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Introduction

The central objects of the dissertation are several new modi�cations of the

classical Kantorovich transportation problem that have appeared in the last

decade:

� nonlinear Kantorovich transportation problems, in particular, the Kan-

torovich transportation problem with conditional measures,

� nonlinear Kantorovich transportation problems with density con-

straints,

� transportation problems with �xed barycenters.

Approbation of the dissertation research results. The results of

the dissertation were presented by the author at the following scienti�c con-

ferences:

1. 6-th St. Petersburg Youth Conference in Probability and Mathematical

Physics

2. III International Conference �Mathematical Physics, Dynamical Sys-

tems, In�nite-Dimensional Analysis�, dedicated to the 100th anniversary of

V.S. Vladimirov, the 100th anniversary of L.D. Kudryavtsev and the 85th

anniversary of O.G. Smolyanov

Articles. The results of this dissertation are published in two articles:

� V.I. Bogachev, A.V. Rezbaev, Existence of solutions to the nonlinear

Kantorovich problem of optimal transportation, Mathematical Notes,

112:3 (2022), 369�377.

� V. I. Bogachev, S. N. Popova, A. V. Rezbaev, On nonlinear Kantorovich

problems with density constraints, Moscow Mathematical Journal, 23:3

(2023), 285�307.

Structure and scope of the dissertation. The dissertation consists

of the introduction, �ve chapters, the conclusion and the bibliography of 58

titles. The total size of the dissertation is 76 pages.
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Kantorovich transportation problem

Let us recall the modern formulation of the classical Kantorovich trans-

portation problem (for the original formulation and some economic premises

of the problem, see, for example, the original works of L.V. Kantorovich

and L.V. Kantorovich in collaboration with G.Sh. Rubinshtein [1], [2], [3],

[4], [5], and [6]). Let (X,BX , µ) and (X,BY , ν) be two abstract probability

spaces and let h be a nonnegative BX ⊗ BY -measurable function, called a

cost function. The set of all Radon probability measures on the product

(X × Y,BX ⊗ BY ) with projections µ and ν on the factors (the measures

in this set are called Kantorovich plans or transport plans) is denoted by

Π(µ, ν):

σ(A× Y ) = µ(A), A ∈ BX , σ(X ×B) = ν(B), B ∈ BY .

The measures µ and ν are called marginals or marginal distributions. The

Kantorovich problem consists in minimization of the integral∫
X×Y

h(x, y)σ(dx dy)

over the measures σ ∈ Π(µ, ν). If there is a measure at which the minimum

is attained, then the Kantorovich problem is said to have a solution, and this

measure is called an optimal plan. A number of very broad su�cient con-

ditions are known for the existence of solutions of the Kantorovich problem

For example, a solution exists if X and Y are completely regular topological

spaces, the marginal distributions are Radon measures, and the cost function

h is bounded and lower semicontinuous (see [10]). In the general case, there

exists the in�mum

Kh(µ, ν) = inf
σ∈Π(µ,ν)

∫
X×Y

h(x, y)σ(dx dy).

1 Nonlinear Kantorovich transportation problems

This chapter of the dissertation is devoted to nonlinear Kantorovich trans-
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portation problems, and the Kantorovich problem with conditional measures

in particular. In the �rst section, a formulation of a nonlinear transport

problem is given and a theorem is proved that provides su�cient conditions

for the existence of a solution to such a problem. The central object of the

second section is the Kantorovich problem with conditional measures, the

speci�city of which lies in the special form of dependence of the cost function

on the transport plan (through conditional measures). There we also prove

an existence theorem for such a problem. Both theorems are proven for a

fairly wide class of cost functions and spaces X and Y . The case of Polish

spaces is considered in the work [8].

1.1 Nonlinear Kantorovich problems

In its most general form, the nonlinear Kantorovich transportation prob-

lem is formulated as follows. Let (X,BX , µ) and (X,BY , ν) be two abstract

probability spaces. The set of all Radon probability measures on the prod-

uct (X × Y,BX ⊗BY ) with projections µ and ν on the factors is denoted by

Π(µ, ν):

σ(A× Y ) = µ(A), A ∈ BX , σ(X ×B) = ν(B), B ∈ BY .

Suppose that for every σ ∈ Π(µ, ν) there is a function h : X×Y ×Π(µ, ν) →
R+ measurable with respect to σ-algebras BX ⊗BY and B(R). The problem∫

X×Y

h(x, y, σ)σ(dx dy) → min, σ ∈ Π(µ, ν).

is called the nonlinear Kantorovich transportation problem. The mea-

sures µ and ν are called marginals or marginal distributions. If there is

a measure σ0 at which the minimum is attained, then the nonlinear Kan-

torovich problem is said to have a solution, and this measure is called an

optimal plan. In the general case, there exists the in�mum

Kh(µ, ν) = inf
σ∈Π(µ,ν)

∫
X×Y

h(x, y, σ)σ(dx dy).
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For a completely regular space X we denote by Pr(X) the space of Radon

probability measures onX, i.e., Borel measures µ such that for every Borel set

B and every ε > 0 there exists a compact set K ⊂ B such that µ(B\K) ≤ ε.

Let B(X) denote the Borel σ-algebra of a topological space X and let Ba(X)

denote the Baire σ-algebra that is generated by all continuous functions onX.

In the case of a completely regular Souslin space the equality Ba(X) = B(X)

holds, see [9, Theorem 6.7.7]. We equip Pr(X) with the weak topology,

which on the whole space of signed measures is generated by the family of

seminorms

pf(µ) =

∣∣∣∣∫
X

f dµ

∣∣∣∣,
where f is a continuous bounded function on X.

A family of measures M ⊂ Pr(X) is called uniformly tight if, for every

ε > 0, there exists a compact set K ⊂ B such that µ(B\K) ≤ ε for all

µ ∈ M .

1.2 Existence theorem for the nonlinear

Kantorovich problem

This section is devoted to the proof of the theorem on the existence of a

solution to the nonlinear Kantorovich transportation problem for wide classes

of probability spaces and cost functions. The proof of the main theorem is

based on the following lemma.

Lemma 1. Let X be a completely regular space, let Π be a uniformly

tight compact subset in Pr(X), and let a function h : X × Π → [0,+∞) be

lower semicontinuous on all sets of the form K × Π, where K is compact

in X. Then, the following function is lower semicontinuous:

Jh(σ) =

∫
X

h dσ, Π → [0,+∞].

Existence theorem. Let X and Y be completely regular spaces and let

µ and ν be Radon probabilty measures on X and Y respectively. Suppose

that the function h is lower semicontinuous on all sets of the formK×Π(µ, ν),

where K is a compact set in X × Y . Then there exists an optimal plan.

4



1.3 Kantorovich problems with conditional measures

In this section we continue to consider nonlinear Kantorovich transporta-

tion problems, but all attention will be focused on the case of cost functions

of the special form

h : X × Y × P(X × Y ) → R, h(x, y, σ) = h(x, σx).

We call nonlinear transportation problems with cost functions of this type

Kantorovich transport problems with conditional measures. Since

now the cost function h depends on transport plans σ through conditional

measures, which can violate its continuity on sets of the form K × Π(µ, ν),

where K is compact in X×Y , in order to prove the existence of solutions to

such problems we have to impose more restrictive conditions on the function

h.

The existence of conditional measures for σ means that σ has the form

σ(dx dy) = σx(dy)µ(dx),

the function x 7→ σx(B) is measurable with respect to µ for all B ∈ B(Y ),

and for every bounded function f on X × Y , measurable with respect to

B(X)⊗ B(Y ), the equality∫
X×Y

f dσ =

∫
X

∫
Y

f(x, y)σx(dy)µ(dx)

holds. It is clear that it su�ces to have this equality for all functions of the

form IA(x)IB(y), where A ∈ B(X), B ∈ B(Y ). Conditional measures exist

under rather broad assumptions, for example, in case of Souslin spaces, i.e.,

images of complete separable metric spaces under continuous mappings.

Since we consider general completely regular topological spaces X and

Y (in this case there is no guarantee that conditional measures exist), we

must always require in advance that conditional measures exist, otherwise

the statement of the problem itself will be meaningless.

The proof of the main result is based on the following two lemmas.
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Lemma 2. (i) Suppose that E is a completely regular space, a net

Pα ∈ Pr(E) is uniformly tight and converges weakly to a measure P ∈ Pr(E),

and H : E → [0, 1] is a function such that for each ε > 0 there exists a

compact set Kε ⊂ E for which Pα(E\Kε) < ε for all α and the restriction

of H to Kε is lower semicontinuous. Then∫
E

H dP ≤ lim inf
α

∫
E

H dPα. (1)

(ii) Suppose that Y is a completely regular space, a measure Q ∈
Pr(Pr(Y )) is concentrated on a countable union of uniformly tight sets and

a bounded function H on Pr(Y ) in convex and lower semicontinuous on

uniformly tight sets. Then

H

(∫
Pr(Y )

pQ(dp)

)
≤

∫
Pr(Y )

H(p)Q(dp).

Lemma 3. Suppose that a function H : X × Pr(Y ) → [0,+∞) is mea-

surable with respect to B(X)⊗Ba(Pr(Y )), and lower semicontinuous on the

sets of the form K × S, where K is a compact set in X and S ⊂ Pr(Y ) is

uniformly tight and convex in the second argument. Then the function

JH(σ) =

∫
X

H(x, σx)µ(dx)

is lower semicontinuous on Π(µ, ν).

The following main result follows directly from the previous two lemmas

and the weak compactness of the set of plans Π(µ, ν).

Existence theorem. Let X and Y be completely regular spaces and let

µ and ν be Radon probability measures on X and Y respectively. Suppose

that the cost function H : X ×Pr(Y ) → [0,+∞) is measurable with respect

to Ba(X)⊗Ba(Pr(Y )), lower semicontinuous on all sets of the form K ×S,

whereK is a compact set in X and S ⊂ Pr(Y ) is uniformly tight, and convex

in the second argument. Then

inf
σ∈Π(µ,ν)

∫
X

H(x, σx)µ(dx)
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is attained, that is, an optimal plan exists.

Remark 2. (i) The statements obtained above remain valid in the situa-

tion where the functions H and h take values in [0,+∞]. It su�ces to apply

the established facts to the functions min(h,N) and min(H,N).

(ii) It is clear from the proof that it su�ces to impose the measurability

condition on the function H on the sets of the form K × S with compact

factors. For a broad class of spaces, the lower semicontinuity on such sets

implies the B(K) ⊗ Ba(S)-measurability. For example, this is true if Y is

Souslin and the Borel and Baire σ-algebras coincide on compact sets in X. In

the case of general spaces (even Souslin spaces), the condition of lower semi-

continuity on compact sets is weaker than the global lower semicontinuity

(in the theorem, the condition is even slightly weaker, since we are speaking

of uniformly tight compact sets). In completely regular Souslin spaces, com-

pact sets are metrizable, therefore, this condition can be veri�ed by using

countable sequences. Moreover, for such spaces, the lower semicontinuity on

compact sets implies the Borel measurability on compact sets, which coin-

cides with the Ba(X) ⊗ Ba(Pr(Y ))-measurability, therefore, it need not be

required additionally. On some sequential properties of spaces of measures,

see [?].

We return to Kantorovich problems with conditional measures in Chapter

4, where, due to a special form of cost functions, we can somewhat weaken

the convexity condition.

2 Nonlinear Kantorovich problems

with density constraints

This chapter deals with another new modi�cation of the Kantorovich

transportation problem. While in the previous chapter the novelty of the

problem was to change the type of the cost function (dependence on transport

plans appeared), now the change will a�ect both the cost function itself and

the domain where the functional is de�ned. The main results of this chapter

are two existence theorems related to nonlinear Kantorovich problems with

density constraints and to Kantorovich problems with conditional measures

and density constraints. Both theorems provide su�cient conditions for the
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existence of solutions to such problems. Problems with density constraints

were �rst considered in the works [11], [12], [13], and [14].

2.1 Nonlinear Kantorovich problems

with density constraints

Let (X1,B1, µ1) and (X2,B2, µ2) be two abstract probability spaces and

let λ be a probability measure on the measurable space (X1 ×X2,B1 ⊗B2).

Suppose that Φ is a nonnegative B1⊗B2-measurable function integrable with

respect to λ. As above, the set ΠΦ(µ1, µ2) consists of all probability measures

σ on (X1×X2,B1⊗B2) with projections µ1 and µ2 on the factors such that σ

is absolutely continuous with respect to λ and for the corresponding Radon�

Nikodym density we have

ϱσ =
dσ

dλ
≤ Φ λ-a.e.

We assume that ΠΦ(µ1, µ2) is not empty. This assumption is ful�lled if, for

example, λ = µ1 ⊗ µ2 and Φ ≥ 1 (in this case λ ∈ ΠΦ(µ1, µ2)).

The set of measures ΠΦ(µ1, µ2) can be identi�ed with the set of their

densities with respect to λ and regarded as a subset of L1(λ).

Let Pλ be the set of all probability densities in L1(λ). Let B(Pλ) be the

Borel σ-algebra with respect to the norm of L1(λ).

Suppose also that there is a function

h : X × Y × Pλ → [0,+∞).

that is A⊗ B ⊗ B(Pλ)-measurable.

De�nition. The problem

Jh(p) :=

∫
X×Y

h(x, y, p)p(x, y)λ(dx dy) → min, p ∈ ΠΦ(µ, ν)

is called the nonlinear Kantorovich problem with density constraints.

If there is a measure p ∈ ΠΦ(µ, ν) at which the minimum is attained, then

the problem is said to have a solution,
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Theorem 3. Let for λ-a.e. (x1, x2) ∈ X1 × X2 the function p 7→
h(x1, x2, p) is lower semicontinuous on ΠΦ(µ1, µ2) with respect to the norm

of L1(λ) and the function Jh is convex. Then the nonlinear Kantorovich

problem with density constraints

Jh(p) :=

∫
X×Y

h(x, y, p)p(x, y)λ(dx dy) → min, p ∈ ΠΦ(µ, ν)

has a solution. Note that the condition of continuity of h in p with respect

to the norm is much weaker than the condition of continuity with respect to

the weak topology

The convexity condition on Jh has an obvious drawback: it does not

follow from the convexity of h in p.

2.2 Kantorovich problems with conditional measures

and density constraints

We now turn to the case where the convexity of Jh follows from the

convexity of h in p, but can hold without the latter. Let the cost function

have the form

h : X × Y × Pλ → [0,+∞), h(x, y, p) = h(x, px),

where px are conditional measures of p with respect to µ. We will call nonlin-

ear transportation problems with density constraints and with cost functions

of this type Kantorovich transportation problems with conditional

measures and density constraints.

Of course, in order to de�ne such functions it is necessary to assume that

every measure p ∈ ΠΦ(µ, ν) has conditional measures on Y with respect to

its projection on X. This is ful�lled automatically for all Borel measures on

Souslin spaces (see [9, Chapter 10]).

If λ = µ ⊗ ν and we identify measures in ΠΦ(µ, ν) with their densities

with respect to λ, then the conditional measures for such measures p · λ,
where p is a BX ⊗ BY -measurable version of the density, can be de�ned by
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the formula

px = p(x, ·) · ν.

Once we deal with conditional measures on BY , it is reasonable to equip

the spaceM(Y ) of all bounded measures on BY with the σ-algebra E(M(Y ))

generated by all functions ν 7→ ν(B), B ∈ BY . One can show that this σ-

algebra is countably generated if Y is Souslin.

In the next theorem we assume that the function h is measurable with

respect to the σ-algebra BX ⊗ E(M(Y )). Then the function

x 7→ h(x, px)

is BX-measurable provided the mapping x 7→ px is (BX , E(M(Y )))-

measurable, because the mapping x 7→ (x, px) is measurable with respect

to the pair of σ-algebras BX and BX ⊗ E(M(Y )).

Transportation problems of this type can be written as∫
X

h(x, px)µ(dx) → min, p ∈ ΠΦ(µ, ν), p(dx dy) = px(dy)µ(dx).

Due to a special form of h the convexity of h implies the convexity of

Jh. Hence the next theorem covers some cases not covered by the previous

theorem, although the assumptions are the same (of course, the functional

Jh is not the same and involves conditional measures).

Theorem 4. Suppose that for µ-almost every x the function p 7→ h(x, p)

is lower semicontinuous with respect to the total variation norm on M(Y ).

If, in addition, the function

Ch(p) =

∫
X

h(x, px)µ(dx)

is convex, then it attains its minimum on ΠΦ(µ, ν) (in particular, this is true

if h is convex with respect to the second argument), i.e. the Kantorovich

transportation problem with conditional measures and density constraints

has a solution.

10



3 Kantorovich problems with �xed barycenters

This chapter is devoted to the consideration of another new type of Kan-

torovich transportation problems. The speci�city of this problem is that now

the marginal distribution of ν begins to play a slightly di�erent role. While in

the classical Kantorovich problem the logic of the formulation itself required

both marginal distributions to be considered as the corresponding projec-

tions of admissible transport plans, in the Kantorovich problem with a �xed

barycenter the measure µ is still considered as a projection, and the measure

ν now plays the role of the barycenters (averages) of measures from the set

P(P(Y )), that is, we do not know exactly the second marginal distribution,

but only its mean (barycenter).

Let us recall that for any Radon probability measure Q on the space

of measures P(Y ) with the weak topology the barycenter is de�ned by the

formula

βQ :=

∫
P(Y )

pQ(dp),

where this vector integral with values in the space of measures is understood

as the equality

βQ(A) =

∫
P(Y )

p(A)Q(dp)

for all Borel sets A ⊂ Y . It is a well known fact that the function p 7→
p(A) is Borel measurable on P(Y ) and the measure βQ is τ -additive (see [9,

Proposition 8.9.8 and Corollary 8.9.9]).

If P is a Radon measure on X×P(Y ), µ is its projection on X and there

are conditional measures P x on P(Y ) with respect to µ, then the barycenter

of the projection PP of P on P(Y ) is given by

βPP(B) =

∫
X

∫
P(Y )

p(B)P x(dp)µ(dx).

We denote by Πβ(µ) the set of all Radon probability measures π on X ×
P(Y ) such that the projection πX of π on X is µ and the barycenter of the
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projection πP of π on P(Y ) is a given measure β ∈ P(Y ):

Πβ(µ) := {π ∈ P(X × P(Y )) : πX = µ, βπP = β}.

De�nition. For a given function h : X × P(Y ) → R+ measurable with

respect to B(X)⊗ B(P(Y )) and B(R) the problem∫
X×P(Y )

h(x, p) π(dx dp) → min, π ∈ Πβ(µ)

is called the Kantorovich problem with �xed barycenter.

Let us recall that a set Γ ⊂ X × Z is called h-cyclically monotone for a

function h on X × Z if for all n one has

n∑
i=1

h(xi, zi) ≤
n∑

i=1

h(xi+1, zi)

for all pairs (x1, z1), . . . , (xn, zn) ∈ Γ, where xn+1 := x1.

Theorem 5. (i) Let h be a bounded lower semicontinuous function on

the product X × P(Y ). For all µ ∈ P(X) and β ∈ P(Y ) the Kantorovich

problem

Jh(π) =

∫
X×P(Y )

h(x, p) π(dx dp) → min, π ∈ Πβ(µ) (2)

with a �xed barycenter has a solution. Moreover, this is true for h with

values in [0,+∞] if Jh is not identically +∞.

(ii) Every optimal measure P for this problem is also optimal for the

classical linear problem with the same cost function and marginals µ and PP ,

where PP is the projection of P on P(Y ).

(iii) Finally, if X and Y are Souslin spaces, then P is concentrated on an

h-cyclically monotone set.

The results of this chapter are used in Chapter 4 to prove existence theo-

rems for Kantorovich problems with conditional measures under less restric-

tive assumptions than in Chapter 1, but at the expense of a special form of

cost functions h.
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4 Kantorovich problems with conditional measures.

Continuation

In this section we continue our consideration of the Kantorovich problem

with conditional measures, which we began in the �rst chapter. In Section 3

of Chapter 1, we saw that an important su�cient condition for the existence

of a solution to such problems is the convexity in the second argument of

the cost function h, and in Chapter 5 it is shown that in the absence of

such convexity the problem may fail to have a solution. In this chapter, we

show that for cost functions of some special form the convexity condition

can be slightly weakened (or completely abandoned) while maintaining the

solvability of the problem. The main results of this chapter are two existence

theorems for Kantorovich problems with conditional measures.

Since all Borel measures on Suslin spaces are Radon, instead of the nota-

tion Pr(T ) we will use the shorter notation P(T ).

The �rst result is devoted to the case where the cost function decomposes

into a product of two functions of one variable.

Theorem 6. Let X and Y be Souslin spaces. Suppose that

h(x, σ) = f(x)g(σ),

where f : X → R and g : P(Y ) → R are bounded continuous functions and

the sets {p ∈ P(Y ) : g(p) ≤ c} are convex for all c ∈ R. Then, for any

atomless measure µ ∈ P(X) and any measure ν ∈ P(Y ) the in�mum

inf
σ∈Π(µ,ν)

∫
X

h(x, σx)µ(dx)

is attained.

The following theorem shows that in the case where the cost function

does not depend on x the requirement of convexity in the existence theorem

can be completely abandoned.

Theorem 7. Let X and Y be Souslin spaces and let h be a bounded

continuous function on P(Y ) with the weak topology. Then, for any measures
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µ ∈ P(X) and ν ∈ P(Y ), where µ has no atoms, the problem∫
X

h(σx)µ(dx) → min, σ ∈ Π(µ, ν), σ(dx dy) = σx(dy)µ(dx)

has a solution.

5 Counter-examples

In this chapter we provide various counterexamples to some of the asser-

tions proven in previous chapters. In particular, Example 1 shows that the

statement of Theorem 2 about the existence of a solution in the Kantorovich

problem with conditional measures loses its validity if the condition of con-

vexity of the function h with respect to the second argument is abandoned.

Similarly, Example 2 demonstrates that even the weakened convexity condi-

tion in Theorem 6, which was achieved by simplifying the form of the function

h, cannot be abandoned if we require that the problem have a solution. Ex-

ample 3 concerns the Kantorovich problem with conditional measures and

with density constraints. It follows from this that the convexity condition

in Theorem 4 is also essential and, in the general case, cannot be discarded

without losing the existence of a solution to such a problem. Example 4

shows, �rstly, that since the dependence of the cost function h on the plan

σ through conditional measures, as in the Kantorovich problem with con-

ditional measures, is of a more complex nature (than, say, in the simply

nonlinear Kantorovich problem), in such problems, generally speaking, lower

semicontinuity of h does not imply lower semicontinuity of Jh. Secondly, the

condition of lower semicontinuity of the function Jh is not necessary for the

existence of a solution to the Kantorovich problem with conditional measures.

In [7, Examples 3.2 and 3.3] one can �nd examples of non-existence

of minimum in the nonlinear problem with conditional measures, but with

marginal distributions that are not absolutely continuous. In our examples

both marginals coincide with Lebesgue measure on the unit interval

Let us recall that the standard Kantorovich�Rubinshtein norm on Radon
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measures on a bounded metric space X de�ned by the formula

∥σ∥KR = sup
f∈Lip1, |f |≤1

∫
X

f dσ,

where Lip1 is the class of all 1-Lipschitz functions on X. This norm gener-

ates the weak topology on the subset of nonnegative measures (see [9, The-

orem 8.3.2]).

Example 1. Let X = Y = [0, 1] and let µ = ν = λ be Lebesgue

measure on the interval [0, 1]. There is a bounded continuous function h on

X×P(Y ), which is Lipschitz when P(Y ) is considered with the Kantorovich�

Rubinshtein norm, such that the nonlinear problem∫
X

h(x, σx)µ(dx) → inf, σ ∈ Π(µ, ν), σ(dxdy) = σx(dy)µ(dx)

has no minimizer.

Our next example is similar, but the cost function breaks down into a

product of functions of one variable.

Example 2. Let X = Y = [0, 1] and let µ = ν = λ be Lebesgue

measure on [0, 1]. There are bounded continuous functions f : X → R and

g : P(Y ) → R, where P(Y ) is considered with the weak topology, for which

there is no minimum in the nonlinear Kantorovich problem

J(σ) =

∫
X

f(x)g(σx)µ(dx) → inf, σ ∈ Π(µ, ν).

This example demonstrates that in Theorem 6 we cannot abandon the con-

vexity condition for the sets {p ∈ P(Y ) : g(p) ≤ c} for all c ∈ R.
Example 3. Let X = Y = [0, 1] and let µ = ν = λ be the stan-

dard Lebesgue measure on [0, 1]. We consider the Kantorovich problem with

conditional measures and density constraints

Jh(ϱ) =

∫ 1

0

h(x, ϱ(x, ·)) dx → inf,

ϱ(x, y) ≤ 4 ∀x, y,
∫ 1

0

ϱ(x, y) dy = 1 ∀x,
∫ 1

0

ϱ(x, y) dx = 1 ∀y.
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There exists a bounded continuous function h : X × L1[0, 1] → R, where
the space L1[0, 1] is equipped with the weak topology, such that there is no

minimizer.

Example 4. Let X = Y = [−1/2, 1/2] and let µ = ν = λ be Lebesgue

measure on [−1/2, 1/2]. Let

h(p) =

(∫ 1/2

−1/2

φ(y) p(dy)

)k

,

where φ is a non-constant continuous function, k ∈ N, k ≥ 2. We can assume

that the integral of φ is zero, for example, φ(y) = y is suitable. Then h is

bounded and continuous on P(Y ), the functional

Jh(σ) =

∫ 1/2

−1/2

h(σx) dx, σ(dxdy) = σx(dy) dx

is not lower semicontinuous on Π(µ, ν), but it attains a minimum.
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