geospatial array DBMS
in your web browser. PVLDB, 15(12):3622–3625, 2022.

[64] R. A. Rodriges Zalipynis et al. Array DBMS and satellite imagery: towards big
raster data in the Cloud. In volume 10716 of LNCS, pages 267–279. Springer, 2018.

[65] R. A. Rodriges Zalipynis et al. Retrospective satellite data in the cloud: an array
DBMS approach. In volume 793 of CCIS, pages 351–362. Springer, 2017.

[66] F. Rusu. Multidimensional array data management. Foundations and Trends in
Databases, 12(2-3):69–220, 2023.

[67] Sentinel data access annual report. https://sentinels.copernicus.eu/web/
sentinel/-/copernicus-sentinel-data-access-annual-report-2021, 2021.

[68] Sentinel Hub. https://www.sentinel-hub.com/, 2024.

[69] W. E. Splinter. Center-pivot irrigation. Scientific American, 234(6):90–99, 1976.

[70] D. C. Tomlin.Geographic Information Systems and Cartographic Modeling. Prentice-
Hall, 1990.

[71] A. van Ballegooij. RAM: a multidimensional array DBMS. In EDBT, volume 3268,
pages 154–165, 2004.

[72] S. Villarroya and P. Baumann. A survey on machine learning in array databases.
Applied Intelligence, 53(9):9799–9822, 2023.

[73] S. Villarroya and P. Baumann. On the integration of machine learning and array
databases. In ICDE, pages 1786–1789, 2020.

[74] W. Wen et al. A review of remote sensing challenges for food security with respect
to salinity and drought threats. Remote Sensing, 13(1):6, 2020.

[75] WMTS. https://www.opengeospatial.org/standards/wmts, 2024.

[76] H. Xing and G. Agrawal. Accelerating array joining with integrated value-index. In
SSDBM, pages 145–156, 2020.

[77] H. Xing and G. Agrawal. COMPASS: compact array storage with value index. In
SSDBM, pages 1–12, 2018.

[78] J. Xue and B. Su. Significant remote sensing vegetation indices: a review of devel-
opments and applications. Journal of Sensors, 2017.

[79] M.-D. Yang, H.-H. Tseng, Y.-C. Hsu, and H. P. Tsai. Semantic segmentation using
deep learning with vegetation indices for rice lodging identification in multi-date
UAV visible images. Remote Sensing, 12(4):633, 2020.

[80] W. Zhao, F. Rusu, B. Dong, and K. Wu. Similarity join over array data. In SIG-
MOD, pages 2007–2022, 2016.

[81] W. Zhao, F. Rusu, B. Dong, K. Wu, A. Y. Ho, and P. Nugent. Distributed caching
for processing raw arrays. In SSDBM, pages 1–12, 2018.

[82] W. Zhao, F. Rusu, B. Dong, K. Wu, and P. Nugent. Incremental view maintenance
over array data. In SIGMOD, pages 139–154, 2017.

89

https://sentinels.copernicus.eu/web/sentinel/-/copernicus-sentinel-data-access-annual-report-2021
https://sentinels.copernicus.eu/web/sentinel/-/copernicus-sentinel-data-access-annual-report-2021
https://www.sentinel-hub.com/
https://www.opengeospatial.org/standards/wmts

	Dissertation Title and Topic
	Dissertation & Array (Tensor) DBMS State-of-the-Art
	Array (Tensor) DBMSs: The Beauty and Impact
	Introduction
	Relevance of the Dissertation Topic
	Objectives and Goals of this Dissertation
	Main Results
	Publications and Probation of the Work
	Source Code of the Software

	Theoretical Foundations
	A New Formal Array (Tensor) DBMS Data Model
	Motivation for a New Data Model
	Tensors or Multidimensional Arrays
	Multilevel, Distributed Datasets

	New Distributed & In Situ Tensor Algorithms
	Distributed N-d Retiling
	Distributed K-Way Array (Tensor) Join
	Aggregation, Chunking & Other Operations

	Tunable Queries, Indexing & Data Structure
	Introducing a New R&D Direction: Tunable Queries
	Novel Tunable Function Indexing Techniques
	A New and Fast Hierarchical Data Structure

	New R&D: Simulations in Array (Tensor) DBMSs
	Rationale, Shortcomings & Benefits
	New Traffic Cellular Automaton (TCA)
	Challenges & New Enabling Components

	New Scalable Data Science Techniques
	Array (Tensor) Mosaicking Challenges
	Scaling MAD & IR-MAD
	Scaling Canonical Correlation Analysis (CCA)

	Software: Architectural & Implementation Aspects
	ChronosDB: An Innovative Array (Tensor) DBMS
	ChronosDB Architecture & Components
	Novel Tensor Management Approaches
	New & Efficient Query Execution Techniques

	BitFun: Fast Answers to Tunable Queries
	BitFun Architecture
	Interactive User Interface

	SimDB: First Simulations in Array (Tensor) DBMSs
	Novel Array (Tensor) DBMS Convolution Operator
	The First Native UDF Language for Tensor DBMSs
	New Scheduling, Versioning & Locking Mechanisms

	The First Array (Tensor) DBMS Entirely in a Web Browser
	Time to Operate on Tensors in Web Browsers
	WebArrayDB Organization
	ArrayGIS: WebGIS Components

	FastMosaic: A Novel & Scalable Mosaic Operator
	End-To-End Mosaicking Workflow
	Rich and Interactive GUI

	Applications: Real-World Data & Use-Cases Revisited
	Earth & Climate Data: Manage, Process & Visualize
	High-Performance Tensor Management & Processing
	GUI & DWMTS for Array (Tensor) DBMS

	Interactive Data Science: Quick Tensor Recomputing
	Water Management & Flood Mapping
	Food Security & Crop Yield Prediction
	Accelerated Web-Based Processing & Visualization

	Road Traffic Simulations: A New End-To-End Approach
	Simulation Initialization & Plan Investigation
	Interactive Visualization & Animation
	Experiencing Interoperability

	Fast & Seamless Tensor Mosaicking: Step-By-Step
	Creating a Mosaic Plan
	Sampling, Execution & Heatmaps
	Transformation (Normalization)

	Conclusion

