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Introduction

Topic relevance. Neural networks-based algorithms have recently
achieved tremendous success in practical problems from computer vision
domain. In the tasks of image classification [27], segmentation [28], object
detection [29] and localization [30], the precision of such algorithms is often
comparable to the ones of a human, so, due to remarkable performance, they
are deployed in self-driving cars [31], medical imaging [32], security [33] and
many other applications. Unfortunately, such an advantage comes at the
cost of computationally expensive training, instability and vulnerability to
different kinds of perturbations of the input data. In the primary work [34],
it was discovered that very small vicinity of a correctly classified image is
full of (adversarial) samples, which are, although indistinguishable from the
original image, are classified differently by a network. This finding gave a
rise to an important question: how one can verify that a neural network’s
prediction is correct when its input is subjected to a transformation that
does not change its semantic (for example, adding a small noise, or rotating
an image by few degrees)?

Since then, in the deep learning literature, a lot of methods to exploit
such a vulnerability were proposed, underlining the importance of robust al
gorithms [35—37; A1]. As a consequence, many approaches to make neural
networks empirically more robust appeared [38—40]. Such methods, although
make it harder to find a perturbation of the input that breaks a network, do not
provide any guarantees that, under certain assumptions, such perturbations do
not exist. To fill this gap, a new field of theoretical deep learning, called cer
tified robustness, appeared. The purpose of certified robustness is to provide
guarantees that a certain neural network is provably resistant to a particular
type of input transformations, such as additive perturbations [41].

In safety-crucial applications of neural networks, such as self-driving cars
and medical diagnostics, the trustworthiness of the predictions of the algorithms
is equally important as the precision of one in the original task. For example, if
a computer vision algorithm detects a pedestrian both under the daylight and
in the night, is it not enough to entrust it driving a vehicle: the developer has
to provide guarantees that any pedestrian would be detected equally precisely
in different lighting and weather conditions.

From the practical point of view, it seems that providing such guarantees
is an impossible task: one has to consider any transformation of the input
data of a certain type, which is often uncountable. For example, consider the
problem of certification of a classification network to rotation transform: it is
clear that the number of different degrees, so as transformations, is uncountable.
However, it is possible to provide ones leveraging the mathematical properties
of the neural network as a function of multiple variables.
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In the field of certified robustness, the guarantees on the correctness of the
behavior of neural networks often come at a high cost: either the correctness is
proven in very narrow and unrealistic scenario, or the ones lead to a significant
performance degradation of the certified network. Due to this issues, it seems
relevant to develop the methods for certification against broad class of input
perturbations which do not affect the performance of the models drastically.
The development and integration of such methods lead to the improvement of
the trustworthiness of neural networks, and, as a consequence, to the growth
of ones’ practical applications.

This work is devoted to the problems of robustness and privacy of clas
sification neural networks.

The goal of this work is the development of approaches that guarantee
the robustness and privacy of neural networks without a noticeable decrease
in the performance of the latter.

In order to achieve the set goal, the following tasks were set:

1. To demonstrate the vulnerability of neural network-based algorithms
in the most common practical applications.

2. To develop a method for probabilistic certification of neural networks
with respect to perturbations of input data of arbitrary type.

3. To develop a method for certification of prototypical neural networks
with respect to additive perturbations of bounded norm.

4. To develop a watermark-based method as and indicator of the theft of
a neural network deployed in “black box” settings.

The novelty:

1. The gradient-based adversarial patch generation method for real-time
vulnerability assessment of face recognition models in the physical do
main was developed.

2. The method of probabilistic certification of neural networks to arbi
trary perturbations of input data was developed.

3. The method for certification of prototypical neural networks to ad
ditive perturbations of input data of bounded norm in the few-shot
learning setting was developed.

4. The watermark-based method for theft detection of a neural network
deployed as a “black box” service was developed.

Practical significance of the work lies in the creation of the follow
ing methods:

1. The approach to adversarial patch generation that demonstrates the
vulnerability of neural networks to additive perturbations in the phys
ical domain in a real-time face recognition task.

2. CC-Cert, a method for probabilistic certification of neural networks to
input data perturbations of arbitrary type.
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3. Smoothed Embeddings, a method for certification of prototypical neu
ral networks to additive perturbations of input data of bounded norm
in the few-shot learning scenario.

4. The watermark-based method for theft detection of a neural network
deployed as a “black box” service.

Main provisions to be defended:
1. The approach to adversarial patch generation that demonstrates the

vulnerability of neural networks to additive perturbations in the phys
ical domain in a real-time face recognition task.

2. CC-Cert, a method for probabilistic certification of neural networks to
input data perturbations of arbitrary type.

3. Smoothed Embeddings, a method for certification of prototypical neu
ral networks to additive perturbations of input data of bounded norm
in the few-shot learning scenario.

4. The watermark-based method for theft detection of a neural network
deployed as a “black box” service.

Probation. The results of the work were reported at the following con
ferences:

1. International Multi-Conference on Engineering, Computer and Infor
mation Sciences (SIBIRCON), October, 2019. Topic: “On Adversarial
Patches: Real-World Attack on ArcFace-100 Face Recognition Sys
tem”.

2. The Thirty-Sixth AAAI Conference on Artificial Intelligence, Febru
ary, 2022. Topic: “CC-Cert: A probabilistic approach to certify general
robustness of neural networks“.

3. The Thirty-sixth Annual Conference on Neural Information Processing
Systems, December, 2022. Topic: “Smoothed Embeddings for Certified
Few-Shot Learning“.

4. Conference Fall into ML, November, 2022. Topic: “Smoothed Embed
dings for Certified Few-Shot Learning“.

5. ISP RAS Open Conference, December, 2022. Topic: “Smoothed Em
beddings for Certified Few-Shot Learning“.

6. AIRI Seminar AIschnitsa, December, 2022. Topic: “Smoothed Embed
dings for Certified Few-Shot Learning“.

Personal contribution. The author’s contributions to the research de
scribed in this thesis are as follows:

1. In the paper “On Adversarial Patches: Real-World Attack on Ar
cFace-100 Face Recognition System,” the author implemented the
numerical procedure to generate adversarial sticker that breaks the
face recognition system in the physical domain. The author conducted
the experiments to evaluate the transferability of a sticker from the dig
ital domain to the physical domain as well as in the interpretation of
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the results. Together with the co-authors, the author prepared the
text of the paper.

2. In the paper “CC-Cert: A probabilistic approach to certify general
robustness of neural networks“, the author proposed an approach to
certify the neural networks to compositions of transformations in the
probabilistic setting. The author formulated and proved all the theo
retical results, namely, the probabilistic guarantees on the correctness
of the prediction of a neural network in the presence of a certain trans
formations of the input. The author also designed the methodology to
evaluate the proposed method, conducted the experiments and inter
preted their results. Together with the co-authors, the author prepared
the text of the paper.

3. In the paper “Smoothed Embeddings for Certified Few-Shot Learning”,
the author proposed an approach to certify the prototypical networks
against additive transformations of a bounded magnitude. The author
formulated and proved the theoretical result, namely, the deterministic
guarantee on the correctness of the prediction of a neural network in
the presence of additive transformations of the input. The author also
developed a methodology to evaluate the proposed approach and par
ticipated in conducting of the experiments. The author also prepared
the text of the paper and all its revisions.

4. In the preprint “Probabilistically Robust Watermarking of Neural
Networks”, the author proposed the methodology to generate robust
digital watermarks to protect the neural networks from the theft. The
author developed the experimental setup to evaluate the proposed ap
proach and, together with the co-authors, prepared the text of the
paper.

Publications.
The research results are presented in the following works:
1. “CC-Cert: A probabilistic approach to certify general robustness of

neural networks” by Mikhail Pautov, Nurislam Tursynbek, Marina
Munkhoeva, Nikita Muravev, Aleksandr Petiushko, and Ivan Oseledets
[A2]. The paper is published in Proceedings of the AAAI Conference
on Artificial Intelligence (Vol. 36, No. 7, pp. 7975-7983, 2022; CORE
A*).

2. “Smoothed Embeddings for Certified Few-Shot Learning” by Mikhail
Pautov, Olesya Kuznetsova, Nurislam Tursynbek, Aleksandr
Petiushko, and Ivan Oseledets [A3]. The paper is published in
Advances in Neural Information Processing Systems (Vol. 35, pp.
24367-24379, 2022; CORE A*).

3. “On Adversarial Patches: Real-World Attack on ArcFace-100 Face
Recognition System” by Mikhail Pautov, Grigorii Melnikov, Edgar
Kaziakhmedov, Klim Kireev and Aleksandr Petiushko [A4]. The paper
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is published in Proceedings of 2019 International Multi-Conference on
Engineering, Computer and Information Sciences (SIBIRCON) (pp.
0391-0396, 2019; Indexed in Scopus).

4. “Probabilistically Robust Watermarking of Neural Networks” by
Mikhail Pautov, Nikita Bogdanov, Stanislav Pyatkin, Oleg Rogov
and Ivan Oseledets (under review).

Other publications:
1. “Real-World Attack on MTCNN Face Detection System" by Edgar

Kaziakhmedov, Klim Kireev, Grigorii Melnikov, Mikhail Pautov and
Aleksandr Petiushko [A1]. The paper is published in Proceedings of
2019 International Multi-Conference on Engineering, Computer and
Information Sciences (SIBIRCON) (pp. 0422-0427, 2019; Indexed in
Scopus).

2. “Translate Your Gibberish: Black-Box Adversarial Attack on Machine
Translation Systems” by Andrei Chertkov, Olga Tsymboi, Mikhail
Pautov and Ivan Oseledets. The paper is published in Journal of
Mathematical Sciences (vol. 530, pp. 96-112, 2023).

Content of the work

Introduction substantiates the relevance of the research conducted
within the framework of this dissertation, formulates the goal, sets the ob
jectives of the work, outlines the scientific novelty and practical significance
of the presented work.

The first chapter is an introductory one and is devoted to the demon
stration of the vulnerability of neural networks to additive perturbations of
input data (adversarial attacks) in the physical domain. In sections 1.2-1.3,
the formal problem statement is presented, and the description of several meth
ods to generate adversarial perturbations is provided. The adversarial attack
is a perturbation of an input object that leads to an incorrect prediction of
the neural network for the perturbed object. Formally, if the neural network
𝑓 : R𝑛 → ∆𝑘 that maps input objects to probability vectors of 𝐾 classes,
the norm threshold 𝜀 and input object 𝑥 are given, then additive adversarial
attack is the perturbation 𝛿 such that{︃

argmax𝑖∈[1,...,𝐾] 𝑓𝑖(𝑥+ 𝛿) ̸= argmax𝑖∈[1,...,𝐾] 𝑓𝑖(𝑥),

‖𝛿‖ ≤ 𝜀.

Sections 1.4-1.5 describe the proposed gradient-based method to compute
adversarial perturbations for the neural network in the setting of face recogni
tion. The proposed approach is based on an iterative method for solving the
optimization problem of finding an additive 𝛿 for a neural network 𝑓 at the
point 𝑥 of class 𝑦 in the digital domain:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛾𝑡+1 = 𝜇1𝛾

𝑡 + 𝜇2
∇𝑥𝐿(𝑓,𝑥𝑡,𝑦)

‖∇𝑥𝐿(𝑓,𝑥𝑡,𝑦)‖ ,

𝛿𝑡+1 = 𝜀sign(𝛾𝑡+1),

𝑥𝑡+1 = clip[0,1]𝑛
[︀
𝑥𝑡 + 𝛿𝑡+1

]︀
,

𝑥1 = 𝑥, 𝛾1 = 0, 𝛿0 = 0, 𝛿 = 𝛿𝑇 .

Here 𝐿(𝑓, 𝑥𝑡, 𝑦) is the loss function of the neural network, 𝜀, 𝜇1, 𝜇2 are
constants.

This work investigates the transferability of adversarial attributes created
in the digital domain to the physical domain. To ensure the transferability
of adversarial attributes, the loss function of the neural network 𝐿(𝑓, 𝑥𝑡, 𝑦)
consists of the terms responsible for preserving the smoothness of the generated
perturbation in the form of TV loss [42]

𝑇𝑉 (𝑥𝑡) =
∑︁
𝑖,𝑗

√︁(︀
𝑥𝑡
𝑖,𝑗 − 𝑥𝑡

𝑖,𝑗+1

)︀2
+

(︀
𝑥𝑡
𝑖,𝑗 − 𝑥𝑡

𝑖+1,𝑗

)︀2
and augmentation of the adversarial attribute with transformations from some
parametric set 𝒯 in the form Expectation Over Transformation [43]

𝐿adv(𝑓,𝑥
𝑡,𝑦) = E𝜏∈𝒯

(︀
cos⟨𝑓(𝜏(𝑥𝑡)), 𝑐𝑦⟩

)︀
,

where 𝑐𝑦 is a prototype vector of class 𝑦.
The proposed method to generate adversarial attributes is evaluated in

the task of targeted adversarial attack. The goal of this attack is to construct
a perturbation, the application of which leads to a controlled change in the
prediction of the neural network. In this work, the effect of the location of the
adversarial attribute on the performance of the adversarial attack is investi
gated. Section 1.6 describes the details of the experiments. As a demonstration
of the effectiveness of the proposed method, the results of the face recognition
system after applying adversarial attributes are given (see Table 1).

The examples of adversarial attributes are shown in Fig. 1, 2.
The final part of the first chapter presents a discussion of the experimental

results and the importance of further research on the stability of neural net
works, aimed at creating methods to protect the latter from adversarial attacks.

The second chapter is devoted to the study of methods for providing
guarantees of correctness of behavior of classification neural networks in the
presence of input data perturbations of arbitrary type. This chapter presents
a description of the proposed method of providing probabilistic guarantees
of correctness of neural network behavior. The proposed approach is used
to estimate the probability of occurrence of a wrong prediction of a neural
network in the case when the initial correctly classified object 𝑥 is subjected
to the transformation 𝑇𝜃(𝑥). The transform is defined by parameters 𝜃 chosen
randomly from some set of parameters Θ..
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Table 1 — Numerical results of experiments, LResNet100E-Ir face recognition
system. As the metric, we use the cosine similarity between the embeddings
of the photo with the adversarial attribute applied and the prototype vectors
of the original ground truth class (𝑒) and the desired class (𝑒𝑥′). The objects
from set 𝑥𝑡𝑟𝑎𝑖𝑛 correspond to photos used in the adversarial attribute creation
process; objects from set 𝑥𝑣𝑎𝑙 correspond to hold-out photos used to test the
adversarial attack in the digital domain; objects from set 𝑥𝑡𝑒𝑠𝑡 correspond to
photos created in the physical domain with the adversarial attribute applied.

Type of adversarial patch Eyeglasses Sticker on a forehead

𝑐𝑜𝑠(𝑒𝑥𝑡𝑟𝑎𝑖𝑛 , 𝑒) 0.041± 0.052 −0.053± 0.009
𝑐𝑜𝑠(𝑒𝑥𝑡𝑟𝑎𝑖𝑛

, 𝑒𝑥′) 0.648± 0.020 0.221± 0.011

𝑐𝑜𝑠(𝑒𝑥𝑣𝑎𝑙
, 𝑒) 0.317± 0.004 0.273± 0.007

𝑐𝑜𝑠(𝑒𝑥𝑣𝑎𝑙
, 𝑒𝑥′) 0.451± 0.021 0.421± 0.025

𝑐𝑜𝑠(𝑒𝑥𝑡𝑒𝑠𝑡
, 𝑒) 0.305± 0.024 0.323± 0.035

𝑐𝑜𝑠(𝑒𝑥𝑡𝑒𝑠𝑡 , 𝑒𝑥′) 0.363± 0.024 0.391± 0.021

Figure 1 — An adversarial attribute in the form of eyeglasses.

Figure 2 — An adversarial attribute in the form of a forehead sticker.

In section 2.3 of this work, it is shown that if the difference between
the output probability vectors 𝑓(𝑥) and 𝑓(𝑇𝜃(𝑥)) does not exceed the value
𝑑 = 𝑝1−𝑝2

2 , where 𝑝1, 𝑝2 are the two maximum components of the vector 𝑓(𝑥),
then the objects 𝑥 and 𝑇𝜃(𝑥) are classified by the neural network 𝑓 as represen
tatives of the same class. Based on this observation and the Chernoff-Cramer
method of estimating the probability of large deviations of a random variable,
we propose an approach for estimating the probability of incorrect prediction
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of a neural network. Formally, given 𝑡 > 0, the probability of a large deviation
of the random variable 𝑍 = ‖𝑓(𝑥) − 𝑓(𝑇𝜃(𝑥)‖∞ is bounded:

P𝜃∼Θ (𝑍 > 𝑑) ≤ 𝑒−𝑑𝑡E(𝑒𝑍𝑡).

Since it is impossible to directly compute the expectation E(𝑒𝑍𝑡), it is
estimated as the function

�̂� =
1

𝛿
max {𝑌1, . . . , 𝑌𝑘} ,

where 𝛿 ∈ (0,1) is a constant, 𝑌1, . . . , 𝑌𝑘 are 𝑘 sample means over 𝑛 samples:

𝑌𝑗 = exp(−𝑑𝑡)
1

𝑛

𝑛∑︁
𝑖=1

exp(𝑍𝑗
𝑖 𝑡), 𝑍𝑗

𝑖 = ‖𝑓(𝑥)− 𝑓(𝑇𝜃𝑗
𝑖
(𝑥)‖∞, 𝜃𝑗𝑖 ∼ Θ.

Also, Section 2.3 of the work presents theoretical guarantees of the applicability
of the proposed approach. The probability of correctness of using a function of
sample averages instead of the mathematical expectation is estimated according
to the theorem below:

Theorem 1. Let the random variable 𝑍 take values from [0,1], and let the
probability density function of random variable 𝜉 = 𝑒𝑍𝑡 have the coefficient of
variation 𝐶𝑣 =

𝜎𝜉

E(𝜉) . Then

P
(︂
�̂� <

E(𝜉)
𝑒𝑑𝑡

)︂
<

⎛⎝ 1

1 + 𝑛(1−𝛿)2

𝐶2
𝑣

⎞⎠𝑘

. (1)

Section 2.4 of the chapter presents a description of the experiments to
verify the effectiveness of the proposed method.

The proposed method is used to estimate the probability of misclassifica
tion of a neural network on public datasets, namely MNIST [44] and CIFAR-10
[45].

As a result of the experiments, we provide probabilistically certi
fied accuracy, PCA, in dependence on probability threshold 𝜀 and show
how it is connected to empirical robust accuracy, ERA, under correspond
ing adaptive attack. Namely, given the classifier ℎ(·), set of images
𝒮 = {(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)} and threshold 𝜀, probabilistically certified accu
racy is computed as

𝑃𝐶𝐴(𝒮, 𝜀) = |(𝑥, 𝑦) ∈ 𝒮 : BOUND(𝑥) < 𝜀 & ℎ(𝑥) = 𝑦|
𝑚

.

At the same time, given the discretization Θ = {𝜃1, . . . , 𝜃𝑟} of space of
parameters of the transform 𝑇 , empirical robust accuracy is computed as a
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fraction of objects from 𝒮 that are correctly classified under all the transfor
mations 𝑇𝜃𝑖 , 𝑖 ∈ [1, . . . , 𝑟] :

𝐸𝑅𝐴(𝒮) = |(𝑥, 𝑦) ∈ 𝒮 : ℎ(𝑇𝜃𝑖(𝑥)) = 𝑦 ∀𝑖 ∈ [1, . . . 𝑟]|
𝑚

.

Also, in Section 2.4, we describe the parameters of the experiments and
transformations of the input data. The results of the experiments are presented
in Table 2. In Table 3, we present the parameters of the transformations
considered in the experiments. It should be noted that some parameters depend
on the characteristics of the original images (e.g., the size).

Table 2 — Comparison of probabilistically certified accuracy and empirical
robust accuracy. In the Transform column, the following notation is used: B
stays for Brightness, C stays for contrast, R stays for Rotation, G stays for
Gaussian blur, T stays for Translation, S stays for Scale. In the Training
column, P stays for plain training of the model, A stays for the training with
augmentations. We report probabilistically certified accuracy for three levels
of threshold parameter 𝜀: high confidence in certification (𝜀 < 10−10), middle
level of confidence (𝜀 < 10−7) and low level of confidence (𝜀 < 10−4). In the
column 𝑃𝐴, we report the initial accuracy on the test subsets of the datasets.

Dataset Transform Training ERA PCA(𝜀) PA
𝜀 = 10−10 𝜀 = 10−7 𝜀 = 10−4

CIFAR-10

B P 58.4% 47.8% 51.6% 55.2% 91.18%
A 65.0% 55.4% 59.4% 61.8% 88.67%

C P 91.6% 62.4% 67.0% 69.6% 91.18%
A 88.0% 67.0% 72.8% 74.2% 88.67%

R P 73.4% 64.6% 69.0% 71.0% 91.18%
A 72.4% 57.4% 63.6% 67.4% 87.77%

G P 12.2% 11.0% 11.0% 11.0% 91.18%
A 60.4% 57.2% 57.2% 57.8% 81.11%

T P 40.4% 28.0% 31.2% 35.2% 91.18%
A 35.0% 17.8% 22.4% 25.6% 85.98%

S P 57.0% 54.4% 54.4% 54.4% 91.18%
A 55.0% 53.4% 53.4% 53.6% 86.76%

C + B P 0.0% 0.0% 0.0% 0.0% 91.18%
A 0.4% 0.0% 0.0% 0.0% 88.67%

R + B P 22.6% 16.2% 20.6% 21.8% 91.18%
A 30.4% 21.2% 24.6% 27.6% 84.50%

S + B P 10.2% 10.4% 10.4% 10.4% 91.18%
A 41.8% 40.6% 40.6% 40.6% 86.53%

MNIST

B P 97.8% 94.8% 96.4% 97.0% 99.26%
A 98.6% 97.0% 98.2% 98.2% 99.04%

C P 98.8% 96.0% 97.0% 97.2% 99.26%
A 98.6% 98.2% 98.2% 98.2% 99.04%

R P 18.8% 11.6% 14.8% 16.4% 99.26%
A 98.0% 97.0% 97.4% 97.6% 99.01%

G P 78.0% 68.8% 68.8% 68.8% 99.26%
A 97.8% 97.8% 97.8% 97.8% 98.35%

T P 0.0% 0.0% 0.0% 0.0% 99.26%
A 39.6% 31.4% 34.4% 38.2% 99.09%

S P 21.6% 21.0% 21.0% 21.0% 99.26%
A 34.4% 34.4% 34.4% 34.4% 99.25%

C + B P 8.4% 0.0% 0.0% 0.0% 99.26%
A 7.6% 2.4% 2.4% 2.4% 99.04%

R + B P 14.0% 9.2% 11.2% 13.0% 99.26%
A 95.2% 93.0% 93.4% 94.6% 99.08%

S + B P 13.0% 13.4% 13.4% 13.4% 99.26%
A 93.4% 93.0% 93.0% 93.4% 99.37%
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Table 3 — Parameters of transformations.

Dataset Transform Parameters

CIFAR-10

Brightness 𝜃𝑏 ∈ [−40%, 40%]

Contrast 𝜃𝑐 ∈ [−40%, 40%]

Rotation 𝜃𝑟 ∈ [−10∘, 10∘]

Gaussian blur 𝜃𝑔 ∈ [0, 3] – kernel radius

Translation |𝜃𝑡| ≤ 20%

Scale 𝜃𝑠 ∈ [70%, 130%]

Contrast + Brightness see Contrast & Brightness

Rotation + Brightness see Rotation & Brightness

Scale + Brightness see Scale & Brightness

MNIST

Brightness 𝜃𝑏 ∈ [−50%, 50%]

Contrast 𝜃𝑐 ∈ [−50%, 50%]

Rotation 𝜃𝑟 ∈ [−50∘, 50∘]

Gaussian blur 𝜃𝑔 ∈ [0, 3] – kernel radius

Translation |𝜃𝑡| ≤ 30%

Scale 𝜃𝑠 ∈ [70%, 130%]

Contrast + Brightness see Contrast & Brightness

Rotation + Brightness see Rotation & Brightness

Scale + Brightness see Scale & Brightness

The final part of the chapter discusses the applicability of the proposed
approach to neural network certification and identifies one promising direction
for further research: the analysis of deterministic robustness guarantees.

The third chapter is devoted to the study of the robustness of proto
typical neural networks to additive perturbations of the bounded norm. In the
introductory section 3.1, we present a general problem statement and the mo
tivation for creating provably robust systems in the few-shot learning setting.

In Section 3.2, the formal problem statement is presented. Suppose that
the neural network

𝑓 : R𝐷 → R𝑑,

that maps input objects to the space of normalized embeddings is given. Then,
𝑑−dimensional prototypes of classes are computed as follows (expression is
given for the prototype of class 𝑘):
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𝑐𝑘 =
1

𝑆𝑘

∑︁
𝑥∈𝑆𝑘

𝑓(𝑥).

Here 𝑆𝑘 is the set of objects of class 𝑘. Suppose that 𝒮 =
{(𝑥1, 𝑦1), . . . , (𝑥𝑚, 𝑦𝑚)}, is the dataset, where 𝑥𝑖 ∈ R𝐷 – is an input ob
ject of class 𝑦𝑖 ∈ {1, . . . ,𝐾}. The goal of the work is to construct a classifier 𝑔
provably robust to additive perturbations 𝛿 of a small norm. In other words,
we want to have a classifier, such that, given a norm threshold 𝑡, the equality

argmin
𝑘∈{1,...,𝐾}

𝜌 (𝑔(𝑥), 𝑐𝑘) = argmin
𝑘∈{1,...,𝐾}

𝜌 (𝑔(𝑥+ 𝛿), 𝑐𝑘) , (2)

will be satisfied for all 𝛿 : ‖𝛿‖2 ≤ 𝑡.
Section 3.3 presents a description of an approach to creating classifiers

provably robust to additive perturbations of input data of a bounded norm.
The approach is based on the idea of the randomized smoothing [41]. In a
nutshell, randomized smoothing is done by replacing the original prototypical
neural network 𝑓 : R𝐷 → R𝑑 with a surrogate neural network defined as

𝑔(𝑥) = E𝜀∼𝒩 (0,𝜎2𝐼)𝑓(𝑥+ 𝜀).

For a smoothed prototypical neural network in the form 𝑔(𝑥), we formulate
and prove the Lipschitz property in the form of a theorem in Section 3.3.

Theorem 2. (Lipschitz property) Suppose that 𝑓 : R𝐷 → R𝑑 is a deterministic
function and 𝑔(𝑥) = E𝜀∼𝒩 (0,𝜎2𝐼)𝑓(𝑥+𝜀) is continuously differentiable for all 𝑥.

If for all 𝑥, ‖𝑓(𝑥)‖2 = 1, then 𝑔(𝑥) is 𝐿−Lipschitz in 𝑙2−norm with 𝐿 =
√︁

2
𝜋𝜎2 .

To ensure provably robust classification in the embedding space, we esti
mate the maximum embedding deviation of the classified object that does not
change the nearest prototype of the class. The expression for this distance is
formulated in the form of a theorem.

Theorem 3. (Adversarial embedding risk) Given an input image 𝑥 ∈ R𝐷 and
the embedding 𝑔 : R𝐷 → R𝑑 the closest point on to decision boundary in the
embedding space (see Figure 2) is located at a distance (defined as adversarial
embedding risk):

𝛾 = ‖∆‖2 =
‖𝑐2 − 𝑔(𝑥)‖22 − ‖𝑐1 − 𝑔(𝑥)‖22

2‖𝑐2 − 𝑐1‖22
, (3)

where 𝑐1 ∈ R𝑑 and 𝑐2 ∈ R𝑑 are the two closest prototypes. The value of 𝛾 is
the distance between classifying embedding and the decision boundary between
classes represented by 𝑐1 and 𝑐2. Note that this is the minimum 𝑙2−distortion
in the embedding space required to change the prediction of 𝑔.

12



Taking into account the Lipshitz property and the value of adversarial em
bedding risk ∆, we formulate a guarantee of the robustness of the prototypical
neural network to additive perturbations:

Theorem 4. (Robustness guarantee) 𝐿2-robustness guarantee 𝑟 for an input
image 𝑥 in the 𝑛−dimensional input metric space under classification by a
classifier 𝑔 is 𝑟 = 𝛾

𝐿 ,
where 𝐿 is the Lipschitz constant from the Theorem 2 and 𝛾 is the ad

versarial risk from the Theorem 3. The value of 𝑟 is the certified radius of 𝑔
at 𝑥, or, in other words, minimum 𝑙2−distortion in the input space required to
change the prediction of 𝑔.

Section 3.4 provides a description of the certification procedure. Section
3.5 describes the experiments and summarizes their results.

For the experimental evaluation of our approach we use several well
known datasets for few-shot learning classification. Cub-200-2011 [46] is a
dataset with 11,788 images of 200 bird species, where 5864 images of 100 species
are in the train subset and 5924 images of other 100 species are in the test sub
set. miniImageNet [47] is a substet of images from ILSVRC 2015 [48] dataset
with 64 images categories in train subset, 16 categories in validation subset and
20 categories in test subset with 600 images of size 84 × 84 in each category.
CIFAR FS [49] is a subset of CIFAR 100 [45] dataset which was generated in
the same way as miniImageNet and contains 37800 images of 64 categories in
the train set and 11400 images of 20 categories in the test set.

In our evaluation protocol, we compute approximate certified robust
accuracy on the test set, 𝐶𝑅𝐴. Given a sample 𝑥, a smoothed classi
fier 𝑔(·) from the Theorem 2 with an associated classification rule ℎ(𝑥) =
argmin𝑖∈{1,...,𝐾} ‖𝑔(𝑥) − 𝑐𝑘‖2, threshold value 𝜀 for 𝑙2−norm of additive per
turbation and the robustness guarantee 𝑟 = 𝑟(𝑥) from the Theorem 4, we
compute 𝐶𝑅𝐴 on test set 𝑆 as follows:

𝐶𝑅𝐴(𝑆, 𝜀) =
|(𝑥,𝑦) ∈ 𝑆 : 𝑟(𝑥) > 𝜀 & ℎ(𝑥) = 𝑦|

|𝑆|
. (4)

The figures 3-4 present the dependencies of certified accuracy on the
value of norm of additive perturbation for different learning settings (1-shot
and 5-shot learning). The value of the attack radius corresponds to the thresh
old 𝜀 from (4).

Section 3.6 provides a theoretical assessment of the limits of applicability
of the proposed method. In section 3.7, the discussion of the experimental
results is presented, and the directions for future research are outlined.

The fourth chapter is devoted to the creation of digital watermarks as
indicators of functionality-stealing attacks.
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Cub-200-2011 CIFAR-FS

miniImageNet

Figure 3 — Dependency of certified accuracy on attack radius 𝜀 for different 𝜎,
1-shot case.

Section 4.1 provides motivation for developing watermarking techniques
that are resistant to functionality-stealing attacks. The section highlights the
need to protect the privacy of neural networks deployed in the “black box”
setting: a potential adversary can use the distillation of the neural network,
thus obtaining a functionally similar model, without spending time and re
sources to develop and train the neural network. Sections 4.2-4.3 review the
current literature and provide necessary background information about func
tionality-stealing attacks and digital watermarking techniques.

Section 4.4 describes the proposed approach to generate trigger set-based
watermarks robust to functionality-stealing attacks.

By a trigger set, we mean a set 𝒟*
𝑡 ⊂ R𝑛 such that the predictions of the

original neural network 𝑓 : R𝑛 → ∆𝑘 on objects from it are predetermined. The
procedure of creating a trigger set proposed in this work consists of two parts:

– In the first part, a set of candidate points for inclusion in the trigger set
is collected. Let the original neural network 𝑓 be trained on the data
set 𝒟 and let the hold-out data set 𝒟ℎ : 𝒟ℎ ∩ 𝒟 = ∅ be given. Then,
given a pair of points (𝑥𝑖1 , 𝑦𝑖1), (𝑥𝑖2 , 𝑦𝑖2) from different classes 𝑦𝑖1 ̸= 𝑦𝑖2
which are chosen randomly and uniformly from 𝒟ℎ, the candidate for
inclusion in the trigger set is of the form

14



Cub-200-2011 CIFAR-FS

miniImageNet

Figure 4 — Dependency of certified accuracy on attack radius 𝜀 for different 𝜎,
5-shot case.

𝑥*
𝑖 = 𝜆𝑥𝑖1 + (1− 𝜆)𝑥𝑖2 ,

where 𝜆 ∼ 𝒰(0,1). To guarantee non-standard predefined behavior of
the model 𝑓 on an object 𝑥*

𝑖 , we accept 𝑥*
𝑖 as a candidate only if

the original model predicts 𝑥*
𝑖 as a representative of some other class

𝑦*𝑖 : 𝑦*𝑖 ̸= 𝑦𝑖1 , 𝑦
*
𝑖 ̸= 𝑦𝑖2 .

– In the second part, candidates for inclusion in the trigger set are veri
fied. Note that the similarity in predictions of the original model 𝑓 and
some suspicious model 𝑓* on the objects from the trigger set should
be an indicator that model 𝑓* is a functional copy of model 𝑓 . To
satisfy this property, we introduce a parametric set of proxy models
ℬ𝛿,𝜏 (𝑓) that mimics the set of suspicious models. The set of proxy
models is defined by two parameters, 𝛿 and 𝜏 . These parameters con
trol the difference between the proxy models and the original model in
the space of weights and the difference between accuracy of the models.
Formally, the parametric set is defined as

ℬ𝛿,𝜏 (𝑓) = {𝑓 ′ : ‖𝜃(𝑓 ′)− 𝜃(𝑓)‖2 ≤ 𝛿 и |acc(𝒟, 𝑓 ′)− acc(𝒟,𝑓)| ≤ 𝜏},
15



where 𝜃(𝑓) is the vector of weights of the model 𝑓 , acc(𝒟,𝑓) is the
accuracy of the model 𝑓 on the dataset 𝒟.
Next, 𝑚 proxy models 𝑓1, . . . ,𝑓𝑚 ∈ ℬ𝛿,𝜏 (𝑓) are randomly selected to
verify the transferability of behavior on the trigger set. Then, it is
checked whether all 𝑚 proxy models assign the same class label to an
object in the trigger set as the original model 𝑓. In other words, a
candidate object (𝑥*

𝑖 , 𝑦
*
𝑖 ) is included in the trigger set if the following

condition is satisfied:

𝑦*𝑖 = 𝑓(𝑥*
𝑖 ) = 𝑓1(𝑥

*
𝑖 ) = · · · = 𝑓𝑚(𝑥*

𝑖 ).

Section 4.5 describes the experiments. CIFAR-10 and CIFAR-100 [45]
datasets are used as training datasets, and a convolutional neural network
ResNet34 [27] is used as the source model. The proposed method is compared
with existing digital watermarking approaches in the task of detection of the
distillation-based functionality stealing attack in the following settings:

– Soft-label attack. In this setting, the training dataset 𝒟 is known, and,
given input 𝑥, the output 𝑓(𝑥) of the source model is a vector of class
probabilities.

– Hard-label attack. In this setting, the training dataset 𝒟 is known,
and, given input 𝑥, the output 𝑓(𝑥) of the source model is the class
label assigned by 𝑓 to input 𝑥. This setting corresponds to the training
of the surrogate model on the dataset �̂� = {𝑥𝑖, 𝑓(𝑥𝑖)}𝑁𝑖=1.

– Regularization with ground truth label. In [50], it was proposed to
train the surrogate model by minimizing the empirical loss on the train
ing dataset 𝒟 and the KL-divergence between the outputs of the source
model and surrogate model simultaneously.

We report the accuracy values of the original and surrogate models on
a test subset of the dataset 𝒟, as well as the accuracy of the models on the
trigger set 𝒟*

𝑡 . The results are reported in Table 4.
Section 4.6 of the chapter provides a discussion of the limitations of the

proposed method. The final section of the chapter provides a discussion of the
experimental results and identifies one of the directions for further research –
the development of guarantees for the transferability of prediction on trigger
sets to surrogate models.
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Method Metric 𝑓
Surrogate models 𝑓*

Soft-label Hard-label RGT

EWE [51] CIFAR-10 86.10 ± 0.54 83.97 ± 1.02 82.22 ± 0.50 88.88 ± 0.35
RS [52] 84.17 ± 1.01 88.93 ± 1.18 89.62 ± 0.97 90.14 ± 0.08
MB [50] acc. (%) 87.81 ± 0.76 91.17 ± 0.76 91.88 ± 0.40 93.05 ± 0.20
Ours 91.00 ± 0.00 92.60 ± 0.91 94.87 ± 0.59 99.42 ± 0.02

EWE [51] Trigger set 26.88 ± 8.32 51.01 ± 5.58 36.05 ± 6.48 1.64 ± 1.05
RS [52] 95.67 ± 4.93 7.67 ± 4.04 6.33 ± 1.15 3.00 ± 0.00
MB [50] acc. (%) 100.00 ± 0.00 82.00 ± 1.00 51.33 ± 4.93 72.67 ± 6.66
Ours 100.00 ± 0.00 85.10 ± 6.33 73.70 ± 4.65 78.00 ± 5.58

EWE [51] CIFAR-100 55.11 ± 1.67 53.00 ± 1.57 46.78 ± 1.00 63.73 ± 0.40
RS [52] 59.87 ± 2.78 65.66 ± 1.53 65.79 ± 0.39 64.99 ± 0.30
MB [50] acc. (%) 62.13 ± 4.36 67.66 ± 0.36 70.65 ± 0.49 70.24 ± 0.46
Ours 66.70 ± 0.00 67.49 ± 0.03 68.05 ± 0.73 67.85 ± 0.04

EWE [51] Trigger set 68.14 ± 10.16 30.90 ± 11.34 15.10 ± 5.64 5.73 ± 3.42
RS [52] 99.00 ± 1.00 2.67 ± 1.53 4.33 ± 4.16 2.00 ± 1.00
MB [50] acc. (%) 100.00 ± 0.00 70.67 ± 7.57 40.00 ± 8.89 62.66 ± 10.12
Ours 100.00 ± 0.00 78.80 ± 2.93 74.70 ± 3.16 79.10 ± 2.77

Table 4 — Watermarking performance is reported against functionality stealing
methods. The best performance is highlighted in bold.

The conclusion briefly formulates the main results:
– The gradient-based approach to construct adversarial patches that

demonstrate the vulnerability of face recognition systems in the re
al-world settings;

– A novel probabilistic approach to certify the robustness of neural net
works to input perturbations of an arbitrary type without sacrificing
the performance of the neural network;

– An approach to certify the prototypical neural networks to additive
transformations of bounded magnitude in the few-shot learning setting;

– A novel method to generate digital watermarks as an indicator of the
theft of the neural networks without sacrificing the performance of the
source model.
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