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General information

Research Relevance. Statistical hypothesis testing is one of the most important tasks in mathematical
statistics. The classical part of hypothesis testing is goodness-of-fit testing, which involves checking whether
a sample comes from the particular family of probability distributions. The classical examples are the χ2-
test, the Kolmogorov-Smirnov test, and the Cramer-von Mises-Smirnov test. In last years, the idea of using
characterizations of distributions to construct goodness-of-fit tests has become popular. For instance, in
the review article [3] a variety of goodness-of-fit criteria for exponential, normal and uniform distributions
are described, which are based on characterizations for these families. Such tests are popular because they
are convenient to use in practical applications and also, perhaps, due to hidden properties of distributions,
expressed precisely in terms of characterizations. The idea of using characterizations in constructing of
goodness-of-fit tests emerged in the 1950s and belongs to Yu. V. Linnik [14], but unfortunately until
the 1990s there were not tools and the necessary theory for its implementation. Only a few decades
later, with the development of the theory of U -statistics, the construction of such criteria became feasible.
There are some papers devoted to this direction: Baringhaus and Henze [1,2], Nikitin and Ponikarov [19],
Muliere and Nikitin [10], Litvinova and Nikitin [25,26], Nikitin and Tchirina [16,17], [27,28], Volkova and
Nikitin [22], [11], [24] and others.

The significance of construction new goodness-of-fit tests is determined by the fact that one of the
fundamental problem in mathematical statistics is the deliberate choice among several available criteria.
A characteristic on the basis of which nonparametric tests can be compared and the most appropriate
criterion for the given task can be identified is asymptotic efficiency or asymptotic relative efficiency. Of
note, the concept of the asymptotic efficiency of a criterion, different variations of which emerged in the
late 1940s to early 1950s, is more complicated then the asymptotic efficiency of estimators. Among the
three most well-known approaches to calculating asymptotic efficiency, the most convenient and accurate
one belongs to Bahadur R.; his approach allows to compare criteria that are not asymptotically normal,
making Pitman’s approach inapplicable, and, as shown in [15], Bahadur’s approach is more sensitive for
certain tests than the Hodges-Lehmann approach. Moreover, it is important to note that only single test
is sufficient to reject the null hypothesis, and each new criterion that does not contradict it only gradually
brings us closer to accepting its validity.
The Aim of the Research. The dissertation research is devoted to the construction and the research of
new goodness-of-fit tests based on characterizations, special properties, and the difference of U -empirical
Laplace transforms for such properties. The results concern the following: logistic with an arbitrary shift-
parameter, exponential, Pareto I type with an arbitrary shape parameter, and Rayleigh distributions. The
main purpose of this dissertation is asymptotic comparison of criteria based on the concept of local Bahadur
efficiency for close alternatives, including the finding of logarithmic asymptotics of the probability of large
deviations under the null hypothesis and the calculation of the asymptotics of the Bahadur exact slopes.
Additionally, for the goodness-of-fit criteria for the logistic distribution and the Rayleigh distribution,
a problem was posed to compute the empirical power against similar distributions and perform further
comparison.
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Methodology of the Research. In the dissertation research, methods from the theory of U -statistics,
extensively described in [5] and [7], and Bahadur’s theory [12, 13], are applied. This theory allows to
perform asymptotic comparisons of test statistics [15] based on the fundamental concept of the Bahadur
exact slope, the existence and explicit formula of which are proven in Bahadur’s fundamental theorem,
and local Bahadur efficiency.

The key points are Kullback–Leibler information, logarithmic asymptotics of the probability of large
deviations under the null hypothesis, and the law of large numbers under the alternate.
Main Results.

1. Four goodness-of-fit criteria were constructed based on two characterizations of the logistic distribu-
tion family with an arbitrary shift parameter. For these criteria, the logarithmic asymptotics of the large
deviation function were found, allowing for the calculation of the Bahadur exact slope and local Bahadur
efficiency for the considered alternatives. The empirical power was computed for the constructed criteria
against distributions that are similar to the logistic distribution. Additionally, the real data from the
article [23] was tested.
2. Four goodness-of-fit tests were constructed and studied for the exponential distribution family. Two
criteria are based on characterization, and two tests are based on the difference of U -empirical Laplace
transforms for a special property from the article [11]. For all criteria, the logarithmic probability of large
deviations were found, and the local Bahadur efficiency was calculated.
3. Two goodness-of-fit criteria for the Pareto I type distribution family with an arbitrary shape parameter,
based on a certain characterization, were asymptotically researched. For these criteria, the logarithmic
asymptotics of the probability of large deviations were computed, and the local Bahadur efficiency was
calculated for the considered close alternatives.
4. Five goodness-of-fit tests were constructed for the Rayleigh distribution family, two of which are based
on the transformed Desu’s characterization, two tests are based on a certain special property, and the
remaining one is based on the difference of U -empirical Laplace transforms for this property. Formula
for the Kullback-Leibler information was proven for the composite null hypothesis of belonging to the
Rayleigh distribution family. An asymptotic comparison based on the values of local Bahadur efficiency
was performed for all criteria for the considered close alternatives and the Rice alternative. In the case of
integral criteria based on a special property and difference of Laplace transforms, the maximum possible
local Bahadur efficiency was found. The empirical power was computed for all criteria against alternative
distributions from the article [9].
Novelty of the Research. All the main results of the dissertation research are novel. For the first
time, characterizations with random shifts and random stretching/compression are adapted and applied
in constructing goodness-of-fit criteria.
Theoretical Significance of the Research. In the dissertation research, logarithmic asymptotics of
the probability of large deviations were found for all constructed criteria, and the local Bahadur efficiency
was computed for all considered close alternatives. In this research goodness-of-fit criteria for the logistic
distribution family with an arbitrary shift parameter and for the Rayleigh distribution family were con-
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stucted and asymptotically studied for the first time. Additionally, an asymptotic research of the difference
between Rayleigh and Rice distributions were conducted, which is an important problem in statistical ra-
diophysics. The goodness-of-fit criteria for the exponential family and the Pareto I type distribution family
outperform previously known criteria for some alternatives and the most efficient in the Bahadur sense. A
formula for the Kullback-Leibler information was proved for the composite goodness-of-fit hypothesis for
the Rayleigh distribution.
Practical Significance of the Research. All constructed criteria are suitable for practical applications
of mathematical statistics, including the testing fit of real data to the particular distribution or the rejec-
tion the corresponding goodness-of-fit hypothesis.
Approbation of the Research Results.

The results of the dissertation research were reported at international conferences and seminars:
1. «Stochastic models II» (Saint-Petersburg, 6-8 May, 2019),
2. «The 21st European Young Statisticians Meeting» (Belgrade, Serbia, 29 July-2 August, 2019),
3. «XXXVI International Seminar on Stability Problems for Stochastic Models», (On-line, 22-26 June,
2020),
4. «XXXVI International Seminar on Stability Problems for Stochastic Models» (Petrozavodsk, 21-25
June, 2021),
5. «New trends in mathematical stochastics» (Saint-Petersburg, 30 August–3 September, 2021),
6. «Limit Theorems of Probability Theory and Mathematical Statistics» (Tashkent, 26—28 September
2022).
Publications. The main results of the dissertation research are published in 8 articles: [29–36].
Structure and scope of the thesis. The dissertation research consists of an Introduction, 5 chap-
ters, Conclusion, Bibliography, and Appendices. The total scope of the dissertation is 101 pages. The
bibliography contains 96 references (including 8 references to articles published by the author).

Contents

The introduction describes the history of the field, the choice of asymptotic research method, and
the general approach to constructing criteria. The structure and contents of the dissertation are presented.

In the first chapter fundamental definitions and formulas are provided, along with necessary aux-
iliary information from the theory of U -statistics and Bahadur’s theory, the theorems of the logarithmic
asymptotics of the probability of large deviations are discussed, close alternatives are introduced, and the
Kullback-Leibler information is calculated for them.

In the second chapter goodness-of-fit criteria for the logistic distribution family with an arbitrary
shift parameter are constructed and studied. These criteria are based on the characterizations by Hu and
Lin [8] and the characterization by Ahsanullah-Nevzorov-Yanev [6]. For each characterization, two test
statistics of integral type and Kolmogorov type are constructed.
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For the first characterization

LUL
n =

∞∫
−∞

(
Fn(t)− U+

n (t)
)
dFn(t), KUL

n = sup
t
|Fn(t)− U+

n (t)|,

for the second characterization

IUL
n =

∞∫
−∞

(
U+
n (t)− U−n (t)

)
dFn(t), QUL

n = sup
t
|U+

n (t)− U−n (t)|,

where Fn(t)-usual empirical distribution function, and U+
n and U−n – the U -empirical distribution functions

corresponding to the left and right parts of the second characterization

U+
n (t) =

(
n

2

)−1 ∑
1≤i<j≤n

(
1− emin(0,min(Xi,Xj)−t)

)
, U−n (t) =

(
n

2

)−1 ∑
1≤i<j≤n

(
e−max (0,max(Xi,Xj)−t)

)
,

where X1, . . . , Xn – independent identically distributed random variables (i.i.d. r. v.) with an unknown
continuous distribution function (d.f.).
At the end of this chapter there is an example of applying the new criteria to real data from the article [23].
Based on the obtained p-values, the hypothesis of belonging to the logistic distribution can not be rejected.

The integral statistics are asymptotically equivalent to the U -statistics of degree 3 with the following
centered kernels:

ΦL(x, y, z) =
1

2
− 1

3
(gL(x, y; z) + gL(y, z;x) + gL(x, z; y)) ,

ΦI(x, y, z) =
1

3
(gI(x, y; z) + gI(y, z;x) + gI(x, z; y)) ,

where
gL(x, y; z) =

(
1− e(min(x,y)−z)) 1 {min(x, y) < z} ,

gI(x, y; z) = e−max (0,max(x,y)−z) − (1− emin(0,min(x,y)−z)), x, y, z ∈ R.

The projections of these kernels and the variances of the projections are equal to

ΨL(t) = −2

3

(
Li2(−et) + t ln(et + 1)− 1

2
ln2(et + 1) +

7et + 1

4(et + 1)

)
, ∆2

L = EΨ2
L(X) ≈ 0.001899,

and
ΨI(t) =

2

3

(
ln2(et + 1)− t ln(et + 1) +

π2

6
− 2

)
, ∆2

I = EΨ2
I(X) ≈ 0.00697.

From the calculations carried out in chapter 2, it follows that the kernels ΦL and ΦI are non-degenerate,
and by Hoeffding’s theorem [7] one has

As n→∞
√
nLUL

n
d−→ N

(
0, 9∆2

L

)
,
√
n IUL

n
d−→ N

(
0, 9∆2

I

)
.

The chapter 2 shows that the kernels are non-degenerate, centered and bounded, therefore by using the
results of the study on large deviations of U -statistics presented in [19] the Theorems 1 and 2 were obtained.
Theorem 1. For every t > 0

lim
n→∞

n−1 lnP(LUL
n > t) = hL(t) ∼ − t2

18∆2
L

,
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where hL is a continuous function for which the asymptotic near zero is essential.
Theorem 2. For every t > 0

lim
n→∞

n−1 lnP(IUL
n > t) = hI(t),

where hI is a continuous function, such that hI(t) ∼ − t2

18∆2
I
as t→ 0.

Kolmogorov-type statistics can be considered as the supremum by t of the family of absolute values
for U -statistics with the centered kernels

ΦK(X, Y ; t) =
(
1−e(min(X,Y )−t))1{min(X, Y ) < t}, ΦQ(X, Y ; t) = e−max (0,max(X,Y )−t)−(1−emin(0,min(X,Y )−t)).

In this chapter the projections for each kernel, the variance functions of the projections, and their supremum
were computed as

ΨK(s, t) =
emin(s,t)(1 + e−t)

1 + emin(s,t)
− e−t ln(emin(s,t) + 1) +

1{s < t}(1− es(1 + 2e−t))

2(1 + es)
− et

2(1 + et)
,

∆2
K(t) := ExΨ2

K(X, t) =
e3t + 8e2t + 8et − 4(et + 1)(et + 2) ln(et + 1)

4e2t(et + 1)2
, ∆2

K = sup
t∈R

∆2
K(t)

t0=0.3255
= 0.02322.

For statistics QUL
n

ΨQ(s, t) = et
(

ln(1 + emax(s,t))− 1

1 + emax(s,t)
−max(s, t)

)
−e−t

(
(1 + et)emin(s,t)

1 + emin(s,t)
− ln(1 + emin(s,t))

)
+
e3t + e2t + 1{s < t}(e2t + et + 1)(es − et)

et(1 + et)(1 + es)
,

∆2
Q(t) = e−t

(
2te3t − 2(t− 1)e2t − 3et + 2

)
− 2e−2t

(
e4t − e3t − te2t − et + 1

)
ln(1 + et)− 2 ln2(1 + et),

and its supremum is attained at t0 = 0 and equals 1− 2 ln2(2) ≈ 0.00393.
Therefore, the kernels are non-degenerate. Since the families of kernels are centered and bounded, applying
the theorem from [21] on the logarithmic asymptotics of the probability of the large deviation under the
null hypothesis H0 for the U -empirical Kolmogorov-type statistics to the following relation we obtained
the following results in this chapter.
Theorem 3. For every z > 0

lim
n→∞

n−1 lnP
{
KUL

n > z
}

= wK(z) ∼ − z2

8∆2
K

,

where wK is a continuous function, for which the asymptotic behavior towards zero is essential.
Theorem 4. For every z > 0

lim
n→∞

n−1 lnP
{
QUL

n > z
}

= hQ(z) ∼ − z2

8∆2
Q

,

where hQ is a continuous function for which the asymptotic behavior towards zero is essential.
Then, for each of the statistics, the Bahadur exact slope c(θ) is computed [12,13], and the doubled Kullback-
Leibler information, which is an upper bound for c(θ), is calculated for the following alternatives.
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1. Scale alternative with the density

f1(x, θ) =
eθ+xe

θ

(1 + exeθ)2
;

2. Generalized hyperbolic cosine alternative with the density

f2(x, θ) =
Γ(θ + 2)

Γ2( θ
2

+ 1)

e(x+ θx
2 )

(1 + ex)θ+2
;

3. Sine-alternative with the density for small θ

f3(x, θ) = l(x)− 2πθ cos(2πL(x))l(x),

where L(x) = (1 + exp(−x))−1, l(x) = e−x

(1+e−x)2
x ∈ R.

Table 1. The Kullback-Leibler information for alternatives fi(x, θ), i=1, 3 as θ → 0
Altertatives

f1 f2 f3

2K(θ) 1.4300 · θ2 0.1775 · θ2 19.7392 · θ2

In this chapter, the local Bahadur efficiency is calculated using the formula, which values are collected
in the table 2 below. The next step included the empirical power calculation for the standard normal

Table 2. Comparative of local Bahadur efficiencies for the test statistics
Test statistics

LUL
n IUL

n KUL
n QUL

n

Alternatives c(θ) eff c(θ) eff c(θ) eff c(θ) eff

f1 1.229 · θ2 0.860 1.339 · θ2 0.937 0.505 · θ2 0.353 0.954 · θ2 0.667
f2 0.141 · θ2 0.791 0.153 · θ2 0.864 0.051 · θ2 0.288 0.101 · θ2 0.566
f3 15.384 · θ2 0.779 16.76 · θ2 0.849 15.791 · θ2 0.800 19.253 · θ2 0.975

distribution and the logistic distribution Logist(0, eθ) for sample sizes n=20 and n=50 at 0.05 and 0.01
significance levels. The results are presented in table 3.

At the end of the chapter 2 IUL
n and QUL

n were applied to the real data from the article [23] and
generated data from the standard Cauchy distribution. Based on the p-values in table 4, it is seen that
the data from the first set confidently support the hypothesis H0, and this corresponds to the conclusion
from the paper [23], and our tests surely reject the null hypothesis for the second data set as the p-values
are convincing enough.
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Table 3. Power for the statistics IUL
n , QUL

n , LUL
n and KUL

n

IUL
n QUL

n LUL
n KUL

n

Logist(0, eθ) θ n 5% 1% 5% 1% 5% 1% 5% 1%

θ = 0.75 n=20 0.963 0.839 0.953 0.806 0.911 0.696 0.883 0.668
n=50 1 1 1 0.999 1 0.999 1 0.993

θ = 0.5 n=20 0.621 0.286 0.673 0.400 0.506 0.264 0.542 0.277
n=50 0.980 0.917 0.966 0.892 0.962 0.84 0.911 0.706

θ = 0.25 n=20 0.203 0.09 0.24 0.089 0.156 0.055 0.202 0.067
n=50 0.484 0.252 0.463 0.244 0.423 0.188 0.372 0.149

Norm(0,1) 20 0.758 0.415 0.602 0.319 0.749 0.461 0.589 0.294
50 0.997 0.974 0.995 0.935 0.992 0.949 0.960 0.813

Table 4. Values of statistics IUL
n , QUL

n for the data sets

The first data set The second data set

Test Test statistic value p-value Test statistic value p-value

IU 0.002 p=0.864 -0.028 p=0.002
QU 0.119 p=0.209 0.146 < 0.002

In the third chapter four goodness-of-fit tests are considered for the exponential family of distribu-
tions. Two of them are based on the characterizations by Ahsanullah and Anis from the work [4], the
other two are constructed on the idea of considering the difference of U -empirical Laplace transforms for
a special property from the [11]. Special property can be formulated as follows, that the distribution of
the quotient of two independent exponential random variables is Fisher distribution (2,2). In the case of
characterizations, statistics of integral type and Kolmogorov-type (supremum) are constructed as follows:

IUE
n =

∞∫
0

(LUn(t)−RUn(t)) dFn(t), KUE
n = sup

t
|LUn(t)−RUn(t)|,

where Fn(t) – usual empirical d.f., and LUn(t) and RUn(t) are the U -empirical d.f. corresponding to the
left and right parts of the characterization

LUn(t) =

(
n

2

)−1 ∑
1≤i<j≤n

1 {max(Xi, Xj) < t} , RUn(t) =

(
n

3

)−1 ∑
1≤i<j<k≤n

1 {min(Xi, Xj) +Xk < t} ,

where X1, . . . , Xn – i.i.d.r.v’s. with some d.f.
The integral statistic with exponential weight and the Kolmogorov-type statistic are considered as criteria
based on the difference U -empirical Laplace transforms

LEn (a) =

∞∫
0

(LL(t)−RL(t)) e−a·tdt, KLEn = sup
t>0
|LL(t)−RL(t)|,
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where

LL(t) =

(
n

2

)−1 ∑
1≤i<j≤n

e
−t·Xi

Xj , RL(t) =

∞∫
0

1

(1 + x)2
· e−t·xdx = 1 + t etEi(−t).

The integral statistic IUE
n is asymptotically equivalent to the U -statistic of degree 4 with the centered

kernel ΦI(X, Y, Z,W ):

ΦI(X1, X2, X3, X4) =
1

12

 ∑
i,j,k∈(1,2,3,4)

i 6=j 6=k

1{max(Xi, Xj) < Xk}

− 1

12

(
1{min(X1, X2) +X3 < X4}

+ 1{min(X1, X2) +X4 < X3}+ 1{min(X2, X3) +X4 < X1}+ 1{min(X2, X3) +X1 < X4}+

+ 1{min(X3, X4) +X1 < X2}+ 1{min(X3, X4) +X2 < X1}+ 1{min(X1, X3) +X2 < X4}+

+ 1{min(X1, X3) +X4 < X2}+ 1{min(X1, X4) +X2 < X3}+ 1{min(X1, X4) +X3 < X2}+

+ 1{min(X2, X4) +X1 < X3}+ 1{min(X2, X4) +X3 < X2}
)

with the following projection

ΨI(t) = −3e−2t

8
+
e−t

3
− 1

24
.

The variance of this projection is
∆2
I = E{Ψ2

I(X)} =
1

1080
.

Consequently, the kernels ΦI is non-degenerate, hence by Hoeffding’s theorem [7] as n→∞

√
nIUE

n
d−→ N

(
0, 16∆2

I

)
.

Since the kernel ΦI is non-degenerate, centered and bounded, therefore we can use the result of the large
deviations for U -statistics from [19]. As a result, in chapter 3 the following theorem is formulated.
Theorem 5. For any t > 0

lim
n→∞

n−1 ln
(
P(IUE

n > t)
)

= h(t) ∼ − t2

32∆2
I

,

where h is a continuous function for which the asymptotic near zero is essential.
Kolmogorov-type statistics KUE

n can be considered as the supremum by t of the family of absolute
values for U-statistics with the centered kernels

ΦK(X, Y, Z; t) =
1

3
(1{max(X, Y ) < t}+ 1{max(X,Z) < t}+ 1{max(Y, Z) < t})

− 1

3
(1{min(X, Y ) + Z < t}+ 1{min(X,Z) + Y < t}+ 1{min(Y, Z) +X < t})

and the projections of this kernel is

ΨK(s, t) =
1

3

(
(1− e−t)2 − 1{s < t}

(
2e−s − 1− e−2(t−s)))+

2

3

(
min(s, t)e−t − 1 + e−min(s,t)

)
.
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The variance function of the projection and its supremum are equal to

∆2
K(t) = E

{
Ψ2
K(X, t)

}
=

4

27
e−4t(et − 1)3, ∆2

K =
∑
t>0

∆2
K(t)

t0=ln(4)
=

1

64
.

Therefore, as the kernels are non-degenerate, and the families of kernels are centered and bounded, applying
the theorem from [21] on the logarithmic asymptotics of the probabilities of the large deviation under the
null hypothesis H0 for the U -empirical Kolmogorov-type statistics to the following relation the next result
is obtained.
Theorem 6. For every z > 0

lim
n→∞

n−1 lnP
{
KUE

n > z
}

= w(z) ∼ − z2

8∆2
K

,

where w is a continuous function for which the asymptotic behavior towards zero is essential.

The integral statistic LEn (a) is asymptotically equivalent to the U -statistic of degree 2 with the centered
kernels

ΦL(x, y; a) =
1

2

(
1

a+ x
y

+
1

a+ y
x

)
− a− 1− ln(a)

(a− 1)2
.

The projection of the kernel is found to be

ΨL(s; a) = E (ΦL(X, Y ; a)|Y = s) =
1

2

(
a+ s e

s
aEi(− s

a
)

a2
− s easEi(−as)

)
− a− 1− ln(a)

(a− 1)2
,

The variance function of the projection, and some value of the variance can be calculated as

∆2
L(a) = E(Ψ2

L(X; a)),∆2
L(2) = 0.00014, ∆2

L(0.5) = 0.00228, ∆2
L(3) = 0.00014, ∆2

L(4) = 0.00011,

hence the kernel ΦL is non-degenerate. After that, we applied the Hoeffding’s theorem [7]

as n→∞ :
√
nLEn (a)

d−→ N(0, 4∆2
L(a)).

Since the kernel ΦL is nondegenerate, centered, and bounded, we used the results of the large deviations
of U -statistics from [19] to obtain the following.
Theorem 7. For any t > 0

lim
n→∞

n−1 ln (P(LEn > t)) = h(t) ∼ − t2

4∆2
L

,

where h is a continuous function for which the asymptotic behavior towards zero is essential.
Kolmogorov-type statistic KLEn can be considered as the supremum by t of the family of absolute

values for U-statistics with the centered kernels

ΦKL(X, Y ; t) =
1

2

(
e−t

X
Y + e−t

Y
X

)
− (1 + tetEi(−t)).

In this chapter we found the projection of this kernel

ΨKL(s; t) = E (ΦKL(X, Y ; t)|Y = s) =
1

2

(
s

s+ t
+ 2
√
stK1(2

√
st)

)
− (1 + tetEi(−t)),
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where K1(·) is the modified Bessel function of the second kind.
The variance function of the projection cannot be expressed explicitly, however, its supremum can be
found as ∆2

KL(t) = E (ΨKL(X; t)) , ∆2
KL = supt>0 ∆2

KL(t)
t0=0.551

= 0.00507. Hence kernel ΦKL is non-
degenerate. Since the family of kernels is centered and bounded, we can apply the theorem from [21] on
the logarithmic asymptotics of the probabilities of the large deviation under the null hypothesis H0 for the
U -empirical Kolmogorov-type statistics to the following relation to prove the following.
Theorem 8. For any z > 0

lim
n→∞

n−1 lnP
{
KLEn > z

}
= g(z) ∼ − z2

8∆2
KL

,

where g is a continuous function for which the asymptotic near zero is essential.
In this chapter the following close alternatives fi(x, θ), i = 1, ..., 6, x > 0 are considered and the Kullback-
Leibler information for them is calculated.

1. Weibull alternative with density

f1(x, θ) = (1 + θ)xθe−x
1+θ

, θ ≥ 0, x ≥ 0;

2. Lehmann alternative with density

f2(x, θ) = (1 + θ(1− e−x))e(−x−θ(e−x−1+x)), θ ≥ 0, x ≥ 0;

3. Linear failure rate alternative

f3(x, θ) = (1 + θx)e−x−
θx2

2 , θ ≥ 0, x ≥ 0;

4. Gamma alternative with density

f4(x, θ) =
xθe−x

Γ(θ + 1)
, θ ≥ 0, x ≥ 0;

5. Verhulst alternative with density

f5(x, θ) = (1 + θ)e−x(1− e−x)θ, θ ≥ 0, x ≥ 0;

6. Exponential mixture with negative weight alternative with density

f6(x, θ) = (1 + θ)e−x − θβe−βx, θ ∈ [0,
1

β − 1
], β ≥ 1, x ≥ 0.

The following formula for the Kullback-Leibler information holds for such alternatives [16]:

2K(θ) ∼

 ∞∫
0

exf ′θ(x, 0)2dx−

 ∞∫
0

xf ′θ(x, 0)dx

2 · θ2, θ → 0.

10



Table 5. The Kullback-Leibler information as θ → 0

Alternatives

f1 f2 f3 f4 f5 f6

2K(θ) π2 θ2

6
θ2

12
θ2

(
π2

6
− 1
)
θ2

(
π2

3
− π4

36

)
θ2 (β−1)4

β2(2β−1)
· θ2

The obtained asymptotics are collected in the table 5.
Using Theorems 4–8 and improved formulas for Bahadur exact slopes from the articles [11] and [20],

we calculated the local Bahadur efficiency for our statistics applying the formulas presented below.
For the integral statistics

effIU,j = lim
θ→0

(∞∫
0

ΨI(x)f ′θ,j(x, 0)dx

)2

∆2
I · 2Kj(θ)

, effL,j(a) = lim
θ→0

(∞∫
0

ΨL(x; a)f ′θ,j(x, 0)dx

)2

∆2
L(a) · 2Kj(θ)

,

and for the Kolmogorov-type statistics

effKU,j = lim
θ→0

sup
t≥0

(∞∫
0

ΨKU(x; t)f ′θ,j(x, 0)dx

)2

∆2
KU · 2Kj(θ)

, effKL,j = lim
θ→0

sup
t≥0

(∞∫
0

ΨKL(x; t)f ′θ,j(x, 0)dx

)2

∆2
I · 2Kj(θ)

.

All calculated values of local Bahadur efficiency are given in table 6.

Table 6. Local Bahadur efficiency
Alternatives IUE

n KUE
n max(LEn ) KLEn

f1 0.750 0.277 0.812 0.795
f2 0.625 0.342 0.56 0.53
f3 0.208 0.155 0.214 0.202
f4 0.796 0.267 0.923 0.92
f5 0.803 0.268 0.941 0.938

f6, b=3 0.844 0.396 0.761 0.727
f6, b=4 0.933 0.397 0.875 0.842
f6, b=5 0.957 0.377 0.938 0.911
f6, b=6 0.947 0.355 0.972 0.952
f6, b=7 0.922 0.331 0.986 0.974
f6, b=8 0.889 0.307 0.989 0.985

The fourth chapter includes information about two goodness-of-fit tests for the Pareto I type dis-
tribution family with arbitrary shape parameter, based on characterization derived from Ahsanullah-Anis
characterization for the exponential distribution and using the idea of random compressions and stretches.
This characterization can be formulated as follows.
Let Y1, Y2, Y – i.i.d.r.v’s. with continuous distribution function G, such that G(1) = 0, G(x) > 0 for all

11



x>1, infinitely differentiable and g(x) – the corresponding density. max(Y1, Y2) and min(Y1, Y2) · Y are
equally distributed if and only if

G(x) = 1− x−λ, x ≥ 1, λ > 0.

In chapter 4 the integral statistic and the Kolmogorov-type statistic are considered

IUP
n =

∞∫
1

(LUn(t)−RUn(t)) dGn(t), KUP
n = sup

t≥1
|LUn(t)−RUn(t)|,

where Y1, . . . , Yn – i.i.d.r.v’s with d.f. G, Gn(t) is an usual empirical d.f., namely

Gn(t) = n−1

n∑
i=1

1{Yi < t},

and LUn(t) and RUn(t) are the U -empirical d.f. corresponding to the left and the right parts of the
characterization

LUn(t) =

(
n

2

)−1 ∑
1≤i<j≤n

1 {max(Yi, Yj) < t} , RUn(t) =

(
n

3

)−1 ∑
1≤i<j<k≤n

1 {min(Yi, Yj) · Yk < t} .

In the dissertation research it is shown that integral statistic IUP
n is asymptotically equivalent to the

U-statistic of degree 4 with the centered kernels

ΦI(Y1, Y2, Y3, Y4) =
1

12

 ∑
i,j,k∈(1,2,3,4)

i 6=j 6=k

1{max(Yi, Yj) < Yk}


− 1

12
(1{min(Y1, Y2) · Y3 < Y4}+ 1{min(Y1, Y2) · Y4 < Y3}

+1{min(Y2, Y3) · Y4 < Y1}+ 1{min(Y2, Y3) · Y1 < Y4}

+1{min(Y3, Y4) · Y1 < Y2}+ 1{min(Y3, Y4) · Y2 < Y1}

+1{min(Y1, Y3) · Y2 < Y4}+ 1{min(Y1, Y3) · Y4 < Y2}

+1{min(Y1, Y4) · Y2 < Y3}+ 1{min(Y1, Y4) · Y3 < Y2}

+1{min(Y2, Y4) · Y1 < Y3}+ 1{min(Y2, Y4) · Y3 < Y2}),

with the projection equals to
ΨI(t) = − 3

8t2
+

1

3t
− 1

24
.

The variance of the projection was calculated in chapter 4 and equals to

∆2
I = E{Ψ2

I(X)} =
1

1080
.

Therefore, statistic IUP
n is non-degenerate, and then, according to the Hoeffding theorem [7] as n→∞

√
nIUP

n
d−→ N

(
0, 16∆2

I

)
.

12



Since the kernel ΦI is non-degenerate, centered and bounded, we used the results of large deviations of
U-statistics from [19] to obtain the following result.
Theorem 9. For any t > 0

lim
n→∞

n−1 ln
(
P(IUP

n > t)
)

= h(t),

where h is a continuous function, such that

h(t) ∼ − t2

32∆2
I

, as t→ 0.

Kolmogorov-type statistic KUP
n can be considered as the supremum by t of the family of absolute

values for U-statistics with the centered kernels and the following projections:

ΨK(s, t) =
1

3

((
1− 1

t

)2

+ 1{s < t}
(

1− 2

s
+
s2

t2

))

+
2

3

(
ln(min(s, t))

t
+

1

min(s, t)
− 1

)
.

In this chapter the variance of this projection and its supremum were found to be

∆2
K(t) =

4(t− 1)3

27t4
, ∆2

K = sup
t≥1

∆2
K(t)

t0=4
=

1

64
.

Consequently the family of kernels is non-degenerate, and also centered, and bounded by the considered
characterization, we applied the results from [21] on the logarithmic asymptotics of the probabilities of
the large deviation under the null hypothesis H0 for the U -empirical Kolmogorov-type statistics to the
following relation to obtain the next result.
Theorem 10. For any z > 0

lim
n→∞

n−1 lnP
{
KUP

n > z
}

= k(z),

where k is a continuous function, such that

k(z) ∼ − z2

18∆2
K

, as z → 0.

In this chapter we described the alternatives fi(x, θ), x ≥ 1, i = 1, . . . , 6.

1. Shift alternative with the density

F1(x, θ) = 1− θ + 1

x+ θ
, f1(x, θ) =

1 + θ

(x+ θ)2
, θ ≥ 0, x ≥ 1;

2. Log-Weibull alternative with the probability function

F2(x, θ) = 1− e−(ln(x))θ+1

, x ≥ 1, θ ∈ (0, 1);

3. Lehmann alternative with the probability function

F3(x, θ) = F 1+θ(x) = (1− x−1)1+θ, x ≥ 1, θ > 0;

13



4. Pareto IV type alternative with the probability function

F4(x, θ) = PIV

(
1, 1,

1

1 + θ
, 1

)
(x) = 1− 1

1 + (x− 1)1+θ
, x ≥ 1, θ ≥ 0;

5. Sine alternative with the probability function

F5(x, θ) = F (x)− θ sin(πF (X)), θ ∈ [0,
1

π
], x ≥ 1;

6. Mixture alternative of two Pareto distributions with the probability function

F6(x, θ) = (1− θ)x− 1

x
+ θ(1− x−β), x ≥ 1, β > 1, θ ∈ (0, 1).

Since the alternatives fi(x, θ) i = 1, ..., 6 satisfy the regularity conditions (see [12], §4), the following
expression for the Kullback-Leibler information was obtained [18]:

2K(θ) ∼
{ ∞∫

1

x2f ′θ(x, 0)2dx−
[ ∞∫

1

ln(x)f ′θ(x, 0)dx
]2
}
· θ2.

We collected the values of the Kullback-Leibler information in the table 7 below.

Table 7. The Kullback-Leibler information as θ → 0
Alternatives

f1 f2 f3 f4 f5 f6

2K(θ) θ2

12
π2

6
θ2

(
π2

3
− π4

36

)
θ2 1

36
(3 + 4π2) · θ2

(
π2

2
− Si2(π)

)
· θ2 (β−1)4

β2(2β−1)
· θ2

The local Bahadur efficiency for the considered alternatives fi(x, θ) i = 1, ..., 6 for test statistics using
the formulas from [20], [11] were calculated as

effIU,j = lim
θ→0

(∞∫
0

ΨI(x)f ′θ,j(x, 0)dx

)2

∆2
I · 2Kj(θ)

, effKU,j = lim
θ→0

sup
t≥1

(∞∫
0

ΨKU(x; t)f ′θ,j(x, 0)dx

)2

∆2
KU · 2Kj(θ)

, j = 1, ..., 6

and the values are collected in the table 8 below.

Table 8. Local Bahadur efficiency for IUP
n and KUP

n

f1 f2 f3 f4 f5 f6, b = 3 f6, b = 4 f6, b = 5 f6, b = 6

IUP
n 0.625 0.750 0.804 0.894 0.505 0.844 0.933 0.957 0.947

KUP
n 0.342 0.277 0.268 0.311 0.394 0.396 0.397 0.377 0.355

The fifth chapter gives information about five goodness-of-fit tests for the Rayleigh distribution
family, two of them are based on the transformed Desu characterization, two criteria are based on a
special property, and the last one is based on the difference of Laplace U -empirical transformations for
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this property. We formulate the characterization.
Let X and Y – i.i.d. positive r.v’s with a continuous d.f. R. Then

X
d
=
√

2 min(X, Y ),

if and only if R belongs to the Rayleigh distribution family with arbitrary scale parameter σ > 0 with
density r(x, σ), σ > 0, x ≥ 0, where

r(x, σ) =
x

σ2
e−

x2

2σ2 .

Now we formulate the special property.
Let X,Y – i.i.d. r.v’s with d. f. Rayleigh(σ), then its quotient has a distribution determined by the
following probability distribution function and density:

q(x) =
2x

(1 + x2)2
, Q(x) =

x2

1 + x2
, x ≥ 0.

We computed the Laplace transform for density in the right part

L2(t) =

∞∫
0

e−t·xq(x)dx = 1− π · t · cos(t)

2
− tCi(t) · sin(t) + t cos(t) · Si(t),

where Ci(·), Si(·) are the integral Cosine and Sine.
Let X1, ..., Xn are i. i. d. observations with d. f. R. We constructed the integral statistic and the
Kolmogorov-type statistic based on characterization

IUR
1,n =

∞∫
0

(Fn(t)− U1,n(t)) dFn(t), KUR
1,n = sup

t≥0
|Fn(t)− U2,n(t)|,

where Fn(t) is a usual empirical d. f., and U1,n(t)- U -empirical d. f. corresponding to the right part of the
characterization:

U1,n(t) =

(
n

2

)−1 ∑
1≤i<j≤n

1
{√

2 min(Xi, Xj) < t
}
.

We introduce the integral weighted statistic and the Kolmogorov-type statistic, based on the special
property

IUR
2,n,σ =

∞∫
0

(
U2,n(t)− t2

1 + t2

)
σ2 t e−

σ2 t2

2 dt, KUR
2,n = sup

t≥0

∣∣∣∣U2,n(t)− t2

1 + t2

∣∣∣∣ ,
where

U2,n(t) =

(
n

2

)−1
( ∑

1≤i<j≤n

(
1{Xi

Xj
< t}+ 1{Xj

Xi
< t}

2

))
.

And we introduce the integral weighted statistic based on the difference of Laplace transforms for this
property

Ln(a) =

∞∫
0

(L1(t)− L2(t)) e−a·tdt,
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where L1(t)- U -empirical Laplace transform for X
Y

L1(t) = (c2
n)−1

∑
1≤i<l≤n

e
−t·Xi

Xj

and L2(t) is obtained previously.
The integral statistic IU1,n is asymptotically equivalent to the U -statistics of degree 3 with the following

centered kernel:
Φ1(x, y, z) =

1

3
(g(x, y; z) + g(y, z;x) + g(x, z; y)) ,

where g(x, y; z) = 1
2
− 1

{√
2 min(x, y) < z

}
. The following projection of this kernel is as follows:

Ψ1(t) = − 1

18
+

1

3
e−

t2

2 − 4

9
e−

3t2

2 , t ≥ 0.

The variance of the projection can be presented as

∆2
1 = EΨ2

1(X) ≈ 0.00291,

hence the kernel Φ1 is non-degenerate, and by the Hoeffding’s theorem [7]

√
n IU1,n

d−→ N
(
0, 9∆2

1

)
, n→∞.

The kernel are non-degenerate, centered and bounded, therefore we used the results of large deviations of
U-statistics presented in [19] to obtain the following.
Theorem 11. For any t > 0

lim
n→∞

n−1 lnP(IU1,n > t) = h1(t),

where h is a continuous function, such that h1(t) ∼ − t2

18 ∆2
1
, as t→ 0.

The integral statistic IUR
2,n is equivalent to the U -statistic of degree 2 with centered kernel

ΦI(x, y;σ) =
e
−σ

2 x2

2y2 + e−
σ2 y2

2x2

2
−
(

1 +
1

2
e
σ2

2 σ2Ei

(
−σ

2

2

))

=
e
−σ

2 x2

2y2 + e−
σ2 y2

2x2

2
− c(σ),

where Ei(·) is the exponential integral .
The projection of this kernel is

ΨI(t;σ) =
1

2

(
t2

σ2 + t2
+ σ tK1(σ · t)

)
− c(σ), t ≥ 0,

where K1(t) is the modified Bessel function of the second kind.
The variance function of the projection cannot be expressed explicitly but can be presented as follows:

∆2
I(σ) = EΨ2

I(X;σ) =

∞∫
0

Ψ2
I(x;σ)x e−

x2

2 dx > 0,
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however, for every σ > 0 we can calculate the value of the variance by the numeral methods.
For example, the variance of the projection for σ = 2 is IU2,n := IU2,n(1): ∆2

I = ∆2
I(1) ≈ 0.000314, hence

ΦI is non-degenerate, and then by the Hoeffding’s theorem [7] as n→∞
√
n IUR

n,σ2

d−→ N
(
0, 4∆2

I(σ)
)
.

Since the kernel ΦI is non-degenerate, centered, and bounded, we applied the results of the large deviations
of U-statistics from [19] to obtain the following.
Theorem 12. For any t > 0

lim
n→∞

n−1 ln
(
P(IUR

n,σ2 > t)
)

= hI(t, σ) ∼ − t2

8∆2
I(σ)

= −hI(t, σ),

where hI is a continuous function for which the asymptotic near zero is essential.
Kolmogorov-type statistics KU1,n and KU2,n can be considered as the supremum by t of the family of

absolute values for U -statistics with the centered kernels

Φ1(x, y; t) =
1

2
(1{x < t}+ 1{y < t})− 1

{√
2 ·min(x, y) < t

}
and

Φ2(x, y; t) =
1

2

(
1

{
x

y
< t

}
+ 1

{y
x
< t
})
− t2

1 + t2

correspondingly. The projections for every kernel were calculated as

Ψ1(s; t) = E (Φ1(X, Y ; t)|Y = s) =
1

2

(
1{s < t} − e−

t2

2 − 1
)

+ 1

{
s >

t√
2

}
e−

t2

4 ,

Ψ2(s; t) = E (Φ2(X, Y ; t)|Y = s) =
1

2

(
e−

s2

2t2 + 1− e−
t2s2

2

)
− t2

1 + t2
.

The variance function of this projection and its supremum were found as

∆2
i,KU = sup

t≥0
∆2
i,KU(t) = sup

t≥0
EΨ2

i (X; t), i = 1, 2;

i = 1, ∆2
1,KU = sup

t≥0

(
1

4
e−t

2
(
e
t2

2 − 1
))

=
1

16
; at point t =

√
2 ln(2);

i = 2, ∆2
2,KU = sup

t≥0

(
(t− 1)2 t2 (t+ 1)2 (t4 + 3t2 + 1)

4 (t2 + 1)2 (t2 + 2) (t2 − t+ 1) (t2 + t+ 1) (2t2 + 1)

)
= 0.00954; at points t = 0.445 and t = 2.257.

From the calculations in chapter 5 it follows that the kernels are non-degenerate. Since the family of
kernels is centered and bounded, we used the theorem from [21] on the logarithmic asymptotics of the
probabilities of the large deviation under the null hypothesis H0, for the U -empirical Kolmogorov-type
statistics to the following relation to formulate the next result.
Theorem 13. For any z > 0

lim
n→∞

n−1 lnP {KUi,n > z} = hi(z) ∼ − z2

8∆2
i,KU

= −wi(z), i = 1, 2,

where wi is a continuous function for which the asymptotic near zero is essential.
Now we describe the alternatives fi(x, θ), x ≥ 0, i = 1, . . . , 4, which are considered below.
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1. Weibull alternative with density

f1(x, θ) =
(1 + θ)

2θ
x2θ+1 exp

(
−x

2 (1+θ)

21+θ

)
;

2. Lehmann alternative with density

f2(x, θ) = (1 + θ) f(x)F θ(x) = (1 + θ)x e−
x2

2

(
1− e−

x2

2

)θ
;

3. Gamma alternative with density

f3(x, θ) =
xθ+1 e−

x2

2

2
θ
2 Γ
(
θ
2

+ 1
) ;

4. Rice alternative with density

f4(x, θ) = x exp

(
−(x2 + θ2)

2

)
I0(x · θ),

where I0(·) is the modified Bessel function of the first kind of order 0.

The Kullback-Leibler information was calculated in chapter 5 of the dissertation research. Since in our
case the null hypothesis H0 is composite, for alternative density f(x, θ) K(θ) is defined as follows:

K(θ) = inf
σ>0

∞∫
0

ln
f(x, θ)

r(x, σ)
f(x, θ) dx,

where r(x, σ) = x
σ2 exp(− x2

2σ2 ).

Lemma. For some alternative density f(x, θ) as
θ → 0 the following expression for the Kullback-Leibler information can be obtained

2K(θ) = θ2

I(0)−

 ∞∫
0

(
x√
2

)2

f ′θ(x, 0) dx

2 ,

where I(0) is the Fisher information.
However, this asymptotic θ2 is not sufficient for the Rice alternative, because f ′4,θ(x, 0) ≡ 0. In the case
of this alternative the following was obtained K4(θ) = 1

128
θ8 + o(θ8). The values of the Kullback-Leibler

information found in this chapter of dissertation research are collected in the table 9.
We collect all obtained values of the local Bahadur efficiency for the test statistics in the table 10. We

Table 9. The as θ → 0
f1 f2 f3 f4

2K(θ) π2

6
θ2

(
π2

3
− π4

36

)
θ2

(
π2

6
− 1
)
θ2 1

128
θ8

placed the maximum attainable value of the local Bahadur efficiency under IUR
2,σ.
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Table 10. The Local Bahadur efficiency for the test statistics
Alternatives

f1 f2 f3 f4

IUR
1 0.697 0.807 0.198 0.149

IUR
2 0.802 0.805 0.202 0.288

IUR
2,σ 0.825 0.938 0.23 0.314

KUR
1 0.158 0.181 0.043 0.697

KUR
2 0.798 0.886 0.875 0.243

LR(1) 0.735 0.935 0.227 0.151
LR(2) 0.725 0.931 0.216 0.146
LR(3) 0.711 0.923 0.224 0.138

At the end of the chapter we considered the alternative distributions from [9] and the Rice distribution
for computing empirical power for the statistics KUR

2 , IU
R
2 (σ), σ = 1, 2, 4, 8 and LR(a), a = 1, 2, 5 for the

sample size equal to 20 and 0.1, 0.05 and 0.01 significance levels.
For ease of perception of the results presented in tables 11 and 12, the following notations are given: W
– weibull, G – gamma, IG – inverse Gauss, LN – log normal, GO – Gompertz law, PL – Power law, LFL
– linear failure law, EP – exponential power law, PE – Poisson-exponential, RL – Rice law, Rice(1,t),
scale-parameter equals 1.
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Table 11. Power for theIUR
2 (·) and KUR

2 for the 0.1, 0.05 and 0.01 significance levels
IUR

2 , σ = 1 IUR
2 , σ = 2 IUR

2 , σ = 4 IUR
2 , σ = 8 KUR

2

alternatives 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

Exp 94 91 81 96 94 87 96 93 85 94 90 78 96 92 80
W(2,1) 10 5 1 10 5 1 10 5 1 10 5 1 10 5 1
W(3,1) 60 46 22 62 48 22 57 44 21 51 39 18 64 51 28
G(1.5,1) 73 64 44 75 66 45 73 63 42 63 51 30 71 59 33
G(2,1) 44 33 16 43 31 14 38 27 12 28 18 6 27 25 8

IG(1,0.5) 94 91 80 95 92 81 94 90 77 87 81 62 94 89 72
IG(1,1) 70 60 38 66 54 30 60 47 24 40 26 9 62 47 20
IG(1,1.5) 38 26 10 30 19 6 23 13 3 9 4 1 27 16 3
IG(2,0.5) 99 98 94 99 99 96 99 99 96 98 97 92 99 98 93
IG(2,1) 94 91 80 95 92 81 94 90 77 89 81 61 94 90 73
IG(2,1.5) 85 77 59 84 76 54 81 71 48 66 52 28 80 70 43
LN(0,0.8) 57 45 25 52 40 19 45 33 14 28 17 5 47 33 12
LN(0,1.2) 97 96 89 98 97 91 98 96 90 96 92 81 97 95 86
LN(0,1.5) * 99 98 * * 99 * * 99 * 99 98 * * 98

GO(0.5) 80 72 52 85 79 63 85 79 62 82 74 56 83 74 51
GO(1) 62 52 32 71 62 43 73 64 44 71 61 42 69 57 35
GO(1.5) 48 38 20 59 49 30 62 52 33 62 52 33 56 44 23
PL(1) 27 18 8 43 33 18 52 41 24 57 47 29 49 37 18
PL(1.5) 77 70 53 91 86 75 93 90 80 94 90 81 91 86 71
PL(2) 95 92 84 99 98 95 99 99 97 99 99 97 99 98 94
LFL(1) 76 67 47 82 74 57 82 74 56 78 69 51 78 68 45
LFL(2) 64 54 33 71 62 43 72 62 43 68 58 39 67 56 32
LFL(3) 56 46 26 64 53 34 65 54 35 62 51 33 60 47 25
LFL(4) 50 40 22 58 48 29 59 49 29 57 47 28 54 42 21
EP(0.5) * 99 98 * * * * * * * * 99 * * 99
EP(1) 62 52 32 71 62 42 73 64 44 71 61 42 68 57 34
EP(2) 34 23 8 30 20 8 26 17 6 24 16 6 34 25 11
EP(3) 92 85 62 90 83 61 81 72 50 71 62 43 92 86 68
PE(1) 92 88 77 95 92 82 95 91 81 92 87 73 93 88 73
PE(2) 85 78 62 89 83 68 88 82 66 84 76 59 86 78 57
PE(3) 68 58 40 73 64 45 73 64 44 68 58 38 69 58 33
PE(4) 46 36 19 51 40 23 51 40 22 47 36 19 45 33 15
RL(2) 40 27 10 38 26 10 35 24 10 31 22 8 42 31 14
RL(3) 91 83 59 91 83 59 86 78 55 78 69 48 92 86 67
RL(4) * * 96 * * 96 99 98 93 97 95 87 * * 98
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Table 12. Power for the L(20,s) for the 0.1, 0.05 и 0.01 significance levels
L, a = 1 L, a = 2 L, a = 5

Alternatives 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

Exp 96 93 84 96 93 87 95 92 81
W(2,1) 10 5 1 10 5 1 10 5 1
W(3,1) 59 46 22 58 44 20 58 45 21
G(1.5,1) 71 60 38 71 60 38 68 57 34
G(2,1) 36 25 9 36 25 10 32 21 8

IG(1,0.5) 93 88 72 93 88 72 91 85 66
IG(1,1) 55 41 17 54 40 17 48 34 12
IG(1,1.5) 18 9 2 18 9 1 13 6 1
IG(2,0.5) 99 98 95 99 98 95 99 98 93
IG(2,1) 93 88 72 93 88 71 91 85 66
IG(2,1.5) 78 66 41 76 65 39 73 60 33
LN(0,0.8) 40 27 10 39 27 10 34 22 6
LN(0,1.2) 97 95 87 98 95 87 97 94 84
LN(0,1.5) * * 99 * * 99 * * 98

GO(0.5) 85 78 62 85 78 62 84 77 60
GO(1) 74 65 46 74 65 46 73 64 45
GO(1.5) 64 54 34 64 55 36 64 54 36
PL(1) 55 45 27 56 46 29 57 47 29
PL(1.5) 94 91 83 95 92 83 94 91 83
PL(2) 99 99 97 99 99 98 99 98 97
LFL(1) 82 75 57 82 74 56 80 73 54
LFL(2) 72 63 43 72 63 44 71 62 42
LFL(3) 66 56 36 65 55 36 66 55 36
LFL(4) 61 51 31 61 51 32 60 50 31
EP(0.5) * * * * * * * * *
EP(1) 74 65 46 74 66 47 74 65 46
EP(2) 27 18 7 27 18 7 26 18 7
EP(3) 83 75 53 83 74 53 82 73 52
PE(1) 94 91 80 94 91 80 93 89 77
PE(2) 88 82 66 87 82 66 86 80 63
PE(3) 73 63 44 73 64 44 71 62 42
PE(4) 52 41 23 51 41 23 50 40 22
RL(2) 36 25 10 36 25 10 35 24 9
RL(3) 87 79 57 87 79 56 86 78 56
RL(4) * 99 94 99 99 94 99 99 94
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In the conclusion section the main results of this research were formulated and listed.
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