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Introduction

With the outstanding interest in the development of novel methods in machine learning, there
is growing interest in mathematical tools that provide a framework for understanding and evaluat�
ing the performance of algorithms when the observable sample size is finite. Various results based
on the concentration of measure phenomenon [1, 2] have proved to be the right instrument for
obtaining non-asymptotic guarantees for various algorithms in the fields of reinforcement learning
[3], optimization [4], learning theory [5], Monte-Carlo and Markov Chain Monte Carlo methods
(MCMC, [6, 7]), and many others. Concentration inequalities for functionals of independent ran�
dom variables or martingales are relatively well understood, as seen in [2, 8, 9]. At the same time,
the situation is different when considering concentration inequalities for functions of dependent
random variables. While a wealth of results exists for weakly dependent processes with differ�
ent types of mixing conditions [10, 11], their application even to the natural setting of additive
functionals of Markov chains is challenging. In particular, they are either not quantitative or not
precise enough in terms of important problem characteristics, such as the variance of the additive
functional in the Bernstein type inequalities (see Chapter 1 for the relevant definitions). This
drawback is shared by many existing results obtained specifically for functionals of Markov chains
[12–15]. However, it is Markovian stochasticity that appears in the vast majority of machine
learning algorithms. Markov chains naturally arise in the non-asymptotic analysis of algorithms
in the fields of stochastic approximation [16, 17] or reinforcement learning [3, 18].

In Chapter 1 of this thesis, we obtain new counterparts of the classical Rosenthal and Bern�
stein inequalities for geometrically ergodic Markov chains with explicit dependence on the mixing
time of the underlying chains. We consider an additive functional

Sn =
Xn�1

`=0
{g(X`)� ⇡(g)}, (1)

where g is an integrable measurable function and (X`)1`=0 is a Markov chain with a Markov kernel
P, which admits ⇡ as unique invariant distribution. We obtain concentration inequalities for the
additive functional Sn, similar to those presented in [12, 14, 19, 20]. We refine the dependency of
the new estimates on the variance of Sn and the mixing time of the underlying chain. Our proof
is based on the cumulant expansion techniques outlined in [21] and the Leonov-Shiryaev formula
[22] relating moments and cumulants.

In the subsequent parts of the thesis, we apply concentration inequalities to the non-asymp�
totic analysis of variance reduction techniques [23, 24], and propose new variance reduction meth�
ods for sequences of dependent random variables. The primary aim of variance reduction is to
reduce the stochastic error in Monte Carlo estimates. Classical contributions to this field, includ�
ing those by [25] and [26], have extensively explored variance reduction techniques, with a primary
focus on modeling based on sequences of independent and identically distributed (i.i.d.) random
variables (see e.g. [27]). However, in many scenarios, generating i.i.d. observations is not feasible,
especially in cases of high problem dimension, and statistical inference must rely on dependent
observations. These observations often form a Markov chain, as is the case of MCMC algorithms
[6]. Furthermore, the application of variance reduction extends to optimization methods and



4

reinforcement learning, see e.g. [28–31], and references therein.
In Chapter 2, we propose a practical approach to variance reduction for additive functionals

of dependent random variables. This approach extends the one introduced in [32] and is appli�
cable to a broader class of Markov chains satisfying the ergodicity condition in the first-order
Kantorovich-Wasserstein metric, and to sequences of dependent random variables satisfying the
covariance stationarity assumption. The proposed method is based on using the control variates
together with minimizing the empirical estimate of the respective asymptotic variance. We provide
estimates for the rate of decrease in excess asymptotic variance with the growth of the training
sample size. The proposed approach has been applied to MCMC estimates based on the Stochastic
Gradient Langevin Dynamics (SGLD, [33]).

In Chapter 3, we consider the problem of variance reduction for additive functionals of
Markov chains in the setting where the analytical expression for the invariant distribution of the
underlying chain is unknown. In such a setting, we suggest a variance reduction approach based
on discrete-time martingale representation, which generalizes the control variates using orthogonal
polynomials expansion [34]. This approach does not require knowledge of the chain’s stationary
distribution or its specific structure. We analyze the algorithm under a normal noise model (see
Section 3.4), which particularly covers the celebrated Unadjusted Langevin Algorithm [35–37].

Goals and objectives of the study

The goal of the study is to obtain a new analytical tools for studying concentration properties
of functionals of Markov chains and to apply them for theoretical analysis of post-processing
methods for MCMC estimates, which are based on control variates. To solve this problem, we
consider the following steps:

1. Derive upper bound on cumulants of additive functionals of geometrically ergodic Markov
chains, tracing explicit dependence on the parameters of the underlying Markov kernel;

2. Use the bound above to get new counterparts of Rosenthal inequality and Bernstein in�
equality, keeping precise dependence on the variance of Sn from (1) and mixing time of the
kernel;

3. Generalize the above versions of Rosenthal inequality for quadratic forms of functions of
Markov chains, converging geometrically fast to the invariant distribution in terms of first-order
Kantorovich-Wasserstein metric;

4. Develop a method for selecting the control variates to adjust MCMC estimates, based on
minimizing a certain estimate of the asymptotic variance. Study the statistical properties
of the suggested method;

5. Develop a variance reduction method for additive functionals of Markov chain, which does
not require to know analytically the invariant distribution of the underlying chain. Provide
bounds on the variance of adjusted estimates compared to the variance of non-adjusted
functional in the normal noise model described in Section 3.4.
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Scientific novelty of the results

All results submitted for defense are new. New concentration inequalities of the Rosenthal and
Bernstein types have been obtained for additive functionals of Markov chains. These inequalities
generalize known estimates in the literature. Moreover, this work provides an original extension of
Bernstein inequality to Markov kernels under the condition of ergodicity in the general weighted
Kantorovich-Wasserstein metric. Additionally, a novel non-asymptotic analysis of the performance
of several variance reduction methods for MCMC algorithms has been conducted, resulting in
estimates for the rate of decrease in excess asymptotic variance with the growth of the training
sample size. Suggested method of constructing control variates based on discrete martingale
decomposition is new and can be used in several settings, when classical techniques, in particular,
the ones based on Stein operator, are not directly applicable.

Theoretical and practical significance of the results

The presented results have both theoretical and methodological significance. The theoretical
findings introduce new concentration inequalities for additive functionals of Markov chains, which
may be valuable for studying Markov Chain Monte Carlo (MCMC) methods. From a methodolog�
ical perspective, new variance reduction techniques for MCMC algorithms are proposed, which
can be applied, in particular, in Bayesian statistics.

Methodology and research methods

The work extensively employs the analytical tools of probability theory, particularly the
coupling methods and the method of cumulants, in particular, relations between cumulant bounds
and concentration inequalities discussed in Chapter 1. The proofs of the main results rely on the
theory of Markov chains and concentration inequalities.

Publications based on research results

The main contributions of the thesis have been published in three peer-reviewed journal
articles [38–40]. All three articles are included in the Scopus and Web of Science databases.

1. A.Durmus, E. Moulines, A. Naumov, S. Samsonov. Probability and Moment Inequalities

for Additive Functionals of Geometrically Ergodic Markov Chains, Journal of Theoretical
Probability, 2024. https://doi.org/10.1007/s10959-024-01315-7;

2. D. Belomestny, L. Iosipoi, E. Moulines, A. Naumov, S. Samsonov. Variance reduction for

dependent sequences with applications to stochastic gradient MCMC, SIAM/ASA Journal on
Uncertainty Quantification, 9(2), 507-535, 2021. https://doi.org/10.1137/19M1301199;

3. D. Belomestny, E., Moulines, S. Samsonov. Variance reduction for additive functionals of

Markov chains via martingale representations, Statistics and Computing, 32(1), 16, 2022.
https://doi.org/10.1007/s11222-021-10073-z

https://doi.org/10.1007/s10959-024-01315-7
https://doi.org/10.1137/19M1301199
https://doi.org/10.1007/s11222-021-10073-z
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Approbation of work

Main results of the thesis were presented at the following conferences, schools, and seminars:

1. Winter school and conference "New frontiers in high-dimensional probability and statistics
2", Moscow, February 22 � 23, 2019. Talk: "Concentration inequalities for functionals of
Markov Chains with applications to variance reduction";

2. Conference "Structural Inference in High-Dimensional Models 2". Pushkin, Saint-Peters�
burg, 26 � 30 August 2019. Poster: "Variance Reduction for Dependent Sequences via
Empirical Variance Minimisation";

3. Research seminar "Structural Learning", Faculty of Computer science, HSE, Moscow, Oc�
tober 15, 2019. Talk: "Variance reduction for dependent sequences with applications to
Stochastic Gradient MCMC";

4. HSE-Yandex Autumn School on Generative Models, Moscow, November 26 � 29, 2019.
Poster: "Variance reduction for MCMC algorithms";

5. Winter school "Math of Machine Learning 2020", Sochi, Sirius, February 19 � 22, 2020.
Poster: "Variance Reduction for Dependent Sequences via Empirical Variance Minimisa�
tion";

6. City seminar on probability theory and mathematical statistics, Saint-Petersburg, POMI
RAS, October 09, 2020. Talk: "Variance reduction methods for MCMC algorithms";

7. Conference "New Trends in Mathematical Stochastics", 30.08.2021-03.09.2021, talk "Prob�
ability and moment inequalities for additive functionals of geometrically ergodic Markov
chains";

8. Research seminar "Structural Learning", Faculty of Computer science, HSE, Moscow, Febru�
ary 28, 2023. Talk: "Rosenthal type inequalities for Markov chains and their applications
to Linear Stochastic Approximation".

Theses submitted for defense

1. In Chapter 1 we obtain new counterparts of Rosenthal and Bernstein inequalities for additive
functionals of ergodic Markov chains that converge to the stationary distribution exponen�
tially fast either in V -total variation norm or in the Kantorovich-Wasserstein semi-metric.
The proof method we employ is based on the cumulant expansion techniques and the con�
nections between cumulants and centered moments established through the Leonov-Shiryaev
formula.

2. In Chapter 2 we propose an extension of the variance reduction method using control variates
for the case of dependent random sequences that satisfy the covariance stationarity assump�
tion. We obtain estimates for the rate of decrease in excess asymptotic variance with the
growth of the training sample size. We derive concentration inequalities for quadratic forms
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of functions of Markov chains satisfying the contraction condition in the Kantorovich-Wasser�
stein metric and apply these results to MCMC estimates based on the Stochastic Gradient
Langevin Dynamics (SGLD).

3. In Chapter 3 we propose a novel variance reduction approach for additive functionals of
Markov chains based on a discrete-time martingale representation. We study the variance
reduction achieved by our method in a special setting of the normal noise model, covering the
Unadjusted Langevin Algorithm (ULA), and show its gain over the non-adjusted estimates
without variance reduction.

Reliability of results

All results of the dissertation are justified by mathematical proofs. The findings of the
dissertation were presented at conferences and scientific seminars.

Structure and scope of work

The thesis consists of introduction, notation section, three chapters, conclusion, and bibliog�
raphy. The thesis is 113 pages long, including 105 pages of the text, 2 tables, and 12 figures. The
bibliography is 8 pages long and includes 119 items.

Author’s personal contribution

The author’s contribution is primary in the results of Chapter 1 and Chapter 3. Presented
results of these sections were obtained personally by the author, apart from the result of Theorem 5.
The latter one is the result of a joint work of the doctoral candidate and other co-authors of
[38]. For completeness, Chapter 2 includes results obtained jointly with co-authors, namely the
results of Section 2.4: Algorithm 1 and Theorem 6. They are obtained jointly by the doctoral
candidate and other co-authors of [39]. The author’s primary contribution to Chapter 2 are the
results on the concentration of quadratic forms for Markov chains under contractive condition in
the first-order Kantorovich-Wasserstein metric with applications to Stochastic Gradient Langevin
Dynamics (SGLD). These results are presented in Section 2.5 and Section 2.6. Furthermore, the
proof idea for Proposition 2 is attributed to A. Naumov.
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Notations and definitions.

We assume by default that all random variables in Chapters 1 and 2 of this thesis take values
in a complete separable metric space (X, d), equipped with Borel sigma-algebra X . Situations
requiring X = Rd are specifically mentioned in the text. For a (signed) measure ⇠ on (X,X ) and
a measurable function g : X ! R, we use a notation

⇠(g) =

Z

X

g(x)⇠(dx) .

For a measurable function V : X ! [1,1), we define LV as a set of all measurable functions
g : X ! R, such that kgkV = supx2X

�
|g(x)|
V (x)

 
< 1. The V -norm (also referred to as V -total

variation norm) of a signed measure ⇠ is defined as

k⇠kV =

Z

X

V (x) |⇠| (dx) ,

where |⇠| is the total variation of ⇠. In the case V ⌘ 1, the V -norm is the total variation norm and
is denoted by k·kTV. Equivalently, we can define k⇠kV = sup{⇠(g) : kgkV  1} (see [41, Theorem
D.3.2] for details). We write N0 = N [ {0}.

When we consider the Markov chain {Xn}n2N0 with initial distribution ⇠ and Markov kernel P
on (X,X ), we assume without loss of generality that {Xn}n2N0 is the associated canonical process
defined on the canonical space (XN0 ,X

⌦N0). For any probability measure ⇠ on (X,X ) we denote by
P⇠ and E⇠ respective probability and expected value under initial distribution ⇠. We set Ex = E�x

and Px = P�x for all x 2 X. We use the following definitions, which can be found e.g. in [41]:

Definition 1. A set C is called a small set for the Markov kernel P, if there exist ✏ 2 (0, 1],

m 2 N, and a probability measure ⌫, such that for all x 2 C and A 2 X , it holds that

Pm(x,A) � ✏⌫(A) . (2)

The set C is then said to be an (m, ✏⌫)-small set.

When we do not need to mention the associated measure ⌫ above, we simply write that C

is an (m, ✏)-small set. For any A 2 X we define the return time �A of the set A as �A = inf{n �

1 : Xn 2 A}. Set A is called an accessible set for the kernel P, if Px(�A < 1) > 0 for any x 2 X.
Based on the definitions above, we introduce the definition of strongly aperiodic kernel:

Definition 2. The Markov kernel P is called strongly aperiodic, if it admits an accessible (1, ✏⌫)

- small set C with ⌫(C) > 0.

Am important class of Markov kernels P considered in Chapter 1 is the class of V -geometrically
ergodic kernels with V : X ! [1,1) being a measurable function.

Definition 3. The Markov kernel P is called V -geometrically ergodic, if P admits a unique in�

variant distribution ⇡, such that ⇡(V ) < 1, and there exist constants c > 0 and ⇢ 2 (0, 1), such

that for all x 2 X

k�xP
n
� ⇡kV  c⇢

n
V (x) . (3)
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If P is V -geometrically ergodic, we also say with slight abuse of terminology that the corre�
sponding Markov chain {Xn}n2N0 is V -geometrically ergodic.

For two probability measures ⇠ and ⇠
0 on (X,X ), we say that a probability measure ⌫ on

(X2
,X

⌦2) is a coupling of ⇠ and ⇠
0, if for each A 2 X , ⌫(A ⇥ X) = ⇠(A) and ⌫(X ⇥ A) = ⇠

0(A).
Denote by ⇧(⇠, ⇠0) the set of couplings of ⇠ and ⇠

0 on (X,X ). Let c : X ⇥ X ! R+ be a lower
semi-continuous symmetric function such that c(x, x0) = 0 for x = x

0, and there exists pc 2 N such
that for any x, x

0
2 X, (d(x, x0) ^ 1)pc  c(x, x0). Then the Kantorovich-Wasserstein semi-metric

Wc (⇠, ⇠
0), associated with the cost function c, is defined as

Wc (⇠, ⇠
0) = inf

⌫2⇧(⇠,⇠0)

Z

X⇥X

c(x, x0)⌫(dxdx0) . (4)

In English-language literature, this object is commonly referred to as the Wasserstein semi-metric.
Wc (⇠, ⇠

0) is a semi-metric in the sense that it satisfies the axioms of symmetry, non-negativity,
and identity, but, generally speaking, it does not satisfy the triangle inequality. Denote a set of
probability measures on X as M1(X), and for p � 1, let Sp(X, d) be probability measures with finite
p-th moment:

Sp(X, d) := {⇠ 2 M1(X) :

Z

X

dp(x, x0)⇠(dx0) < 1 for all x 2 X} .

For p � 1 and ⇠, ⇠
0
2 Sp(X, d), define the p-th order Kantorovich-Wasserstein distance between ⇠

and ⇠0 as
Wd,p (⇠, ⇠

0) := inf
⌫2⇧(⇠,⇠0)

�Z

X⇥X

dp(x, x0) ⌫(dxdx0)
 1/p

.

Note that Wd,p (⇠, ⇠
0) is a distance on Sp(X, d). For a measurable function W : X ! [1,1), set

W̄ (x, y) = (W (x) + W (y))/2, and for � � 0, define its weighted Lipschitz norm as

[f ]�,W = max

⇢
sup

x,x0
2X , x 6=x0

|f(x)� f(x0)|

c1/2(x, x0)W̄ �(x, x0)
, sup

x2X

|f(x)|

W �(x)

�
. (5)

The corresponding class of functions is denoted by L�,W = {f : X ! R : [f ]�,W < 1}. For a
function h : X ! R we define its Lipschitz norm as khkLip := supx 6=y2X{|h(y)� h(x)|/d(x, y)}. We
denote by Lipd(L) and Lipb,d(L,B) the class of Lipschitz (resp. bounded Lipschitz) functions on
X with khkLip  L (resp. khkLip  L and |h|1  B).

Denote for any q 2 [1,1) the 2q-th moment of the standard Gaussian distribution on R by

mG,q = (2q)!/(q!2q) = 2q�((2q + 1)/2)/⇡1/2
, (6)

where � is the Gamma function. For a multi-index k = (k1, . . . , kd) we use the notation kkk =

max
i2{1,...,d}

ki, |k| =
Pd

i=1 ki and k! := k1! . . . kd!. For a function f : Rd
! R we write rf(x) and

r
2
f(x) for its gradient and Hessian at point x, respectively. In the present text, the follow�

ing abbreviations are frequently used: "w.r.t." stands for "with respect to", "i.i.d." stands for
"independent and identically distributed".
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Chapter 1

Rosenthal and Bernstein inequalities for additive functionals
of geometrically ergodic Markov chains

1.1. Introduction and problem setup

In the present chapter of the thesis we consider the concentration properties of additive
functionals of Markov chains, that is, sums of the form

Sn =
Xn�1

`=0
{g(X`)� ⇡(g)} , (1.1)

where {X`}
1

`=0 is a Markov chain with the Markov kernel P, which has a unique invariant distri�
bution ⇡, and g : X ! R is a measurable function, satisfying ⇡(|g|) < 1. We assume that X0

follows some distribution ⇠, which might be different from ⇡. We aim to recover counterparts of
concentration inequalities of Bernstein and Rosenthal type for Sn. This chapter is based on the
results published in [38].

We begin with a short discussion on the mentioned inequalities for sums of independent
random variables. Assume that (Y`)

n�1
`=0 are independent random variables with E[Y`] = 0 and set

S̄n =
Xn�1

`=0
Y` . (1.2)

Assume that for some c > 0, for all ` 2 {0, . . . , n� 1} and integers k � 3 it holds that |E[Y k
` ]| 

(k!/2)Var(Y`)ck�2. This condition is known as Bernstein’s condition and yields the corresponding
inequality: for any t > 0 and n 2 N,

P(|S̄n| � t)  2 exp

⇢
�

t
2
/2

Var(S̄n) + ct

�
. (1.3)

Bernstein’s condition and inequality can be further generalized by cumulant expansion, as sug�
gested by [21]. Recall that the k-th cumulant of a random variable Y is defined as

�k(Y ) =
1

ik
dk

dtk
�
log E[eitY ]

�����
t=0

.

Bentkus in [21] provides the generalization of Bernstein’s inequality under the following condition:
if there exist � � 0 and B � 0 such that for any k 2 N , k � 2, it holds

|�k(S̄n)|  (k!/2)1+� Var(S̄n)B
k�2

, (1.4)

then for all t � 0, it holds that

P(|S̄n| � t)  2 exp

⇢
�

t
2
/2

Var(S̄n) + B1/(1+�)t2�1/(1+�)

�
. (1.5)

It can be shown that the condition (1.4) also follows from some generalizations of the Bernstein
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condition, see, for example, [42, theorem 3.1]. Note that Bernstein’s inequality implies an ex�
ponential rate of decay for the distribution tails of S̄n. Conversely, it is important to explore
properties of S̄n being a sum of random variables, which have only a finite number of moments. In
this scenario, one is typically interested to establish the moment bounds for S̄n, and the following
version of Rosenthal’s inequality is of great importance (see [43] and also the original paper [44]):
for q � 2,

E[|S̄n|
q]  C

q
�
q
q/2 Var(S̄n)

q/2 + q
qE[| max

`2{0,...,n�1}
Y`|

q]
 
, (1.6)

where C is an absolute constant. If (1.6) is satisfied for all q � 2, one can show that S̄n satisfies
the Bernstein-type inequality, provided that |max`2{1,...,n} Y`| has a finite Orlicz  1-norm, see [12].

1.2. Contributions

In the present chapter of the thesis we obtain counterparts of Rosenthal’s and Bernstein’s
inequalities (1.6) and (1.5) for the additive functionals of the form (1.1). We consider the Markov
kernels P, such that their iterates ⇠Pn converge to the stationary distribution ⇡ at the exponential
rate either in the V -total variation norm or in the Kantorovich-Wasserstein semi-metric (see,
respectively, Section 1.4 and Section 1.5). The proof method we employ is based on the cumulant
expansion techniques outlined in [21], [42], and further developed in [45] for weakly dependent
processes. In the stationary case (when the initial distribution ⇠ coincides with ⇡), a key step in
the proof involves bounding the centered moments associated with {g(X`)}

n�1
`=0 . This connection

is established through the Leonov-Shiryaev formula [22]. Our technique allows to obtain results
with explicit and computable constants. Finally, we also cover the case of an arbitrary initial
distribution ⇠. Results for the non-stationary case are derived using coupling methods, see [46]
and [41, Chapter 19].

1.3. Literature review

Concentration inequalities for additive functionals of Markov chains have been studied using
a wealth of different techniques. In the list of papers below we provide a selection of existing
results and related theoretical tools. A number of results [47–49] are devoted to the inequalities of
Azuma-Hoeffding type for (1.1). Probability bounds for Markov kernels that are contractive with
respect to Kantorovich-Wasserstein distance are presented in [50], yet the results of [50] require
to verify additional conditions, involving quantities such as granularity and local dimension, that
are difficult to evaluate in most applications. The authors in [51–53] establish Hoeffding and
Bernstein inequalities using spectral methods for Markov chains for bounded functions g under
the assumption that P admits a positive spectral gap. However, respective bounds depend on a
proxy for the variance, and not the exact variance of Sn. Note also that the V -geometric ergodicity
of P does not necessarily imply the existence of a spectral gap (see [54]).

A popular approach, developed in [12, 14, 19, 20, 55, 56], is to use regenerative decomposition
to obtain moment bounds and Bernstein inequalities under the geometric ergodicity assumption
(see Section 1.4). These techniques are based on the Numellin splitting construction [57] and
[58], which allows to split the sum Sn into a random number of one-dependent blocks of random
lengths. The closest counterparts of our results are the ones obtained in [14] and [20]. [14,
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Theorem 1] provides a Bernstein-type inequality for a V -geometrically ergodic strongly aperiodic
Markov kernels (see Definition 2) and unbounded functions. [20, Theorem 1] extends the result
to aperiodic Markov chains, but is restricted to bounded functions and does not provide explicit
constants. Moreover, mentioned results can’t be applied to the setting of Markov chains, which
are geometrically ergodic in a sense of Kantorovich-Wasserstein semi-metric. Hence, they do not
cover the results presented in Section 1.5.

Moment bounds and Bernstein-type inequalities were also obtained under different weak-de�
pendence or mixing conditions; see [10, 45, 59]. These results are in general not directly comparable
with the ones presented in this chapter, because the bounds depend on different types of weak-de�
pendence or mixing coefficients instead of drift conditions and local minorization conditions.

1.4. V -geometrically ergodic Markov chains

First, we consider the case where the Markov kernel P is V -geometrically ergodic (see Defi�
nition 3). Namely, we impose the following assumptions on P:

A 1. There exist a measurable function V : X ! [e,1), � 2 (0, 1), and b � 0 such that for any

x 2 X, PV (x)  �V (x) + b.

A2. There are an integer m � 1, ✏ 2 (0, 1), and d � 0, such that the level set {x 2 X : V (x)  d}

is (m, ✏)-small and �+ 2b/(1 + d) < 1. Here � and b are defined in A 1.

The definition of (m, ✏)-small set is provided in Definition 1. In contrast to the usual definition
of Lyapunov functions in the Markov chain literature, we assume here that V takes values in
[e,+1), rather than in [1,+1). Such a choice avoids technical issues when considering norms
associated with W (x) = log V (x). Under assumptions A 1 and A 2, the Markov kernel P is
V -geometrically ergodic. Let ⇡ denote its unique invariant distribution. Then, according to [41,
Theorem 19.4.1], for any probability measure ⇠ satisfying ⇠(V ) < 1, and for all n 2 N,

k⇠Pn
� ⇡kTV  k⇠Pn

� ⇡kV  c{⇠(V ) + ⇡(V )}⇢n . (1.7)

Explicit expressions for ⇢ and c depending on parameters from A 1 and A 2 can be found e.g.
in [41, Theorem 19.4.1]. Before proceeding with our main results, we introduce some additional
quantities. For each q 2 N, u 2 {1, . . . , q � 1} and � � 0, we set

B�(u, q) =
(2q)!

u!

X

(k1,...,ku)2Eu,q

uY

i=1

(ki!)
�+2

, (1.8)

where Eu,q = {(k1, . . . , ku) 2 Nu :
Pu

i=1 ki = 2q , ki � 2}. We proceed with a Rosenthal-type
bound for V -geometrically ergodic Markov chains, with the leading term of the bound being equal
to Var⇡(Sn) scaled by the corresponding moment of the Gaussian distribution mG,q (see (6)). Here
and further in this chapter we set ḡ(x) = g(x)� ⇡(g).

Theorem 1. Assume A 1, A 2, and let q 2 N. Then, for any function g 2 LV 1/(2q),

E⇡[|Sn|
2q]  mG,q{Var⇡(Sn)}

q + C2q
0 kḡk

2q
V 1/(2q)

Xq�1

u=1

B0(u, q)nu

⇢u/2 log2q�u (1/⇢)
, (1.9)
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where C0 = 2c⇡(V ), and c is defined in (1.7). Moreover, for any probability measure ⇠ on (X,X )

satisfying ⇠(V ) < 1, it holds that

E⇠

⇥��Sn

��2q⇤  22q�1E⇡

⇥��Sn

��2q⇤+ 26q�1
kḡk

2q
V 1/(2q)c{⇠(V ) + ⇡(V )}

q
2q

⇢(log(1/⇢))2q
. (1.10)

Our proof strategy is inspired by the cumulant method, explored in [45] for the case of weakly
dependent sequences. Same type of techniques was studied for sums of independent random
variables in [21] and [42]. The extension to arbitrary initial distribution (1.10) is done using the
construction of the exact distributional coupling [41, Chapter 19]. It is worth noting that in our
approach it is not necessary to assume that the Markov kernel P is strongly aperiodic, unlike in
[14]. Recall that P being strongly aperiodic implies that A 2 holds with m = 1. The gap with
strong aperiodicity was previously closed by [20], but only for the bounded functions g.

In the above results, we have set q 2 N and considered a function g 2 LV 1/(2q) . With these
assumptions we can not control the exponential moments of Sn. Next, we consider the case of the
function g 2 LW � , where W = log V and � � 0. In this case, in addition to the Rosenthal-type
bound (1.9), we can formulate a counterpart of the Bernstein-type bound (1.5).

Theorem 2. Assume A 1, A 2 and let � � 0. Then for any g 2 LW � and t � 0, it holds that

P⇡(|Sn| � t)  2 exp

⇢
�

t
2
/2

Var⇡(Sn) + J1/(�+3)
n,W � t2�1/(�+3)

�
, where Jn,W � is given by (1.11)

Jn,W � =

✓
n⇢

�1/2
{log(1/⇢)}�1C2

0kḡk
2
W �

Var⇡(Sn)
_ 1

◆
21+3�

�
3�C0kḡkW �

log(1/⇢)
. (1.12)

Moreover, for any initial distribution ⇠ with ⇠(V ) < 1, it holds for g with kḡkW � = 1, that

P⇠(|Sn| � t)  P⇡(|Sn| �
t
4) +

� exp{�h1(�,⇢)t$� }

⇢1/2
+ exp{�h2(�)t$� }

1�⇢

�
c{⇠(V ) + ⇡(V )} , (1.13)

where $� = 1/(1 + �), h1(�, ⇢) = log(1/⇢)/(41+$�$�), and h2(�) = (1 + �)/(21+2$��).

Comparing (1.11) with (1.5), one can see that in the subexponential regime t1/(�+1) is replaced
by t

1/(�+3), as in [45]. The expression for Jn,W � is not distribution-free, moreover, compared to
(1.5), it is possible that Jn,W � scales with n. This drawback is shared by other results obtained
with cumulant expansion [45]. The proof of Bernstein-type bound for arbitrary initial distribution
(1.13) uses the distributional coupling argument [41, Chapter 19].

One could compare the results of Theorem 2 with those obtained in [14, Theorem 1.1-1.3],
provided that we additionally assume that P is strongly aperiodic. Then (1.11) provides a version
of the Bernstein inequality with the exact constant 2 in front of the variance term and offers explicit
dependence on parameters from A1 and A2, which improves over [14, Theorem 1.1] Yet the bound
of [14] is tighter for large t and decreases with exp{�t

1/(1+�)
} compared to exp{�t

1/(3+�)
} in (1.11).

It is worth noting that the exponent of the terms reflecting the dependence on the initial condition
is 1/(1 + �) in (1.13), as in [14, Theorem 1.1]. But in contrast to [14, Theorem 1.1], dependence
on the initial condition appears as a multiplicative factor, not in the exponential rate.
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1.5. Geometrically ergodic Markov chains with respect to
Kantorovich-Wasserstein semi-metric

In this chapter we extend the results obtained in Section 1.4 to the case of Markov kernels
that are geometrically ergodic for a Kantorovich-Wasserstein semi-metric. This setting covers cases
where the Markov kernel P is not irreducible. This means that we no longer impose the assumption
A2, and the regeneration methods studied in [14, 20] are no longer applicable. Examples of Markov
chains with such kernels P are typical in an infinite-dimensional setting, see e.g. [60, 61] and [41,
Chapter 20]. In Section 1.4, it was the combination of A 1 and A 2 that allowed us to show
the existence and uniqueness of an invariant distribution ⇡ for P, together with the geometric
rate convergence of the iterates ⇠Pn to ⇡. To extend these results without relying on A 2, we
need to introduce several objects associated with the Kantorovich-Wasserstein semi-metric below.
Consider the cost function c : X⇥ X ! R+, which satisfies the following condition:

C 1. c is a lower semi-continuous symmetric function such that c(x, x0) = 0 for x = x
0
. Also,

there exists pc 2 N such that for any x, x
0
2 X, (d(x, x0) ^ 1)pc  c(x, x0)  1.

We say that K is a kernel coupling of P if for all (x, x0) 2 X2 and A 2 X , K((x, x0),A⇥ X) =

P(x,A) and K((x, x0),X ⇥ A) = P(x0
,A). We next consider the following assumption, which

weakens the small set condition A 2:

A 3. There exist a kernel coupling K of P, m 2 N, " 2 (0, 1), K � 1 such that

Kc(x, x0)  Kc(x, x
0) , Kmc(x, x0)  (1� " C̄(x, x

0))c(x, x0) , (1.14)

where C̄ = {V (x)  d}⇥ {V (x)  d}, and parameter d satisfies �+ 2b/(1 + d) < 1. Here � and b

are given in A 1, and c is defined in C 1.

Next we show that the assumptions A 1 and A 3 imply the existence and uniqueness of an
invariant distribution ⇡ and the geometric convergence rate of ⇠Pn to ⇡ for any initial distribution
⇠ for the semi-metric Wc1/2V̄ 1/2 .

Proposition 1. Assume A1, A3, and C 1. Then P admits a unique invariant probability measure

⇡ satisfying ⇡(V ) < 1. Moreover, for all initial distributions ⇠ and n 2 N,

Wc (⇠P
n
, ⇡)  Wc1/2V̄ 1/2 (⇠P

n
, ⇡)  c1%

n
⇥
⇠(V 1/2) + ⇡(V 1/2)

⇤
, (1.15)

where quantitative expressions for c1 > 0 and % 2 (0; 1) can be found in [38, Propostion 1].

The first main result of this section is a Rosenthal-type inequality. Now we have to consider
functions g from a weighted Lipschitz class L�,V with suitable � > 0 (see the definition of L�,V in
(5)). Requiring only a finite V

�-norm as in Section 1.4 will not be enough. Similar to Theorem 1,
the leading term of the bound is the stationary variance Var⇡(Sn) multiplied by the moment of a
Gaussian random variable.
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Theorem 3. Assume A 1, A 3, C 1, and let q 2 N. Then for any g 2 L1/(4q),V ,

E⇡[|Sn|
2q]  mG,q{Var⇡(Sn)}

q + C2q
1 [ḡ]2q1/(4q),V

Xq�1

u=1

B0(u, q)nu

%u/2{log(1/%)}2q�u
, (1.16)

where B0(u, q) is defined in (1.8), and C1 = 4c1{⇡(V )}1/2.

The proof is based on a suitable inequality for centered moments that is adapted to the
Kantorovich-Wasserstein semi-metric. We can now extend this result to the non-stationary case
in a similar way to (1.10), but using a coupling kernel instead of the distributional coupling
argument. We present this result in the setting of Bernstein-type inequality.

Theorem 4. Assume A 1, A 3, C 1. Then, for any � � 0, g 2 L1,W � , and t � 0,

P⇡(|Sn| � t)  2 exp

⇢
�

t
2
/2

Var⇡(Sn) + J1/(�+3)
n,W � t2�1/(�+3)

�
, where Jn,W � is given by

Jn,W � =

✓
n%

�1/2
{log(1/%)}�1C2

1(2�)
4�[ḡ]21,W �

Var⇡(Sn)
_ 1

◆
2(2�)2�C1[ḡ]1,W �

log(1/%)
. (1.17)

Theorem 5. Under the assumptions of Theorem 4, for any probability measure ⇠ on (X,X )

satisfying ⇠(V 1/2) < 1, it holds, setting $� = 1/(1 + �) and �� = 1 ^ (2�)�1
, that

P⇠(|Sn| � t)  P⇡(|Sn| � t/2) + exp

✓
�

log(1/%)t$�

23+$� [ḡ]$�

1,W �$�

◆
c
1/2
1 {⇡(V 1/2) + ⇠(V 1/2)}1/2h1(%)

+ exp

✓
�

(1 + �)��t$�

25+$� [ḡ]$�

1,W ��

◆
c
��
1 {⇡(V 1/2) + ⇠(V 1/2)}��h2(%) ,

where h1(%) and h2(%) are defined in [38, Theorem 12].

To the author’s knowledge, Theorem 4 establishes for the first time a Bernstein-type inequal�
ity for functions g from the weighted Lipschitz class L1,W � without the condition A2 or its analogs.
Previous results of this type for unbounded functions and weakly dependent sequences [10] covers
only functions g with linear growth. Note that the result of Theorem 5 allows for the same rate
in the term reflecting the dependence on the initial conditions (that is, exp{�t

1/(1+�)
}), as it was

obtained before for V -geometrically ergodic setting considered in (1.13). This is the first result of
this kind for kernels, which are geometrically ergodic in Kantorovich-Wasserstein semi-metric.
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Chapter 2

Variance reduction for dependent sequences with
applications to Stochastic Gradient MCMC

2.1. Introduction and problem statement

In this chapter of the thesis we propose and analyze a novel and practical variance reduction
approach for additive functionals of dependent sequences. Key technical element of the analysis
are the Rosenthal type inequalities similar to the ones derived in Chapter 1. This chapter is based
on the results published in [39].

In the following, we outline the variance reduction setting for Monte Carlo methods. The
primary objective of these methods is to compute the integral ⇡(f) =

R
X f(x)⇡(dx) w.r.t. a

probability measure ⇡ for some integrable function f : X 7! R, defined on (X,X ). Typically in
practice, the space X ✓ Rd and a measure ⇡ admits a density w.r.t. the Lebesgue measure on Rd.
For simplicity, we also denote this density by ⇡. In this case, the considered problem reduces to
computing the integral Z

X

f(x)⇡(x) dx (2.1)

It is known that for X = [0, 1]d, approximating the integral (2.1) with a given accuracy using
deterministic algorithms requires exponential (in the problem dimension d) number of function
evaluations, see [62]. Therefore, as d increases, deterministic methods quickly become impractical.
An alternative to quadrature formulas is given by the stochastic methods, relying on the Monte
Carlo estimates and its modifications [26]. Note that ⇡(f) = E⇡[f(X)], where the random variable
X is distributed according to ⇡. Hence, due to the law of large numbers, a consistent estimate of
⇡(f) is given by

⇡N(f) := N
�1
XN�1

k=0
f(Xk) , N 2 N,

where (Xk)
N�1
k=0 are i.i.d. random variables with distribution ⇡. Moreover, if ⇡(f 2) < 1, an

asymptotic confidence interval for ⇡(f) with confidence level 1 � ↵ can be constructed using the
central limit theorem:

⇥
⇡N(f)� q1�↵/2

q
Var⇡(f)

N , ⇡N(f) + q1�↵/2

q
Var⇡(f)

N

⇤
, (2.2)

where q1�↵/2 is the respective quantile of the standard normal distribution. Hence, more accurate
estimate for ⇡(f) can be achieved either by increasing N or by reducing the variance Var⇡(f).
One of the widely used methods for the latter purpose is the control variates method, see [23], [24].

The essence of the control variates method is to construct an easily computable random
variable Y (a control variate), such that E[Y ] = 0, E[Y 2] < 1, and the variance of f(X) � Y is
small (recall that the random variable X is distributed according to ⇡). Typically in practice [27],
control variates of the form Y = g(X) are used, where g satisfies the condition ⇡(g) = 0. The
practical application of the control variates method in this setting usually consists of two stages.
First, we select a class of control variates G = {g : ⇡(g) = 0}. Then, based on i.i.d. variables
(Xk)

n�1
k=0 with distribution ⇡ and some optimization problem, one selects a particular function
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bgn 2 G. After that, for a new sample (X 0

k)
N�1
k=0 from ⇡, independent of (Xk)

n�1
k=0 , we construct the

estimate
⇡N(f � bgn) = N

�1
XN�1

k=0
{f(X 0

k)� bgn(X 0

k)} . (2.3)

Note that ⇡(f � bgn) = ⇡(f), and a successful choice of bgn can provide more accurate asymptotic
confidence intervals for ⇡(f) of the form

⇥
⇡N(f � bgn)� q1�↵/2

q
Var⇡(f�bgn)

N , ⇡N(f � bgn) + q1�↵/2

q
Var⇡(f�bgn)

N

⇤
. (2.4)

The potential benefit from the control variates method depends on how the length of the asymp�
totic confidence interval in the modified experiment (2.4) scales compared to that in (2.2).

2.2. Control variates for dependent observations

Generating i.i.d. random variables with distribution ⇡ is often either impossible or compu�
tationally inefficient [7]. This situation is typical for X = Rd when the dimension d is high. In
such cases, it is often easier to construct a sequence of dependent random variables (Xk)1k=0, with
distribution of Xk converging to ⇡ as k increases. Assuming that the central limit theorem holds,
the asymptotic confidence interval for ⇡(f) in such an experiment can be written as

h
⇡N(f)� q1�↵/2

q
V1(f)

N , ⇡N(f) + q1�↵/2

q
V1(f)

N

i
, (2.5)

where V1(f) is the asymptotic variance, defined as

V1(f) := lim
N!1

N · E[
�
⇡N(f)� ⇡(f)

�2
] . (2.6)

Hence, a natural objective of variance reduction methods in the outlined setting of dependent
sequences is to design experiment that achieve a lower asymptotic variance V1(·).

Dependent sequences (Xk)1k=0 are most commonly constructed using Markov Chain Monte
Carlo (MCMC) algorithms. Such algorithms construct (Xk)1k=0 as a Markov chain with a unique
invariant distribution ⇡, and then estimate ⇡(f) based on the ergodic average ⇡N(f). The latter
estimates ⇡N(f) may have large variance due to correlations between the neighboring elements of
the chain. A notably popular group of MCMC algorithms are based on Langevin dynamics, see
[36, 37, 63]. Probably the most popular of them is the SGLD [33] algorithm, see Section 2.6. How�
ever, there are modifications of the SGLD algorithm which produces non-Markovian dependent
sequences (Xk)1k=0, for example the SAGA method outlined in [29].

An important question related to the control variates method is the choice of criterion used
to select the best control variate. In case of independent observations, the criterion is usually
based on the least squares method [27], [64] or the empirical variance [65]. The latter approach
leads to the Empirical Variance Minimization (EVM) method, which is extensively studied in [65].
In case of dependent observations (Xk)1k=0, the situation is more complicated, because V1(·) in
(2.6) is difficult to estimate. For (Xk)1k=0 being a Markov chain, recent papers [66–68] use the
least-squares based method, which aims to minimize the marginal variance Var⇡(·) instead of V1.
Another approach from [32] utilizes the technique of minimizing the estimate of V1, similar to
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the one considered in the current work. However, the authors in [32] consider Markov chains with
a kernel that is either V -geometrically ergodic or satisfies the L

p-transportation inequality (see
Definition 3.1 in [39]), which is rather restrictive.

2.3. Contributions

The main contributions of this chapter are listed below:

• We propose an extension of the ESVM variance reduction method, proposed in [32], for
dependent random sequences satisfying the covariance stationarity assumption (see (CS) in
Section 2.4). We also provide high-probability bounds for the excess asymptotic variance
V1(f � bgn)� infg2G V1(f � g), where bgn is constructed using the suggested algorithm;

• We derive concentration inequalities for quadratic forms of functions of Markov chains satis�
fying the geometric ergodicity condition in the Kantorovich-Wasserstein metric Wd,1. These
results are applied to the iterates of the SGLD algorithm (see Section 2.6). In particular,
we show that for the parametric class of control variates G, it holds

V1(f � bgn)� inf
g2G

V1(f � g) . n
�1/2 log5/2(n) ,

where n is the number of observations X0, . . . , Xn�1 used for estimating bgn.

2.4. Empirical Spectral Variance Minimization

Let (⌦,F, (Fk)k�0,P) be a filtered probability space and (Xk)1k=0 be a random process adapted
to the filtration (Fk)k�0 and taking values in X. Let G be a set of control variates, that is, functions
g 2 G satisfying ⇡(g2) < 1, ⇡(g) = 0, and E[g2(Xk)] < 1 for all k 2 N. Examples of classes
G include, for example, the class of Stein control variates (2.10). Denote the class of functions
H := {f � g : g 2 G}. Recall that h̄ = h� ⇡(h) for h 2 H. We impose the following condition:

(CS). For any h 2 H, there exists a symmetric, summable, and positive semidefinite sequence

(⇢(h)(`))`2Z satisfying the conditions below:

• ⇢
(h)(0) = Var⇡(h);

• There exist constant R > 0 independent of h and `, such that for any ` 2 N0,

X
k2N0

���E
⇥
h̄(Xk)h̄(Xk+`)

⇤
� ⇢

(h)(`)
���  R ,

• lim`!1

P
k2N0

���E
⇥
h̄(Xk)h̄(Xk+`)

⇤
� ⇢

(h)(`)
��� = 0.

The condition (CS) guarantees the existence of V1(h) defined in (2.6) for any function
h 2 H, see [39, Proposition 2.1]. Further, this variance can be expressed as:

V1(h) =
X

`2Z

⇢
(h)(`). (2.7)

Since the closed-form computation of V1(h) is typically impossible, the suggested variance re�
duction algorithm should rely on its empirical counterpart, Vn(h). Among existing consistent
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estimators of the asymptotic variance (see [69] for review) we use the spectral variance estimator :

Vn(h) =
X

|`|<bn

wn(`)⇢
(h)
n (|`|) , ⇢

(h)
n (|`|) = n

�1
n�`�1X

k=0

�
h(Xk)� ⇡n(h)

��
h(Xk+`)� ⇡n(h)

�
. (2.8)

Here bn is an integer truncation level (typically bn increase with n), and weights wn(`) are given
by wn(`) = w(`/bn) for a symmetric non-negative function w, such that supy2[0,1] |w(y)|  1 and
w(y) = 1 for y 2 [�1/2, 1/2].

Now we state the version of the general ESVM algorithm for dependent sequences satisfying
(CS). Based on the spectral estimator Vn(h) defined in (2.8), we select the control variate bgn
(equivalently, bhn = f � bgn) as a minimizer

bhn 2 argminh2H Vn

�
h
�
. (2.9)

We summarize the ESVM method in Algorithm 1.

Algorithm 1 Empirical Spectral Variance Minimization (ESVM) method

Input: Two independent sequences: Xn = (Xk)
n�1
k=0 and X

0

N = (X 0

k)
N�1
k=0 .

1. Choose a class G of functions with ⇡(g) = 0 for all g 2 G.
2. Find bgn 2 argming2G Vn(f � g), where Vn is computed based on Xn.
Output: ⇡N (f � bgn) computed based on X

0

N .

Constructing a control variate. If ⇡ is known at least up to a normalizing constant, it
is possible to construct control variates depending only on the gradient r log ⇡ using the Stein
operator, as suggested in [70, 71], see also [27, 64, 72]. The latter operator gives rise to the popular
class of Stein control variates :

g�(✓) = h�(✓),r log ⇡(✓)i+ div
�
�(✓)

�
, (2.10)

where � : Rd
! Rd is a smooth function, and div(�) is the divergence of �. Then under appropriate

tail conditions on log ⇡(✓), one can ensure that ⇡(g�) = 0, see [72].

Theoretical analysis. To simplify the optimization in (2.9), we consider the minimization over
an "-net within H. Formally, assuming that H is totally bounded, let H" be a minimal "-net in
the L

2(⇡)-norm, that is, the smallest possible (finite) collection of functions H" ⇢ H such that for
any h 2 H there exists h" 2 H" with the distance between h an h" in L

2(⇡)-norm being less than
or equal to ". Consider now the minimization over H":

bhn," 2 argminh2H"
Vn(h) . (2.11)

Since H" is finite, the optimization problem (2.11) is tractable. We demonstrate that the asymp�
totic variance V1(bhn,") closely approximates infh2H V1(h), the smallest asymptotic variance over
H. For this purpose, we impose an assumption on the decay rate of (⇢(h)(`))`2Z from (CS):

(CD). There exist & > 0 and � 2 [0, 1) such that, for any h 2 H and ` 2 N0,
��⇢(h)(`)

��  &�
`
.
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Theorem 6. Assume that the conditions (CS) and (CD) hold. Assume additionally that for any

n 2 N there exists a decreasing continuous function ↵n satisfying

suph2H P
⇣��Vn(h)� E[Vn(h)]

��> t

⌘
 ↵n(t), t > 0. (2.12)

Then, for any � 2 (0, 1) and " > 0, it holds with probability at least 1� � that

V1(bhn,")� infh2H V1(h) . ↵
�1
n

✓
�

2|H"|

◆
+
�p

Rn
�1/2 +

p

D
�
bn"+

p

RD bnn
�1/2

+
�
R + &(1� �)�1

�
bnn

�1 + &(1� �)�2
n
�1 + &(1� �)�1

�
bn/2,

where ↵
�1
n is an inverse function for ↵n, D = suph2H Var⇡(h), and the first asymptotic variance

is conditional on X0, . . . , Xn�1 used to construct bhn," in (2.11).

Theorem 6 generalizes results previously obtained in [65] for independent sequences and
in [32] for Markov chains which are geometrically ergodic in V -total variation norm or Kan�
torovich-Wasserstein metric Wd,2. This theorem applies to any dependent sequence that allows
to verify (CS) and (CD), and study the concentration properties of the quadratic form Vn(h) in
(2.12) for h 2 H. Below we study these properties for (Xk)k�0 being a Markov chain satisfying
the uniform ergodicity property w.r.t. the Kantorovich-Wasserstein metric Wd,1.

2.5. Applications to the Markov kernels, geometrically ergodic in the
Kantorovich-Wasserstein distance

In what follows, we assume that (Xk)1k=0 is a Markov chain on a complete separable metric
space (X, d), and let P be the corresponding Markov kernel on (X,X ). We focus on the case where
P is Wd,p-uniformly ergodic for some p � 1, that is:

(WE).-p There exists x0 2 X such that
R
X d(x0, x)P (x0, dx) < 1 and �p 2 [0, 1) such that

sup
(x,x0)2X2, x 6=x0

Wd,p(�xP, �x0P)

d(x, x0)
= �p .

The statement of [41, Theorem 20.3.4] shows that if (WE)-p holds for some p � 1, then P

admits a unique invariant probability measure which is denoted by ⇡ below. Moreover, for any
probability measure ⇠ with finite p-th moment,

Wd,p(⇠P
n
, ⇡)  �n

pWd,p(⇠, ⇡) , n 2 N. (2.13)

The setting of Markov kernels satisfying (WE)-2 has been partially addressed before in [32].
However, in such a setting one need to rely on rather restrictive additional properties of the
Markov kernel P(x, ·), see the related discussion in [39, Proposition 3.2]. Below we focus on a
more general setting of (WE)-1. In this particular setting (CS) and (CD) can be verified for H
being a subset of bounded Lipschitz functions.
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Proposition 2. Let H ⇢ Lipb,d(L,B) and assume that (WE)-1 holds. Then for any initial

distribution ⇠ 2 S1(X, d), assumptions (CS) and (CD) are satisfied with

⇢
(h)(`) = E⇡

⇥
h̄(X0)h̄(X|`|)

⇤
, � = �1, (2.14)

and constants R and & are given in [39, Proposition 3.3]. Moreover, for any p 2 N,

P⇠

���Vn(h)� E⇠[Vn(h)]
�� � t

�


C̄
p
R,1B

2p
b
3p/2
n p

p

np/2tp
+

C̄
p
R,2B

2p
b
2p
n p

2p

np�1tp
, (2.15)

where C̄R,1 and C̄R,2 are constants given in [39, eq.(A.28)].

Proof of Proposition 2 is based on a suitable version of Rosenthal inequality adapted from [45].
Note that Vn(h) is a quadratic form in h(X0), . . . , h(Xn�1). Studying the concentration properties
of such objects is already challenging in the setting of independent observations [73]. Recent
results for the setting of Markov chains, unfortunately, covers only the uniformly geometrically
ergodic setting [74] and [75], which is more restrictive as compared to the setting of the current
chapter. Moreover, the latter condition fails to cover the algorithms studied in Section 2.6.

2.6. Applications to Langevin-based MCMC algorithms

In this section we consider a setting when the distribution of interest ⇡ is a probability
measure on Rd which admits density w.r.t. the Lebesgue measure. We also denote this density by
⇡. Further, assume that there is a function U(✓) : Rd

! R, such that C̃ =
R
Rd e

�U(✓)d✓ < 1, and
⇡(✓) = e

�U(✓)
/C̃ for ✓ 2 Rd. We assume that U is known, but not the normalization constant C̃.

Then for approximate sampling from ⇡ one can use methods based on the Langevin diffusion

dYt = �rU(Yt) dt+
p

2dWt , (2.16)

with (Wt)t�0 being a d-dimensional Wiener process. Under appropriate conditions, (2.16) admits
a unique strong solution [36]. Moreover, the distribution of Yt converges to ⇡ at the exponential
rate, see e.g. [63]. With the Euler scheme used to discretize (2.16), we obtain the Unadjusted
Langevin Algorithm (ULA). Given a step size � > 0 and an i.i.d. sequence of standard Gaussian
vectors (⇠k)k�1, iterates of the ULA are written as a recurrence

✓k+1 = ✓k � �rU(✓k) +
p
2� ⇠k+1 . (2.17)

The ULA algorithm and its theoretical properties attracted lot of attention [36, 37, 76]. Note
that computing the gradient rU may be computationally expensive, if U(✓) = U0(✓)+

PK
i=1 Ui(✓)

and the number of terms K is large. In such a setting, following [33], we can use the Stochastic
Gradient Langevin Dynamics (SGLD) algorithm:

✓k+1 = ✓k � �G(✓k, Sk+1) +
p

2� ⇠k+1 , G(✓, S) = rU0(✓) +KM
�1
X

i2S
rUi(✓) . (2.18)

Random variable Sk+1 2 SM is called a mini-batch. Here SM is the set of all subsets S of {1, . . . , K}

with |S| = M . Note that Sk+1 is chosen independently of Fk = �({(✓`, S`)}0`k). For theoretical
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analysis of SGLD we impose the following assumptions on U :

(SGLD). The function U(✓) = U0(✓) +
PK

i=1 Ui(✓) satisfies the following conditions:

1) Lipschitz gradient: for any i 2 {0, . . . , K}, Ui is continuously differentiable on Rd
with

eLU -Lipschitz gradient;

2) Convexity: for any i 2 {0, . . . , K}, Ui is convex;

3) Strong convexity: there exists a constant mU > 0, such that for any ✓, ✓
0
2 Rd

it holds that

U(✓0) � U(✓) + hrU(✓), ✓0 � ✓i+ (mU/2)k✓0 � ✓k
2
.

These assumptions are classical for the analysis of SGLD, see e.g. [77, 78]. Denote by
PSGLD the transition kernel of SGLD and let ⌥M be a uniform distribution over SM . Set P :=

PSGLD ⌦ ⌥M and note that the underlying chain now has a form Xk = (✓k, Sk+1). It is shown in
[39, Proposition 3.7] that P satisfies the assumption (WE)-1 with �1 =

p
1� �mU , and admits

a unique invariant measure. Define the corresponding asymptotic variance of SGLD iterates as
V

(SGLD)
1 (·). Then we obtain the following result:

Theorem 7. Let H ✓ Lipb,d(L,B) and assume that (SGLD) holds. Fix any � 2
�
0, eL�1

U (K+1)�1
�

and set bn = 2dlog(n)/ log(1/�1)e with �1 =
p
1� �mU . Then, for any " > 0 and � 2 (0, 1), with

probability at least 1� �,

V
(SGLD)
1

(bhn,")� inf
h2H

V
(SGLD)
1

(h) . C̄4 " log(n) + C̄5

s
log5(n)

n

✓
|H"|

�

◆1/ log(n)

+ C̄6
log n

n
, (2.19)

where C̄4, C̄5, and C̄6 are constants provided in [39, Theorem 3.8], and the first asymptotic variance

is conditional on X0, . . . , Xn�1 used to construct bhn," in (2.11).

Corollary 1. Under the assumptions of Theorem 7, if class H is parametric, that is, |H"|  C⇢"
�⇢

for all " 2 (0, 1) and some constants C⇢, ⇢ > 0. Then it holds with probability at least 1�1/n, that

V
(SGLD)
1

(bhn,")� infh2H V
(SGLD)
1

(h) . n
�1/2 log5/2(n),

where . stands for inequality up to a constant depending on ⇢ and other constants from Theorem 7.

If the class H is constructed using the Stein control variates, we can ensure the inclusion H ✓

Lipb,d(L,B) by taking smooth and compactly supported functions �. As a result of Corollary 1,
the asymptotic confidence intervals constructed by our method for the SGLD algorithm take the
form

⇡N(bhn,")± q1�↵/2

r
infh2H V1(h) + Cn�1/2

N
(2.20)

for some constant C > 0. Assuming that the number of test observations N = n (see Algorithm 1),
the ESVM allows to obtain the length of the asymptotic confidence interval of order n�3/4, provided
that the class H is chosen so that infh2H V1(h) is sufficiently small. This result is interesting to
compare with one previously obtained in [65]. The result of (2.20) is comparable with the "slow
rates" reported in [65] in the case of independent observations.

Numerical demonstrations of the proposed methodology applied to the ULA and SGLD
algorithms and their modifications can be founded in [39].
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Chapter 3

Variance reduction with martingale representations
3.1. Introduction and problem setup

The particular emphasis of Chapter 2 focuses on the setting of variance reduction with an
analytically known target distribution, ⇡. This setup perfectly suits the setting of control variates,
see [32, 70, 71, 79, 80]. One of the most common tools in such a scenario is the Stein control variates
[81], [71], as described in Section 2.4. The main problem with this approach is that it requires
the direct access to ⇡ and r log ⇡, which is not always possible. However, it turns out that if ⇡
is not known analytically and Stein control variates cannot be directly applied, it is still possible
to suggest alternative constructions of control variates, which is the focus of this chapter. The
results of this chapter are published in [40]

Similar to Section 2.1, we aim at computing ⇡(f) :=
R
Rd f(x)⇡(dx), where f : Rd

! R
is a function in L

2(⇡) and ⇡ has a smooth and everywhere positive density w.r.t the Lebesgue
measure. By a slight abuse of notation, we use the same letter ⇡ for the probability measure and
its density with respect to the Lebesgue measure. We further aim to enhance the estimate of ⇡(f),
which writes as ⇡x

n(f) =
1
n

Pn
p=1 f(X

x
p ), where (Xx

p )p2N0 is a Markov chain, satisfying a recurrence
relation

X
x
p = �(Xx

p�1, ⇠p), p = 1, 2, . . . , X0 = x (3.1)

for some i.i.d. random vectors ⇠p 2 Rm with distribution P⇠ and some Borel-measurable func�
tion � : Rd

⇥ Rm
! Rd. We use an upper index x for X

x
p to highlight its dependence on the

initial condition, which we assume to be X0 = x. In fact, this is quite general class of Markov
chains (see [41, Theorem 1.3.6]), which covers such MCMC algorithms as the Unadjusted and
Metropolis-Adjusted Langevin Algorithms (see [35] or [41, Chapter 2]). Details are provided in
[40, Example 2.1-2.2]. We further assume that we have access to a complete orthonormal system
in L2(Rm

, P⇠), further denoted by (�k)k�0. Since the dependence on the initial condition is explicit
in ⇡x

n and X
x
p , we simply write E and Var instead of Ex and Varx when applicable.

3.2. Contributions.

The main contributions of this chapter are the following:

• We propose a generic variance reduction method for additive functionals of Markov chains
satisfying the recurrence representation (3.1). Compared to Stein control variates techniques,
the knowledge of the stationary distribution is not required.

• We provide a non-asymptotic analysis of our algorithm applied to the normal noise model,
which covers as a special example the Langevin dynamics.

3.3. Martingale representation

We first prove a general discrete-time martingale representation for Markov chains of type
(3.1), which is used later to construct an efficient variance reduction algorithm. Let (�k)k2Z+ be
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a complete orthonormal system in L2(Rm
, P⇠) with �0 ⌘ 1. In particular, we have

E[�i(⇠)�j(⇠)] = �ij, i, j 2 N

with ⇠ ⇠ P⇠. Notice that this implies that the random variables �k(⇠), k � 1, are centered. Let
(⇠p)p2N be i.i.d. m�dimensional random vectors with distribution P⇠. We denote via (Gp)p2N0 the
filtration generated by (⇠p)p2N with G0 = triv. Then we obtain the following expansion result:

Theorem 8. For any q 2 N, j < q, bounded measurable function f , and x 2 Rd
, it holds in

L2
�
Rmq

, P
⌦q
⇠

�
, that

f(Xx
q ) = E

⇥
f(Xx

q )
��Gj

⇤
+
X1

k=1

Xq

l=j+1
āq�l+1,k(X

x
l�1)�k (⇠l) (3.2)

where for all y 2 Rd
,

ār,k(y) = E [f(Xy
r )�k (⇠1)] r, k 2 N. (3.3)

The coefficients ār,k in (3.3) can be alternatively written as

ār,k(x) = E [�k (⇠)Qr�1 (�(x, ⇠))] with Qr(y) = E [f(Xy
r )] , r 2 N. (3.4)

Discussion. Setting
⇡
x
n(f) = n

�1
Xn

p=1
f(Xx

p ) ,

we obtain the following exact representation for any bounded measurable function f :

⇡
x
n(f) =

1
n

Xn

q=1
E[f(Xx

q )] +
1
n

X1

k=1
M

x
n,k , with M

x
n,k =

Xn

l=1

Xn�l+1

r=1
ār,k(X

x
l�1)�k(⇠l) . (3.5)

Construction of a control variate. We now show how the representation (3.5) can be used
to construct variance-reduced estimates for ⇡(f). The first natural candidate implied by (3.5) is

⇡
(x,K)
n (f) = ⇡

x
n(f)� n

�1
XK

k=1
M

x
n,k , (3.6)

where K is a truncation parameter. However, its computational complexity scales quadratically

with the number of observations n. In order to overcome the problem we set the second truncation
level n0 - the maximal number of estimated coefficients ār,k, r 2 {1, . . . , n0}. Corresponding
estimator writes as

⇡
(x,K)
n,n0

(f) = ⇡
x
n(f)� n

�1
KX

k=1

M
x
n,k,n0

, M
x
n,k,n0

=
nX

l=1

{n�`+1}^n0X

r=1

ār,k(X
x
l�1)�k(⇠l) . (3.7)

It remains to define an estimator of ār,k. Towards this aim we first approximate Qr(·) by the
functions of the form Qr,�(y) =

Pb0
b=1 �b b(y) with some basis functions { b}

b0
b=1 and � 2 B ⇢ Rb0 .

Vector � is estimated via the least-squares approach, that is, for r 2 {0, . . . , n0 � 1}, we find

�̂r 2 argmin
�2Rb

0

Xn�r

s=1

��f(Xx
r+s)�Qr,�(X

x
s )
��2 , (3.8)
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and then compute the estimates bar,k of the functions ār,k according to the formulas

bar+1,k(y) =

Z
�k(z)Q�̂r,r

(�(y, z))P⇠(dz) (3.9)

where � is defined in (3.1). The estimator obtained by plugging (3.9) into (3.7) is referred to as
the MAD-CV (MArtingale Decomposition Control Variate) estimator. The resulting estimate

b⇡(x,K)
n,n0

(f) = ⇡
x
n(f)� n

�1
KX

k=1

cMx
n,k,n0

, cMx
n,k,n0

=
nX

l=1

(n�l+1)^n0X

r=1

bar,k(Xx
l�1)�k(⇠l) (3.10)

remains unbiased for ⇡(f) (if computed on a new trajectory independent of regression data). We
summarize the suggested algorithm in Algorithm 2 above.

Algorithm 2 Martingale decomposition control variate (MAD-CV)

Input: Independent sequences XN = (Xx
k )

N�1
k=0 , and X̃n = (X̃x

k )
n�1
k=0 , satisfying the recurrence

(3.1); truncation point n0.
1. Solve the r-step ahead prediction problem for �̂r in (3.8) based on XN ;
2. Compute the estimates bar,k according to bar+1,k(y) =

R
�k(z)Q�̂r,r

(�(y, z))P⇠(dz)

Output: MAD-CV estimator b⇡(x,K)
n,n0 (f) for ⇡(f), computed for a new trajectory X̃n.

3.4. Gaussian noise model

We analyze the MAD-CV algorithm for the Markov chains (Xx
p )p�0 driven by a normal noise:

X
x
p = �(Xx

p�1, Zp), Zp ⇠ N (0, Id), p = 1, 2, . . . , X
x
0 = x . (3.11)

For a multi-index k = (ki) 2 Nd
0, we denote by Hk(x) the normalized Hermite polynomial on Rd,

that is, Hk(x) :=
Qd

i=1 Hki(xi), x = (xi) 2 Rd with Hki(·) being a univariate Hermite polynomial
of degree ki. In this case we specify the estimator (3.6) as

⇡
(x,K)
n (f) = ⇡

x
n(f)� n

�1
X

0<kkkK

nX

l=1

n�l+1X

r=1

ār,k(X
x
l�1)Hk(Zl) . (3.12)

We aim to apply the MAD-CV algorithm for estimating expectations under the stationary dis�
tribution of ergodic diffusion processes. Let b(x) : Rd

! Rd be a drift function, (Wt)t�0 be a
d�dimensional Wiener process and assume that the SDE

dXx
t = �b(Xx

t ) dt+ dWt, X0 = x (3.13)

admits a unique strong solution (Xx
t )t�0 for any x 2 Rd. Сonsider the Euler-Maruyama discretiza�

tion of the SDE (3.13), i.e. the homogeneous Markov chain (Xx
k )k�0, starting from X

x
0 = x 2 Rd

and defined by the following recursion: for any k 2 N,

X
x
k+1 = X

x
k � �b(Xx

k ) +
p
�Zk+1, (3.14)
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where � > 0 is a stepsize and (Zk)k2N is a sequence of i.i.d. d�dimensional standard normal
vectors. Note that the recurrence (3.14) is a particular case of the general scheme (3.11) with
�(x, z) = x��b(x)+

p
�z. We impose some technical conditions on the drift function b, following

[82], namely,

A 4. There exist a constant L > 0, such that kb(x)� b(y)k  Lkx� yk for any x, y 2 Rd
.

A 5. There exist a constant m > 0, such that hb(x)� b(y), x� yi � mkx� yk
2

for any x, y 2 Rd
.

Under the assumptions A 4 and A 5, one can obtain the following bound on the variance of
additive functionals of the Markov chains of the form (3.14):

Theorem 9. Let (Xx
k )k�0 be a Markov chain given by the recurrence (3.14), and assume that A 4

and A 5 hold, and let f : Rd
! R be a K ⇥ d times continuously differentiable function for some

K 2 N. Assume in addition that there exist constants Cf and Cb, such that for any x 2 Rd
, any

multi-index k 2 Nd
0 with 0 < kkk  K, and any u 2 {1, . . . , d},

|f
(k)(x)|  Cf , |b

(k)
u (x)|  Cb .

Then, for 0 < � < min(1/Cb,m/L2) and any n 2 N,

Var
⇥
⇡
(x,K)
n (f)

⇤
. �K�2

n .

Moreover, with the truncation point n0(�) = dK log ��1
/(2m�)e, variance of the truncated estimate

⇡
(x,K)
n,n0(�)

(f) can be bounded as

Var
⇥
⇡
(x,K)
n,n0(�)

(f)
⇤
. �K�2

n ,

where . stands for inequality up to a constant not depending on � and n.

In order to prove Theorem 9 we first establish the rate at which the coefficients ār,k decrease
with the growth of r. Then we relate Var

⇥
⇡
(x,K)
n (f)

⇤
with ār,k(·) based on an appropriate version

of the Gaussian Poincare inequality [2]. Note that under conditions of Theorem 9, the variance of
the estimate ⇡(x,K)

n (f) for the discretized diffusion (3.14) satisfies

Var
⇥
⇡
(x,K)
n (f)

⇤
. �K�2

n .

At the same time, the variance of the standard Monte Carlo estimate ⇡x
n(f) is of order 1/(n�) and

this order can not be improved in general. Thus, for K � 2 and � small enough we have a clear
variance reduction effect.

Remark 1. In the particular case of the Unadjusted Langevin Algorithm (2.17), assumptions

of the Theorem 9 can be verified for the smooth and strongly convex potential U , that is, for

U 2 C
2(Rd) satisfying

mUkxk
2
 hr

2
U(y)x, xi  MUkxk

2

for some mU > 0, MU > 0, and any x, y 2 Rd
.
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3.5. Numerical experiments

We compare the variance reduction achieved by MAD-CV against plain MCMC estimates
based on the ULA algorithm (see (2.17)). Consider the target density ⇡, which is a mixture of a
two d-dimensional standard normal distributions

⇡(x) =
1

2
p
(2⇡)d

⇣
e�(1/2)kx�µk2 + e�(1/2)kx+µk2

⌘
. (3.15)

We fix d = 2, µ = (0.5, 0.5), and estimate ⇡(f) with f(x) = x1 + x2 and f(x) = x
2
1 + x

2
2. Using

the ULA with constant step size � = 0.2, we sample a training trajectory of length 5 ⇥ 104 with
the starting point X0 = (1, 1). Then we solve the least squares problems (3.8) with the class of
regressors {x1, x2, x

2
1, x1x2, x

2
2} for the different choices of truncation point n0 2 [2, 20]. We finally

estimate the cost-to-variance ratio as follows

R(f,K, n, n0) =
cost{⇡x

n(f)}Var[⇡
x
n(f)]

cost{⇡(x,K)
n,n0 }Var[⇡(x,K)

n,n0 (f)]
. (3.16)

Note that R(f,K, n, n0) > 1 indicates that the variance reduction procedure is more cost-efficient
as compared to the simple increase of the trajectory length n. We estimate the approximate value
of R(f,K, n, n0) based on 100 independent trajectories, each of length n = 5⇥ 104. Here we set

cost{⇡(x,K)
n,n0

(f)} = cost{⇡x
n(f)}⇥ n0 ⇥ t(K) ,

where t(K) is the number of evaluated coefficients âr,k(x). Variance reduction costs for different
truncation points n0 are summarized in Figure 3.1. We refer the reader to [40] for additional
numerical examples.

Figure 3.1. Cost-to-variance ratios (3.16) as functions of the truncation level n0 for the mixture (3.15) of
two-dimensional Gaussian distributions. Subfigure (a) : f(x) = x1 + x2, subfigure (b) : f(x) = x21 + x22.
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Conclusion

1. In Chapter 1 we obtain new counterparts of Rosenthal and Bernstein inequalities for additive
functionals of ergodic Markov chains that converge to the stationary distribution exponen�
tially either in V -total variation norm or in the Kantorovich-Wasserstein semi-metric. The
proof method we employ is based on the cumulant expansion techniques and the connections
between cumulants and centered moments established through the Leonov-Shiryaev formula.

2. In Chapter 2, we propose an extension of the control variates method for variance reduction
to the case of dependent random sequences that satisfy the covariance stationarity assump�
tion. We derive concentration inequalities for quadratic forms of functions of Markov chains
satisfying the geometric ergodicity condition in the Kantorovich-Wasserstein metric Wd,1

and apply these results to MCMC algorithms based the Stochastic Gradient Langevin Dy�
namics.

3. In Chapter 3 we propose a novel variance reduction approach for additive functionals of
Markov chains based on a discrete-time martingale representation. We study the variance
reduction achieved by our method in a special setting of the normal noise model, covering the
Unadjusted Langevin Algorithm (ULA). Our theoretical analysis is based on the Poincare
inequality for Gaussian random vectors.
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10. Florence Merlevède, Magda Peligrad, and Emmanuel Rio. A bernstein type inequality and
moderate deviations for weakly dependent sequences. Probability Theory and Related Fields,
151(3-4):435–474, 2011.

11. Emmanuel Rio et al. Asymptotic theory of weakly dependent random processes, volume 80.
Springer, 2017.

12. Radoslaw Adamczak. A tail inequality for suprema of unbounded empirical processes with
applications to Markov chains. Electronic Journal of Probability, 13:1000–1034, 2008.
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