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DISSERTATION TOPIC

Machine learning (ML) has a wide range of applications and remains an essential field of

scientific and computer research. In most of these applications, ML provides consistent

and promising results. In particular, supervised learning (SL) algorithms that incorporate

classification tasks are one of the most well-studied ML fields.

However, in some realistic scenarios, these algorithms remain suboptimal. The high imbalance

of datasets and the lack of data samples from some classes or domains may be one of the

reasons for such suboptimal behavior. In the first case, such rare class samples are called

anomalies, and the corresponding problem is called anomaly detection. In the second case,

the problem is called domain adaptation.

The anomaly detection appears in many real scenarios and fields, such as particle iden-

tification [1], change point detection [2], chemical process control [3], credit card fraud

detection [4], complex system failure predictions [5], video scene analysis [6], novelty de-

tection in time series data [7], data quality certification [8], detection of climate changes [9],

finding rare specific cases of diseases in medicine [10], production quality control [11],

aircraft monitoring [12], vibration monitoring of mechanical systems [13], seismic signal

processing [14], human motion and health state analysis [15], detection of cyberattacks [16],

audio signal segmentation [17], and many others [18].

This area continues to be underresearched, with many contemporary anomaly detection

algorithms failing to fully harness the capabilities of deep learning (DL) techniques. Specific-

ally, the use of generative models in anomaly detection has not been extensively explored

yet.

In this work, the goal is to explore the ability to utilize generative models for anomaly

detection and domain adaptation problems to reveal the potential of DL and SL in these tasks.

This research investigates various methodologies including comprehensive DL-based anomaly

detection and domain adaptation techniques, distinct deep generative models for creating

surrogate anomalies to enrich datasets, and their applications and enhancements in actual
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anomaly detection scenarios, such as improving the anomaly detection inference speeds. The

methodologies introduced cater to image, tabular, and time-series data, showcasing substantial

improvements compared to current leading methods.

THEORETICAL AND PRACTICAL SIGNIFICANCE

The thesis presents significant theoretical and practical advancements in the fields of anomaly

detection and change point detection (CPD) using generative deep learning (DL) algorithms.

The theoretical significance lies in the introduction of novel anomaly detection algorithms.

The (1 + ε)-class classification method introduces a new family of algorithms that efficiently

address problems that fall between one-class and two-class settings. This method can incor-

porate any number of known anomalous examples without requiring a representative sample

of anomalous data, marking a significant advancement over traditional methods. Another

significant contribution is the NFAD method, which uses normalizing flows. This method

significantly outperforms previous algorithms, including the (1 + ε)-class method, across

various scenarios. It is model-agnostic and can be integrated with any supervised learning

algorithms. Additionally, the application of latent neural stochastic differential equations

(SDEs) to time series anomaly detection is a pioneering effort in the field. This method

significantly outperforms existing CPD algorithms, providing a robust and scalable solution

for detecting change points in multivariate time series data. The thesis also provides detailed

descriptions of the introduced algorithms, including theorems and proofs that ensure their

functionality. This rigorous theoretical foundation guarantees the robustness and reliability of

the proposed methods.

On the practical side, the thesis includes comprehensive evaluations on various datasets,

demonstrating that the proposed algorithms consistently outperform existing baselines. This

empirical evidence supports the practical applicability of the methods. The thesis includes

software implementations of the proposed algorithms along with scripts to reproduce the

experiments. This transparency and reproducibility are crucial for practical applications

and further research. The implementations are published and accessible, facilitating their
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use and adaptation in other projects. The research also explores domain adaptation with

gradient reversal for high-energy physics applications, and variational dropout sparsification

techniques for speeding up neural networks. These studies demonstrate the applicability of

the proposed methods in real-world scenarios, particularly in the field of particle identification

at LHCb.

The thesis outlines several promising directions for future research, including enhancing

model robustness and generalization capabilities, developing techniques to improve the

interpretability and explainability of deep generative models for anomaly detection, exploring

methods for dynamic anomaly detection that can adapt to evolving data distributions and

anomaly patterns over time, validating the efficacy of deep generative models in real-world

applications across various domains, and investigating human-in-the-loop approaches to

leverage human expertise in complementing and validating model predictions.

In conclusion, the thesis makes substantial contributions to the fields of anomaly detection and

change point detection by introducing novel generative deep learning-based methods that are

theoretically sound and practically effective. The research offers a solid foundation for further

exploration and innovation, paving the way for advanced applications in various domains.

The proposed algorithms and their implementations are expected to have a significant impact

on both academic research and practical applications.

KEY RESULTS

The first work "(1 + ε)-class Classification: an Anomaly Detection Method for Highly

Imbalanced or Incomplete Data Sets" [19] of this part represents a novel DL generative

approach to anomaly detection, which utilizes the MCMC (Markov Chain Monte Carlo, [20])

sampling technique for surrogate anomalies generation. In this work, a new family of anomaly

detection algorithms is presented. It can be efficiently applied to problems intermediate

between one-class and two-class settings. The solutions produced by these methods combine

the best features of one-class and two-class approaches. In contrast to conventional one-

class approaches, proposed methods can effectively take into account any number of known
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anomalous examples, and, unlike conventional two-class classification, do not require a

representative sample of anomalous data. The experiments show better or comparable

performance to conventional two-class and one-class algorithms. The approach is especially

beneficial for anomaly detection problems, in which anomalous data is non-representative

or might evolve over time. The algorithm significantly outperforms existing approaches and

introduces a conceptually novel approach to the anomaly detection problem, making the

introduced 1 + ε method work well on any fraction of anomalies in the training dataset.

The second work is "NFAD: Fixing anomaly detection using normalizing flows" [21] evolves

the first work with normalizing flows [22]. In this research, a novel model-agnostic training

scheme for anomaly detection is introduced. Theoretical and practical evaluations demonstrate

its effectiveness in addressing challenges that are typically difficult for both one-class and two-

class methods. This method merges the advantages of both one-class and two-class algorithms.

Unlike one-class methods, this new approach allows the classifier to effectively use any

available anomalous examples without needing a large dataset of anomalies, as required by

traditional two-class approaches. The algorithm introduced outperforms current anomaly

detection techniques in most practical scenarios. The introduced approach is quick, robust,

and adaptable during both training and inference phases. Its comprehensive augmentation

strategy broadens the possibilities for ongoing research in anomaly detection problem and

enables the application of any classifiers to any types of data. Furthermore, image dataset

results can be enhanced through the adoption of emerging normalizing flow techniques. The

related algorithm is called NFAD and drastically outperforms all previously existing anomaly

detection algorithms, including 1 + ε. Additionally, the introduced method is model-agnostic

and can be used with any supervised learning algorithms, including conventional ones.

The third work "Latent Neural Stochastic Differential Equations for Change Point Detec-

tion" [23] introduces the first deep learning anomaly (change point) detection algorithm for

time series data based on neural stochastic differential equations.The work is aimed to design-

ing an efficient DL generalization of the conventional likelihood ratio CPD approaches based

on stochastic differential equations. To this end, a first study of Latent SDE in a change-point

detection setting is presented. As a result of this work, a novel CPD algorithm on the edge of
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modern deep learning approaches and conventional CPD methods is introduced. This is the

first deep learning modification of the stochastic differential equations approach to change

point detection. Both theoretical and experimental evidence demonstrate that the proposed

method effectively identifies all principal change point types in multivariate time series data,

including trend, mean, and volatility shifts. In most of the scenarios and metrics, the model

shows high robustness and a performance which is strongly higher than other state-of-the-art

CPD algorithms used in this work. With all the aforementioned, the proposed algorithm

represents a great interest from a theoretical and performance perspective for change point

detection problem, which occurs in many real time series analysis scenarios. The introduced

algorithm also drastically outperforms the existing change point detection algorithms and has

a great research potential as the first application of neural SDE and one of the first efficient

deep learning applications to the change point detection problem.

The next paper is called "Domain adaptation with gradient reversal for MC/real data calibra-

tion" [24] and incorporates a study of domain adaptation [25] technique for the PID anomaly

detection task. The study of this work shows that the domain adaptation technique can be

effectively applied to real anomaly detection problem, namely, to Particle Identification (PID)

in High Energy Physics. The obtained results have great potential, proving that the domain

adaptation approach can be applied effectively to the problem, preserving the neural network

classifier from the overfitting on the training domain.

The fifth paper "Variational Dropout Sparsification for Particle Identification speed-up" [26]

represents a study of neural network sparsification and speed-up techniques in application to

the PID problem. The results show that Variational Dropout Sparsification technique provides

the best results for the given problem. In the PID problem, the studied technique gives an

impressive 16 times speedup without any loss of quality, which is of great interest for research

and application in many other use cases.

Finally, the paper titled "Robust Neural Particle Identification Models" [27], introduces

a technique utilizing the Common Specific Decomposition [28]. In this work, the recent

common-specific low-rank decomposition (CSD) algorithm is studied in application to the

real anomaly detection task (PID). The algorithm is capable of selecting common features
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even for decays that are not present in the original domains. The algorithm obtained shows

higher stability with respect to the previously presented algorithms, thus demonstrating a

substantial increase in the quality of the solution for the particular case and demonstrating a

substantial interest in many machine learning applications. This method accounts for distinct

domains within the training data by separating the shared and unique decay elements of the

input feature set. It effectively reduces the decline in the performance of anomaly detection

algorithms in practical PID scenarios.

PUBLICATIONS AND APPROBATION OF RESEARCH

The author of the thesis is a main author of the most and coauthor of the rest proposed anomaly

detection algorithms [19], [21], [23] and related application studies [24], [26], [27].

These algorithms are based on deep generative models and provide scientific novelty in the

given area. The thesis author performed the methodological design of the aforementioned

anomaly detection algorithms and related experiments, the technical implementation of them,

and the analysis of the results obtained. As a result, three novel anomaly detection algorithms

were published in respected Q1-Q2 journals. In two of them (Q1 and Q2), the dissertator is

a main author. In the third paper (Q1), the dissertator is a second author and has the same

impact as the first author (Maxim Borisyak, HSE) of the paper.

In addition, three studies on anomaly detection applications were published in Q4 journals. In

two of them, the dissertator is a main author. In the third paper, the dissertator is a second

coauthor.

First-tier publications1

[19] M. Borisyak, A. Ryzhikov, A. Ustyuzhanin, D. Derkach, F. Ratnikov and O. Mineeva,

‘(1 + epsilon)-class classification: An anomaly detection method for highly imbalanced
1First-tier publications include papers indexed in the Web of Science (Q1 or Q2) or Scopus (Q1 or Q2)

databases, as well as peer-reviewed collections of conferences that appear in CORE rankings (ranks A and A*).
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or incomplete data sets,’ 2020. [Online]. Available: https://jmlr.csail.mit.

edu/papers/volume21/19-514/19-514.pdf.

[21] A. Ryzhikov, M. Borisyak, A. Ustyuzhanin and D. Derkach, Nfad: Fixing anomaly

detection using normalizing flows, 2021. DOI: 10.7717/peerj-cs.757. [Online].

Available: https://peerj.com/articles/cs-757/.

[23] A. Ryzhikov, M. Hushchyn and D. Derkach, Latent stochastic differential equations for

change point detection, 2023. DOI: 10.1109/ACCESS.2023.3318318. [Online].

Available: https://ieeexplore.ieee.org/document/10261192.

Second-tier publications2

[24] A. Ryzhikov and A. Ustyuzhanin, ‘Domain adaptation with gradient reversal for mc/real

data calibration,’ in Journal of Physics: Conference Series, IOP Publishing, vol. 1085,

2018, p. 042 018.

[26] A. Ryzhikov, D. Derkach, M. Hushchyn, L. Collaboration et al., ‘Variational dropout

sparsification for particle identification speed-up,’ in Journal of Physics: Conference

Series, IOP Publishing, vol. 1525, 2020, p. 012 099.

[27] A. Ryzhikov, A. Temirkhanov, D. Derkach et al., ‘Robust neural particle identification

models,’ in Journal of Physics: Conference Series, IOP Publishing, vol. 2438, 2023,

p. 012 119.

CONTENTS

The first and main part of the work comprises three novel DL anomaly detection algorithms [19],

[21], [23]. The elaborated methods allow fitting tabular, image, and time series anomaly

detection methods in either supervised, semi-supervised, or unsupervised manners when an

arbitrary number of anomalies is given in the training dataset. The algorithms are based

on deep generative models and allow utilizing any neural network architecture behind. In

2Second-tier publications are papers published in journals included on HSE’s list of high quality journals or
indexed in the Web of Science (Q3 or Q4) or Scopus (Q3 or Q4) databases, as well as peer-reviewed collections
of conferences appearing in CORE rankings (rank B).
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comparison with conventional anomaly detection algorithms, the introduced methods are

designed to work the same well with a variate anomaly fraction in the training dataset. Also,

they have no limitations on the neural network architecture used in the backbone.

The second part of the work comprises three application studies to the real anomaly detection

experiment (PID [1]). This part comprises two domain adaptation studies [24], [27] applied

to the experiment, and one study of existing neural network speedup approaches for the PID

anomaly detection problem.

CONCLUSION

This thesis comprises a complete set of scientifically novel anomaly detection studies, along

with application studies of existing methods in anomaly detection and related fields.

The new set of DL anomaly detection algorithms introduced in this thesis deals efficiently with

hard-to-address problems both by one-class or two-class methods. These anomaly detection

solutions are the first which combine the best features of one-class and two-class approaches

with a power of deep generative models. It forms a new, strong, and promising direction in

anomaly detection research.

The results obtained with these algorithms significantly outperform the existing anomaly

detection approaches in most anomaly detection scenarios. It is the first well-proved and

effective application of deep generative models to real anomaly detection challenges, with a

wide further application potential.

The thesis presents several innovative contributions to the field of anomaly detection, sum-

marized as follows:

• a brand-new generative approach to anomaly detection problem is designed and

published in top Q1 journal (the thesis author is a second co-author). It is a first

approach to anomaly detection, which works well both in one-class, two-class, and

intermediate scenarios. The algorithm is called "1 + ε" and is based on MCMC
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sampling of surrogate anomalies around the classification neural network boundar-

ies. The algorithm showed an outstanding performance on all the aforementioned

scenarios.

• another deep-generative approach based on normalizing flow called NFAD is pub-

lished in the Q2 journal (the thesis author is the main coauthor). It is a first approach

which utilizes normalizing flows in anomaly detection setting, and beats all the

previously existing algorithms including "q + ε" on the most part of experiments.

• a first time series anomaly (change point) detection approach based on neural (latent)

stochastic differential equations is published in the top Q1 journal (the thesis author

is a main coauthor). The method drastically outperforms all the existing change point

detection algorithms on almost all the benchmark corpuses and metrics studied.

• two domain adaptation training and one sparsification techniques are first studied in

application to real anomaly detection problem. Each of the three studies is published

in Q4 proceedings.
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