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Introduction

This dissertation is devoted to the topic of dualities in many-particle integrable systems. The central
player in it is a series of Calogero-Moser-Sutherland / Ruijsenaars-Schneider systems and their degener-
ations/generalizations. In canonical coordinates, these systems are characterized by the dependence of the
Hamiltonians on the positions and momenta of the particles. Both of these dependencies can be rational,
trigonometric, or elliptic, respectively. Thus, we get a 3x3 table of 9 systems.([119])

These systems are connected by dualities both with each other and with models such as spin chains and
Gaudin systems. We will look at just a few of them. The first part of the dissertation is devoted to systems
with a rational dependence on momentum - Calogero-Moser systems (first row of the table). They are labeled
by a choice of a simple Lie algebra. Their classical integrability is guaranteed by the existence of a Lax pair.
In its minimal version, this approach leads to embedding the dynamics of the system into the coadjoint orbit
of the corresponding simple Lie group. However, in a recent work, A. Levin, M. Olshanetsky, and A. Zotov
([96]) constructed a new type of Lax matrix for the system associated with the algebra sl(N). Its design
uses the concept of a quantum R-matrix, which emerges as a basic building block in spin chain systems. In
the thesis, we study its generalizations to the case of other root systems, as well as its application to the
construction of a new system of the Haldane-Shastri spin chain class. The second part concerns systems with
a trigonometric dependence on momentum, namely Ruijsenaars-Schneider systems (second row of the table).
It is devoted to a generalization of the recent work of A. Zotov and A. Zabrodin ([3]) on the connection of
these systems with the quantum Knizhnik Zamolodchikov equation, which in turn generalizes even earlier
results on this topic, starting with the work of A. Matsuo ([4]). Duality works as follows. Solutions of the
quantum Knizhnik-Zamolodchikov equation are numbered by the value of the total spin. Summing up the
components of the solution in the sector with a fixed spin, we obtain the wave function of the Ruijsenaars-
Schneider system. This correspondence is a deformation of the quantum-classical duality between Lagrangian
submanifolds in the phase space of the classical Ruijsenaars-Schneider system and the solutions of the Bethe
equations of the corresponding spin chain. The dissertation examines the generalization of this duality to
spin chains constructed from R-matrices associated with supersymmetric algebras.

The third and fourth parts of the dissertation study systems with an elliptic dependence on momentum
(last row of the table). Two of these systems are related by hypothetical p-q duality to the elliptic model
of Calogero and Ruijsenaars, respectively. The third, doubly elliptic system, is the most general of the
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entire series being studied. To consider it even at the classical level, several independent approaches were
developed: the first - by A. Mironov, A. Morozov, and G. Aminov, and the second - by G. Braden and
T. Hollowood. Recently, P. Koroteev and Sh. Shakirov proposed a quantum version of a double elliptic
integrable system. Their model is a quantization of Braden’s and Hollowood’s approach. In the limit with
trigonometric dependence on coordinates, the eigenfunctions hypothetically look like a generalization of
Macdonald polynomials with coefficients elliptically depending on q and t. In this thesis, I will present a
generalization of the Sekiguchi-Debiard-McDonald determinant for these functions. I will show how it can
be used to prove the formula for the eigenvalues of the Hamiltonians in this limit. Partial progress has also
been made in constructing Cherednik operators for this system. Unfortunately, this progress was not enough
to prove the commutativity of the Hamiltonians, but it was still useful for the construction of an infinite
number of particles limit, which turned out to be related to the representation theory of elliptic quantum
toroidal algebra. Some of the above results are also true in the completely non-degenerate double elliptic
case.

1 R-matrix valued Lax pairs

In this part of the thesis we consider the Calogero-Moser models [15] and their generalizations of different
types. The Hamiltonian of the elliptic classical slN model

H =

N∑
i=1

p2i
2
− ν2

N∑
i>j

℘(qi − qj) (1.1)

together with the canonical Poisson brackets

{pi, qj} = δij , {pi, pj} = {qi, qj} = 0 . (1.2)

provides equations of motion for N -particle dynamics:

q̇i = pi , q̈i = ν2
N∑

k:k ̸=i

℘′(qik) . (1.3)

All variables and the coupling constant ν are assumed to be complex numbers. Equations (1.3) can be
written in the Lax form. The Krichever’s Lax pair with spectral parameter [34] reads as follows1:

L(z) =

N∑
i,j=1

Eij Lij(z) , Lij(z) = δijpi + ν(1− δij)ϕ(z, qij) , qij = qi − qj , (1.4)

Mij(z) = νdiδij + ν(1− δij)f(z, qij) , di =

N∑
k:k ̸=i

E2(qik) = −
N∑

k:k ̸=i

f(0, qik) , (1.5)

i.e. the Lax equations
L̇(z) ≡ {H,L(z)} = [L(z),M(z)] (1.6)

are equivalent to (1.3) identically in z. The definitions and properties of elliptic functions entering (1.1)-(1.5)
are given in the Appendix. The proof is based on the identity written as

ϕ(z, qab)f(z, qbc)− f(z, qab)ϕ(z, qbc) = ϕ(z, qac)(f(0, qbc)− f(0, qab)) . (1.7)

and
ϕ(z, qab)f(z, qba)− f(z, qab)ϕ(z, qba) = ℘′(qab) . (1.8)

1{Eij ∈ Mat(N), i, j = 1...N} – is the standard basis in Mat(N): (Eij)kl = δikδjl.
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These are particular cases of the genus one Fay identity

ϕ(z, qab)ϕ(w, qbc) = ϕ(w, qac)ϕ(z − w, qab) + ϕ(w − z, qbc)ϕ(z, qac) . (1.9)

The model (1.1)-(1.3) is included into a wide class of Calogero-Moser models associated with root systems
[42]. The corresponding Lax pairs with spectral parameters were found in [19, 13]. In particular, for the
BCN root system described by the Hamiltonian

H =
1

2

N∑
a=1

p2a − ν2
N∑

a<b

(℘(qa − qb) + ℘(qa + qb))− µ2
N∑

a=1

℘(2qa)− g2
N∑

a=1

℘(qa) (1.10)

there exists the Lax pair with a spectral parameter of size (2N + 1)× (2N + 1) if (as in [42])

g(g2 − 2ν2 + νµ) = 0 . (1.11)

Let us remark that the Lax pairs of size 3N × 3N [30] or 2N × 2N [20] corresponding to the general case
(all constants are arbitrary) are not considered in this thesis.

The Lax pair (1.4)-(1.5) of the slN model (1.1)-(1.3) has the following generalization [96] (the R-matrix-
valued Lax pair):2

L(z) =
N∑

i,j=1

Eij ⊗ Lij(z) , Lij(z) = 1⊗N

Ñ
δijpi + ν(1− δij)R

z
ij(qij) (1.12)

Mij(z) = νdiδij + ν(1− δij)F
z
ij (qij) + νδij F 0 , di = −

N∑
k:k ̸=i

F 0
ik(qik) , (1.13)

where F z
ij (q) = ∂qR

z
ij(q), F

0
ij(q) = F z

ij (q)|z=0 = F 0
ji(−q) and

F 0 =

N∑
k>m

F 0
km(qkm) =

1

2

N∑
k,m=1

F 0
km(qkm) . (1.14)

It has block-matrix structure3. The blocks are enumerated by i, j = 1...N as matrix elements in (1.4).
Each block of L(z) is some GL(Ñ)-valued R-matrix in fundamental representation, acting on the N -th

tensor power of Ñ -dimensional vector space H = (CÑ )⊗N . So the size of each block is dimH × dimH, and
dimH = ÑN , i.e. L(z) ∈ MatN ⊗Mat⊗N

Ñ
. We will refer to MatN component as auxiliary space, and to

Mat⊗N

Ñ
∼= H⊗2 – as ”quantum” space since H is the Hilbert space of GL(Ñ) spin chain (in fundamental

representation) on N sites.
An R-matrix Rij acts trivially in all tensor components except i, j. It is normalized in a way that for

Ñ = 1 it is reduced to the Kronecker function ϕ(z, qij) (see the main text for definition) [112]. For instance,
in one of the simplest examples Rij is the Yang’s R-matrix [74]:

Rη
12(q) =

1⊗ 1

η
+

ÑP12

q
, (1.15)

where P12 is the permutation operator . In general (and as a default) case Rij is the Baxter-Belavin [81, 9]
elliptic R-matrix . The properties of this R-matrix are very similar to those of the function ϕ(z, q). The
key equation for Rij (which is needed for existence of the R-matrix-valued Lax pair) is the associative
Yang-Baxter equation [23]

Rz
abR

w
bc = Rw

acR
z−w
ab +Rw−z

bc Rz
ac , Rz

ab = Rz
ab(qa−qb) . (1.16)

2Equations of motion following from (1.12)-(1.13) contain the coupling constant Ñν instead of ν in (1.1), (1.3).
3The operator-valued Lax pairs with a similar structure are known [31, 27, 28, 10, 32]. We discuss it below.
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It is a matrix generalization of the Fay identity (1.9), and it is fulfilled by the Baxter-Belavin R-matrix [44].
The degeneration of (1.16) similar to (1.7) is of the form:

Rz
abF

z
bc − F z

abR
z
bc = F 0

bcR
z
ac −Rz

acF
0
ab . (1.17)

It underlies the Lax equations for the Lax pair (1.12)-(1.13). The last term F 0 in (1.13) is not needed in
(1.5) since for Ñ = 1 it is proportional to the identity N ×N matrix. But it is important for Ñ > 1 since it
changes the order of R and F 0 in the r.h.s. of (1.17). Namely,

[Rz
ac,F 0] +

∑
b̸=a,c

Rz
abF

z
bc − F z

abR
z
bc =

∑
b ̸=c

Rz
acF

0
bc −

∑
b ̸=a

F 0
abR

z
ac , ∀ a ̸= c. (1.18)

This identity provides the cancellation of non-diagonal blocks in the Lax equations. See [44, 45, 37, 38, 56] for
different properties and applications of R-matrices of the described type. Here we need two more important
properties. These are the unitarity

Rz
12(q12)R

z
21(q21) = 1⊗ 1 Ñ2(℘(Ñz)− ℘(q12)) (1.19)

and the skew-symmetry
Rz

ab(q) = −R−z
ba (−q) . (1.20)

On the one hand, these properties are needed for the Lax equations since they lead to

F 0
ab(q) = F 0

ba(−q) (1.21)

and to the analogue of (1.8) (obtained by differentiating the identity (1.19))

Rz
abF

z
ba − F z

abR
z
ba = Ñ2℘′(qab) , (1.22)

which provides equations of motion in each diagonal block in the Lax equations.
On the other hand, together with (1.19) and (1.20) the associative Yang-Baxter equation leads to the

quantum Yang-Baxter equation
Rη

abR
η
acR

η
bc = Rη

bcR
η
acR

η
ab. (1.23)

In this respect, we deal with the quantum R-matrices satisfying (1.16), (1.19), (1.20), and the Planck constant
of R-matrix plays the role of the spectral parameter for the Lax pair (1.12)-(1.13). In trigonometric case the
R-matrices satisfying the requirements include the standard GL(Ñ) XXZ R-matrix [35] and its deformation
[122, 5] (GL(Ñ) extension of the 7-vertex R-matrix). In the rational case the set of the R-matrices includes
the Yang’s one (1.15) and its deformations [122, 50] (GL(Ñ) extension of the 11-vertex R-matrix).

The aim of this part of the thesis is to clarify the origin of the R-matrix-valued Lax pairs and
examine some known constructions, which work for the ordinary Lax pairs.

First, we study extensions of (1.12)-(1.13) to other root systems. More precisely, we propose R-matrix-
valued extensions of the D’Hoker-Phong Lax pairs for (untwisted) Calogero-Moser models associated with
classical root systems and BCN (1.10). The auxiliary space in these cases is given by Mat2N or Mat2N+1

because such root systems are obtained from sl2N or sl2N+1 cases by discrete reduction. There are two
natural possibilities for arranging tensor components of the quantum spaces. The first one is to keep 2N +1
(or 2N) components of the quantum spaces in the reduced root system. The second – is to leave only N (or
N + 1) components. We study both cases.

Next, we proceed to quantum Calogero-Moser models [15, 43, 16]. To some extent, they are described
by a quantum analog of the Lax equations (1.6) [51, 14]:

[Ĥ, L̂(z)] = ℏ [L̂(z),M(z)] , (1.24)

where Ĥ is the quantum Hamiltonian (it is scalar in the auxiliary space), L̂(z) is the quantum Lax matrix
and ℏ is the Planck constant. The operators Ĥ and L̂(z) are obtained from the classical (1.1) and (1.4)
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by replacing momenta pi with ℏ ∂qi , and the coupling constant in the Hamiltonian acquires the quantum
correction. We verify if the obtained R-matrix-valued Lax pairs are generalized to quantum case in a similar
way. It appears that (besides the slN case) only models associated with SO type root systems are generalized.
As a result, we show4

Proposition 1.1. The D’Hoker-Phong Lax pairs for (untwisted) classical
Calogero-Moser models associated with classical root systems and BCN admit R-matrix-valued extensions
with additional constraints:

– for the coupling constants in CN and BCN cases;
– for the size of R-matrix (Ñ = 2) in BN and DN cases.

The latter cases are directly generalized to quantum Lax equations, while the CN and BCN cases are not.
The AN Lax pair is generalized to the quantum case straightforwardly without any restrictions.

The Calogero-Moser models [15, 43] possess also spin generalizations [24]. Its Lax description is known at
classical [12] and quantum levels [31, 27, 28, 10, 32]. It is important to note that for the quantum Calogero-
Moser models with spin, the quantum Lax pairs have the same operator-valued (tensor) structure as in
(1.12)-(1.13). The term analogues to F0 (1.14) is treated as a part of the quantum Hamiltonian, describing
the interaction of spins. We explain how the R-matrix-valued Lax pairs generalize (and reproduce) the
previously known results.

Finally, we discuss the origin of the R-matrix-valued Lax pairs (for slN case (1.12)-(1.13) with GLÑ R-

matrices) by relating them to Hitchin systems on SL(NÑ)-bundles over an elliptic curve. Originally systems
of this type were derived by A. Polychronakos from matrix models [47] and later were described as Hitchin
systems with nontrivial characteristic classes [55, 39]. It is also known as the model of interacting tops since
it is Hamiltonian (or equations of motion) are treated as interaction of N SL(Ñ)-valued elliptic tops.

The relation between the R-matrix-valued Lax pairs and the interacting tops come from rewriting the
Lax equation for (1.12)-(1.13) in the form

{H,L}+ [νF0,L(z)] = [L(z),M̄(z)] , (1.25)

where in contrast to (1.13) M̄ does not include the F0 term (1.14). In this respect the R-matrix-valued
Lax pair is ”half-quantum”: the spin variables are quantized in the fundamental representation, while the
positions and momenta of particles remain classical. The F0 term in this treatment is the (anisotropic) spin
exchange operator. We will show that the classical analog for such spin exchange operator appears in the
above-mentioned Hitchin systems. Alternatively, the result is formulated as follows.

Proposition 1.2. The quantum Hamiltonian Ĥtops of the model of N interacting SL(Ñ) elliptic tops (with
spin variables being quantized in the fundamental representation) coincides with the sum of the quantum
Calogero-Moser Hamiltonian (1.24) and F0-term (1.14)

Ĥtops = ĤCM + ℏνF0 + 1⊗N

Ñ
const (1.26)

up to a constant proportional to identity matrix in End(H) and redefinition of the coupling constants.

2 Supersymmetric qKZ-Ruijsenaars correspondence

The KZ-Calogero and qKZ-Ruijsenaars correspondences are the
Matsuo-Cherednik type constructions [69, 67, 75, 76] for solutions of the Calogero-Moser-Sutherland [121]
and Ruijsenaars-Schneider [135] quantum problems by means of solutions of the Knizhnik-Zamolodchikov
(KZ) [65] and quantum Knizhnik-Zamolodchikov (qKZ) equations [68] respectively. Consider, for example,
the qKZ equations5 related to the Lie group GL(K):

eηℏ∂xi

∣∣∣Φ〉 = K
(ℏ)
i

∣∣∣Φ〉, i = 1, . . . , n, (2.27)

4Some more details are given in the Conclusion.
5The quantum R-matrices entering (2.28) are assumed to be unitary: Rij(x)Rji(−x) = id.
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K
(ℏ)
i = Ri i−1(xi−xi−1+ηℏ) . . .Ri1(xi−x1+ηℏ)g(i)Rin(xi−xn) . . .Ri i+1(xi−xi+1) , (2.28)

where g = diag(g1, . . . , gK) is a diagonal K×K (twist) matrix, and g(i) acts by g multiplication in the
i-th tensor component of the Hilbert space V = (CK)⊗n. The quantum R-matrices Rij are in the funda-
mental representation of GL(K). They act in the i-th and j-th tensor components of V and satisfy the
quantum Yang-Baxter equation, which guarantees compatibility of equations (2.27). The twist matrix g is
the symmetry of Rij : g

(i)g(j)Rij = Rijg
(i)g(j). In the rational case, we deal with the Yang’s R-matrix [74]:

Rij(x) =
xI+ ηPij

x+ η
, (2.29)

where I is identity operator in End(V), and Pij is the permutation operator, which interchanges the i-th
and j-th tensor components in V. The operators6

Ma =

n∑
l=1

e(l)aa (2.30)

commute with K
(ℏ)
i and provide the weight decomposition of the Hilbert space V into the direct sum

V = V ⊗n =
⊕

M1,...,MK

V({Ma}) (2.31)

of eigenspaces of operators Ma with the eigenvalues Ma ∈ Z≥ 0, a = 1, . . . ,K: M1 + . . . +MK = n. Using
the standard basis {ea} in CK introduce the basis vectors in V({Ma}) as the vectors∣∣∣J〉 = ej1 ⊗ ej2 ⊗ . . .⊗ ejn , (2.32)

where the number of indices jk such that jk = a is equal to Ma for all a = 1, . . . ,K. The dual vectors
〈
J
∣∣∣

are defined in so that
〈
J
∣∣∣J ′
〉
= δJ,J ′ .

Then the statement of the qKZ-Ruijsenaars correspondence is as follows [76]. For any solution of the

qKZ equations (2.27)
∣∣∣Φ〉 =

∑
J

ΦJ

∣∣∣J〉 from the weight subspace V({Ma}) the function

Ψ =
∑
J

ΦJ , ΦJ = ΦJ(x1, ..., xn) (2.33)

or
Ψ =

〈
Ω
∣∣∣Φ〉 , 〈

Ω
∣∣∣ = ∑

J:
∣∣J〉∈V({Ma})

〈
J
∣∣∣ (2.34)

with the property 〈
Ω
∣∣∣Pij =

〈
Ω
∣∣∣ (2.35)

is an eigenfunction of the Macdonald difference operator:

n∑
i=1

n∏
j ̸=i

xi−xj+η

xi − xj
Ψ(x1, . . . , xi+ηℏ, . . . , xn) = EΨ(x1, . . . , xn) , E =

K∑
a=1

Maga . (2.36)

The eigenvalues of the higher rational Macdonald-Ruijsenaars Hamiltonians

Ĥd =
∑

I⊂{1,...,n},|I|=d

( ∏
s∈I,r ̸∈I

xs − xr + η

xs − xr

)∏
i∈I

eηℏ∂xi (2.37)

6The set {eab | a, b = 1...K} is the standard basis in Mat(K,C): (eab)ij = δiaδjb.
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are given by the elementary symmetric polynomial of n variables
ed(g1, . . . , g1︸ ︷︷ ︸

M1

, . . . gN , . . . , gK︸ ︷︷ ︸
MK

).

QC-duality. Using the asymptotics of solutions to the (q)KZ equations [72] it was also argued in [75, 76]
that the qKZ-Ruijsenaars correspondence can be viewed as a quantization of the quantum-classical duality
[58, 64, 59] (see also [70, 62]), which relates the generalized inhomogeneous quantum spin chains and the
classical Ruijsenaars-Schneider model. Consider the classical K-body Ruijsenaars-Schneider model, where
the positions of particles {xi} are identified with the inhomogeneity parameters of the spin chain which is
described by its transfer matrix

T(x) = tr0

(
R̃0n(x− xn) . . . R̃02(x− x2)R̃01(x− x1)(g ⊗ I)

)
(2.38)

with the R-matrix

R̃(x) =
x+ η

x
R(x) = I+

η

x
P. (2.39)

The quantum spin chain Hamiltonians are defined as follows:

Hi = Res
x=xi

T(x) = R̃i i−1(xi−xi−1) . . . R̃i1(xi−x1)g
(i)R̃in(xi−xn) . . . R̃i i+1(xi−xi+1). (2.40)

Therefore,

Hi = K
(0)
i

n∏
j ̸=i

xi − xj + η

xi − xj
, K

(0)
i = K

(ℏ)
i |ℏ=0 . (2.41)

Identify also the generalized velocities {ẋi} with the eigenvalues of (2.40). Then the action variables {Ii| i =
1, ...,K} of the classical model (eigenvalues of the Lax matrix) are given by the values of g1, ..., gK with
multiplicities M1, ...,MK :

{Ii| i = 1, ...,K} =
{
g1, . . . , g1︸ ︷︷ ︸

M1

, . . . gN , . . . , gK︸ ︷︷ ︸
MK

}
. (2.42)

See details in [64], where this statement was proved using the algebraic Bethe ansatz technique.
QC-correspondence. On the other hand, the quantum-classical duality possesses a generalization to the

so-called quantum-classical correspondence [73], where the classical Ruijsenaars-Schneider model is related
not to a single spin chain but to the set of K+1 supersymmetric spin chains [66] associated with supergroups

GL(K| 0) , GL(K − 1| 1) , ... , GL(1|K − 1) , GL(0|K) . (2.43)

More precisely, it was shown in [73] that the previous statement (2.42) is valid for all supersymmetric chains
with supergroups (2.43).

The aim we pursue in this thesis is to quantize the (supersymmetric) quantum-classical correspondence,
that is to establish a supersymmetric version of the qKZ-Ruijsenaars correspondence for the qKZ equations

related to the supergroups GL(N |M). We construct generalizations of the vector
〈
Ω
∣∣∣ (2.34) and show

that the quantum K-body Ruijsenaars-Schneider model follows from all K + 1 qKZ systems of equations

related to the supergroups GL(N |M) with N +M = K (2.43). The skew-symmetric vectors
〈
Ω−

∣∣∣ with the

property
〈
Ω−

∣∣∣Pij = −
〈
Ω−

∣∣∣ (instead of symmetric vector (2.35)) are described as well. They lead to the

Ruijsenaars-Schneider model with different sign of the coupling constant η and ℏ.
This part of the thesis is organized as follows. For simplicity, we start with the rational KZ-Calogero

correspondence. Then we proceed to the rational and trigonometric qKZ-Ruijsenaars relations. Most of
the notations are borrowed from [75, 76, 73]. The Appendix briefly describes the notations and definitions
related to the graded Lie algebras (groups).
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3 Lax matrix and Sekiguchi determinant for the Dell System

The double elliptic (or Dell) model [119] is an integrable system with an elliptic dependence on both –
positions of particles and their momenta. It extends the widely known Calogero-Moser-Sutherland [121, 95]
and Ruijsenaars-Schneider [135] families of many-body integrable systems. Historically, the model was first
derived as the elliptic self-dual system with respect to the Ruijsenaars (or equivalently, p-q or action-angle)
duality interchanging positions of particles and action variables [134]. At the classical level, the original
group-theoretical Ruijsenaars construction was not applicable to the elliptic case. Instead, a geometrical
approach was used based on the studies of spectral curves and Seiberg-Witten differentials [90]. In this
way the Dell Hamiltonians were proposed in terms of higher genus theta-functions with dynamical period
matrices. For this reason, a definition of the standard set of algebraic tools for integrable systems (including
Lax pairs, R-matrix structures, exchange relations, etc) appeared to be a complicated problem. The classical
Poisson structures underlying the Dell model were studied in [83, 78].

An alternative version of the Dell Hamiltonians was suggested recently in [128]. The authors exploited the
explicit form of the 6d Supersymmetric Yang-Mills partition functions with surface defects compactified on
a torus, which are conjectured to serve as the wavefunctions for the corresponding Seiberg-Witten integrable
systems [101, 102, 103, 77]. The exact correspondence of their results with the previous studies is an
interesting open problem though the matching has been already verified in a few simple cases. In this thesis,
we deal with the Koroteev-Shakirov version of the generating function for commuting Hamiltonians. Namely,
for the N -body system consider the operator of complex variables:

Ô(λ) =
∑

n1,...,nN∈Z
ω
∑

i

n2
i−ni
2 (−λ)

∑
i ni

N∏
i<j

θp(t
ni−nj xi

xj
)

θp(
xi

xj
)

N∏
i

qnixi∂i =
∑
n∈Z

λnÔn . (3.44)

This is a definition of the infinite set of (non-commuting) operators Ôk. The positions of particles qi enter
through xi = eqi ; t = eη – is exponent of the coupling constant η; q = eℏ – is exponent of the Planck
constant ℏ; and ∂i = ∂xi , so that ∂qi = xi∂i. The constant ω is the second modular parameter (controlling
the ellipticity in momenta) and λ is the (spectral) parameter of the generating function. The definition of
the theta-function θp(x) with the constant modular parameter τ (p = e2πiτ ) (controlling the ellipticity in
coordinates) is given in (appendix of the main text). The commuting Hamiltonians of the Dell system were
conjectured and argued to be of the form:

Ĥn = Ô−1
0 Ôn , n = 1, ..., N. (3.45)

A solution to the eigenvalue problem for Ĥn was suggested in [114, 116] by extending the Shiraishi functions
[108] – solutions to a non-stationary Macdonald-Ruijsenaars quantum problem.

Our study, on the contrary, does not appeal to the explicit form of the wavefunctions and is mostly
focused on the generating function itself. It is based on the usage of the intertwining matrix Ξ(z) of the
IRF-Vertex correspondence (see main body for its explicit form) and the Hasegawa’s factorization formula
[92, 93].

L̂RS(z, q, t) = g−1(z)g(z −Nη) qdiag(∂q1
,...,∂qN

) ∈ Mat(N,C) (3.46)

for the glN elliptic Ruijsenaars-Schneider Lax operator with spectral parameter z [135]

L̂RS
ij (z, η, ℏ) =

ϑ(−η)ϑ(z + qij − η)

ϑ(z)ϑ(qij − η)

∏
k ̸=j

ϑ(qjk + η)

ϑ(qjk)
eℏ∂qj . qij = qi − qj . (3.47)

The matrix Ξ(z) = Ξ(z, x1, ..., xN |p) enters the normalized intertwining matrix g(z, τ) = Ξ(z)D−1 from
(3.46), where D(x1, ..., xN ) is a diagonal matrix used for convenient normalization only, see (appendix of
the main text). A key property of these matrices, which will be used, is that det Ξ is proportional to the
Vandermonde determinant. These intertwining matrices are known from the IRF-Vertex correspondence at
quantum and classical levels [82, 96, 97, 111]. The IRF-Vertex correspondence provides relation between
dynamical and non-dynamical quantum (or classical) R-matrices as a special twisted gauge transformation
with the matrix g(z), thus relating the Lax operator (3.47) with the one of the Sklyanin type [109].

10



4 Towards Cherednik and Nazarov Sklyanin construction for dual
elliptic Ruijsenaars

In the previous chapter we started discussing the double elliptic (Dell) integrable model, being a general-
ization of the Calogero-Ruijsenaars family of many-body systems [121, 135] to elliptic dependence on the
particles momenta. There are two versions for this type of models. The first one was introduced and ex-
tensively studied by A. Mironov and A. Morozov [119]. Its derivation was based on the requirement for the
model to be self-dual with respect to the Ruijsenaars (or action-angle or p-q) duality [134]. The Hamil-
tonians are rather complicated. They are given in terms of higher genus theta functions, and the period
matrix depends on dynamical variables. Another version of the Dell model was suggested by P. Koroteev
and Sh. Shakirov in [128]. It is close to the classical model introduced previously by H.W. Braden and T.J.
Hollowood [118], though the precise relation between them needs further elucidation. The generating func-
tion of quantum Hamiltonians in this version is given by a relatively simple expression, where both modular
parameters (for elliptic dependence on momenta and coordinate) are free constants. Another feature of the
Koroteev-Shakirov formulation is that it admits some algebraic constructions, which are widely known for
the Calogero-Ruijsenaars family of integrable systems. In particular, it was shown in the previous chapter
that the generating function of the Hamiltonians has a determinant representation, and the classical L-
operator satisfies the Manakov equation instead of the standard Lax representation. For both formulations,
the commutativity of the Hamiltonians has not been proved yet, but verified numerically. To find a possible
relation between two formulations of the Dell model is an interesting open problem.

In this chapter, we deal with the Koroteev-Shakirov formulation, and our study is based on the assumption
that the following Hamiltonians indeed commute:

Ĥn = Ô−1
0 Ôn , (4.48)

where Ôn are defined through7

Ô(u) =
∑

n1,...,nN∈Z
ω
∑

i

n2
i−ni
2 (−u)

∑
i ni

N∏
i<j

θp(t
ni−nj xi

xj
)

θp(
xi

xj
)

N∏
i

qnixi∂i =
∑
n∈Z

unÔn . (4.49)

We mostly study the degeneration p → 0 of (4.49), which is the system similar (in the Mironov-Morozov
approach) to the model dual to elliptic Ruijsenaars-Schneider one, so that it is elliptic in momenta and
trigonometric in coordinates (for simplicity, we will most of the time refer to this Dell (p = 0) case as just
(ell, trig)-model). Together with the change t to t−1, q ↔ q−1 and conjugation by the function

∏
i<j xixj ,

the limit p→ 0 in (4.49) yields

DN (u) = DN (u|x1, ..., xN )=
∑

n1,...,nN∈Z
ω
∑

i

n2
i−ni
2 (−u)

∑
i ni

N∏
i<j

tnjxi − tnixj

xi − xj

N∏
i

γni . (4.50)

where we have introduced the notation
γi = q−xi∂i . (4.51)

One more trigonometric limit ω → 0 being applied to (4.50) provides (the trigonometric) Macdonald-
Ruijsenaars operators [129]. Then the generating function (4.50) is represented in the following form:

DN (u)
∣∣∣
ω=0

=

(
det
[
xN−j
i

]N
i,j=1

)−1

det
[
xN−j
i (1− utj−1γi)

]N
i,j=1

. (4.52)

In the previous chapter different variants of determinant representations for (4.48)-(4.49) were proposed.
Here we extend another set of algebraic constructions to the double-elliptic case (4.48). Our final goal is

7The notations in (4.49) are standard. They are given in the list of notations. In particular, ω and p are two free modular
parameters responsible for elliptic dependence on momenta qxi∂i = exp (ℏ∂qi ) and coordinates xi = eqi respectively.
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to describe the large N limit for (ell, trig)-model. This limit is widely known for the Calogero-Moser and
the Ruijsenaars-Schneider models [113, 131, 137, 132, 133, 125] including their spin generalizations [115].
Infinite particle limits of integrable systems are interesting to study because they could be related to the
representation theory of infinite dimensional algebras. The Hamiltonians of an integrable system form its
Cartan subalgebra. Thus studying them may give some clues on how the whole algebra looks like. The
details are described in the Discussion section.

The purpose of this chapter is to describe N →∞ limit of the (ell, trig)-model by introducing double-
elliptic version of the Dunkl-Cherednik approach [122] and by applying the Nazarov-Sklyanin construction
for N →∞ limit, which was originally elaborated for the trigonometric Ruijsenaars-Schneider model [131].
For the latter model there exists a set of N commuting operators (the Cherednik operators)

Ci(t, q) = ti−1Ri,i+1(t)... RiN (t)γiR1,i(t)
−1... Ri−1,i(t)

−1 , (4.53)

acting on C[x1, ..., xN ], where the R-operators are of the form:

Rij(t) =
xi − txj

xi − xj
+

(t− 1)xj

xi − xj
σij , (4.54)

and σij permutes the variables xi and xj . The commutativity of the Macdonald-Ruijsenaars operators (4.52)
for different values of spectral parameter u follows from the commutativity of (4.53) and the following relation

between DN (u)
∣∣∣
ω=0

(4.52) and the Cherednik operators (4.53):

DN (u)
∣∣∣
ω=0

=

N∏
i=1

(1− uCi)
∣∣∣
ΛN

, (4.55)

where ΛN ⊂ C[x1, ..., xN ] is the space of symmetric functions in variables x1, ..., xN .
The generating function (4.52) is the one8 considered in [131], where the authors derived N → ∞ limit

of the quantum Ruijsenaars-Schneider (or the Macdonald-Ruijsenaars) Hamiltonians. Let us recall the main
steps of the Nazarov-Sklyanin construction since this chapter is organized as a straightforward generalization
of their results to the (ell, trig)-case (4.50). First, one needs to express the generating function (4.52) through
the covariant Cherednik operators acting on C(x1, ..., xN ):

Zi =

N∏
k ̸=i

xi − txk

xi − xk
γi +

N∑
j ̸=i

(t− 1)xi

xi − xj

N∏
k ̸=i,j

xj − txk

xj − xk
γjσij , (4.56)

Ui = (t− 1)
∏
j ̸=i

xi − txj

xi − xj
γi , (4.57)

which satisfy the property

σZiσ
−1 = Zσ(i), σUiσ

−1 = Uσ(i), σ ∈ SN , (4.58)

where in the l.h.s. σ acts by permutation of variables {x1, ..., xN}. Then the generating function of the
Macdonald-Ruijsenaars Hamiltonians (4.52) is represented in the form

DN (tu)DN (u)−1
∣∣∣
ω=0

= 1− u

N∑
i=1

Ui
1

1− uZi

∣∣∣
ΛN

, (4.59)

The next step is to construct the inverse limits for the operators Ui and Zi, where the inverse limit is the
limit of the sequence

Λ1 ← Λ2 ← ... (4.60)

8To match notations of [131] one should change u to −u.
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with a natural homomorphism (below Λ is the space of symmetric functions in the infinite amount of
variables)

πN : Λ → ΛN , (4.61)

sending the standard basis elements pn from Λ to the power sum symmetric polynomials:

πN (pn) =

N∑
i=1

xn
i . (4.62)

Finally, using (4.59) one gets the inverse limit for DN (tu)DN (u)−1
∣∣∣
ω=0

.

Our strategy is to extend the above formulae to the (ell, trig)-case. Throughout the chapter, we use the
following convenient notation. For any operator A(q, t) set

Pθω(uA)(q, t) =
∑
n∈Z

ω
n2−n

2 (−u)nA(qn, tn) =
∑
n∈Z

ω
n2−n

2 (−u)nA[n](q, t) , (4.63)

at least formally9. Notation A[n](q, t) = A(qn, tn) is also used. In particular, A[1] = A.

5 Notations for elliptic functions

In addition to the standard basis in MatÑ we use the one [9]

Ta = Ta1a2
= exp

(
πı

Ñ
a1a2

)
Qa1Λa2 , a = (a1, a2) ∈ ZÑ × ZÑ (5.64)

constructed by means of the finite dimensional representation of Heisenberg group

Qkl = δkl exp(
2πı

Ñ
k) , Λkl = δk−l+1=0modÑ , QÑ = ΛÑ = 1Ñ×Ñ . (5.65)

The following relations hold

TαTβ = κα,βTα+β , κα,β = exp

(
πı

Ñ
(β1α2 − β2α1)

)
, (5.66)

tr(TαTβ) = Ñδα,−β , (5.67)

where α+ β = (α1 + β1, α2 + β2). The permutation operator takes the form

P12 =

Ñ∑
i,j=1

Ẽij ⊗ Ẽji =
1

Ñ

∑
α∈ZÑ×ZÑ

Tα ⊗ T−α , (5.68)

where Ẽij is the standard basis in MatÑ .

The Kronecker function is defined in the rational, trigonometric (hyperbolic) and elliptic case as follows:

ϕ(η, z) =


1/η + 1/z − rational case ,
coth(η) + coth(z) − trigonometric case ,
ϑ′(0)ϑ(η+z)
ϑ(η)ϑ(z) − elliptic case .

(5.69)

9The convergence of such series in this text is understood as in theta-function definition, i.e. we assume ω = e2πıτ̃ and
Im(τ̃) > 0.
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In the latter case, the theta-function is the odd one

ϑ(z) =
∑
k∈Z

exp

(
πıτ(k +

1

2
)2 + 2πı(z +

1

2
)(k +

1

2
)

)
. (5.70)

Similarly, the first Eisenstein (odd) function and the Weierstrass (even) ℘-function:

E1(z) =

 1/z ,
coth(z) ,
ϑ′(z)/ϑ(z) ,

℘(z) =


1/z2 ,

1/ sinh2(z) ,

−∂zE1(z) +
1
3
ϑ′′′(0)
ϑ′(0) .

(5.71)

The derivative
E2(z) = −∂zE1(z) (5.72)

is the second Eisenstein function. The derivative of the Kronecker function:

f(z, q) ≡ ∂qϕ(z, q) = ϕ(z, q)(E1(z + q)− E1(q)) . (5.73)

Due to the following behavior of ϕ(z, q) near z = 0

ϕ(z, q) = z−1 + E1(q) + z (E2
1(q)− ℘(q))/2 +O(z2) . (5.74)

we also have
f(0, q) = −E2(q) . (5.75)

The Fay trisecant identity:

ϕ(z, q)ϕ(w, u) = ϕ(z − w, q)ϕ(w, q + u) + ϕ(w − z, u)ϕ(z, q + u). (5.76)

For the Lax equations, the following degenerations of (5.76) are needed

ϕ(z, x)f(z, y)− ϕ(z, y)f(z, x) = ϕ(z, x+ y)(℘(x)− ℘(y)) , (5.77)

ϕ(η, z)ϕ(η,−z) = ℘(η)− ℘(z) = E2(η)− E2(z) . (5.78)

Also
ϕ(z, q)ϕ(w, q) = ϕ(z + w, q)(E1(z) + E1(w) + E1(q)− E1(z + w + q)) =

= ϕ(z + w, q)(E1(z) + E1(w))− f(z + w, q) .
(5.79)

The set of Ñ2 functions

φη
a(z) = exp(2πı

a2

Ñ
z)ϕ(z, η +

a1 + a2τ

Ñ
) , a = (a1, a2) ∈ ZÑ × ZÑ (5.80)

is used in the definition of the Baxter-Belavin’s [81, 9] elliptic R-matrix

Rη
12(z) =

∑
α

Tα ⊗ T−αφα(z, ωα + η) . (5.81)

The classical limit (behavior near η = 0)

Rη
12(z) =

1⊗ 1

η
+ r12(z) + ηm12(z) +O(η2) (5.82)

is similar to (5.74). The classical r-matrix

r12(z) = 1⊗ 1E1(z) +
∑
α̸=0

Tα ⊗ T−αφα(z, ωα) (5.83)
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is skew-symmetric due to (1.20) or (1.19). From (5.82) we conclude that

F 0
12(q) = ∂qR

η
12(q)|η=0 = ∂qr12(q) = F 0

21(−q) . (5.84)

The finite Fourier transformation for the set of functions (5.80) is as follows (see e.g. [57]):

1

Ñ

∑
α

κ2
α,γ φα(Ñη, ωα +

z

Ñ
) = φγ(z, ωγ + η) , ∀γ . (5.85)

It is generated by the arguments symmetry (similarly to ϕ(z, q) = ϕ(q, z))

Rz
12(q)P12 = R

q/Ñ
12 (Ñz) . (5.86)

In particular, (5.85) leads to∑
α

E2(ωα + η) = Ñ2E2(Ñη) or
∑
α

℘(ωα + η) = Ñ2℘(Ñη) (5.87)

and for γ ̸= 0 ∑
α

κ2
α,γE2(ωα + η) = −Ñ2φγ(Ñη, ωγ)(E1(Ñη + ωγ)− E1(Ñη) + 2πı∂τωγ) . (5.88)

6 Statement of the main results

The results of this dissertation are reflected in four articles:

A. Grekov, A. Zotov, “On R-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A, 51 (2018),
315202 , 26 pp.,

A. Grekov, A. Zabrodin, A. Zotov, ”Supersymmetric extension of qKZ-Ruijsenaars correspondence”, Nu-
clear Physics B, 2018 ,

Grekov, A. Zotov, ”Characteristic determinant and Manakov triple for the double elliptic integrable sys-
tem”, SciPost Phys. 10, 055 (2021) • published 4 March 2021

A. Grekov, A. Zotov, ”On Cherednik and Nazarov-Sklyanin large N limit construction for double elliptic
integrable system”, J. High Energ. Phys. 2021, 62 (2021)

6.1 First part

In the first part of the thesis (which follows the paper A. Grekov, A. Zotov, “On R-matrix valued Lax
pairs for Calogero–Moser models”), we considered R-matrix-valued Lax pairs for N -body Calogero-Moser
models. The one for AN−1 root system was previously known [96]. We proposed their extensions to other
root systems. Namely, we studied generalizations of the D’Hoker-Phong Lax pairs [19] for the classical roots
systems in the untwisted case. These Lax pairs are block-matrices of 2N × 2N or (2N + 1) × (2N + 1)
size, and each block is of the size Ñr × Ñr, where r – is the number of quantum spaces (spin sites). Two
possibilities were considered. The first one is to keep all 2N (or 2N + 1) quantum spaces in R-matrices.
This leads to the Lax pairs for CN and BCN cases. The second possibility is to leave only half (N or N +1)
quantum spaces. It results in constructing BN and DN models with GL2 (Ñ = 2) Baxter’s R-matrix. The
summary of admissible values of the coupling constants and the number of quantum spaces in R-matrices
are presented in the table below (horizontally are the numbers of quantum spaces).
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N N+1 2N 2N+1
g = 0, µ = 0

SO(2N) Ñ = 2

g = ±
√
2ν, µ = 0

SO(2N+1) Ñ = 2
g = 0, µ = ν

Sp(2N) Ñ = any
g = ±ν, µ = ν

BC(N) Ñ = any
Number of spin quantum spaces and values of coupling constants.

The ordinary Lax pairs were defined for the following values of the coupling constants:
– SO2N : µ = 0, g = 0;
– SO2N+1: µ = 0, g2 = 2ν2;
– Sp2N : g = 0;
– BCN : g(g2 − 2ν2 + νµ) = 0.
In this respect our results are as follows: the R-matrix-valued ansatz generalizing the D’Hoker-Phong

results works with additional constraints. For SO cases the additional condition is Ñ = 2, while for CN and
BCN cases there is no restriction on Ñ but the constants should satisfy µ = ν together with g = 0 or g = ±ν
for CN or BCN root systems respectively.

Then we proceed to the quantum Lax pairs. A short summary is that the classical R-matrix-valued Lax
pairs are generalized to quantum Lax pairs only for SO cases from the above table.

The quantum Lax pairs are naturally related to the spin Calogero-Moser models. The corresponding spin
exchange operators F0 appear as a scalar parts of the R-matrix-valued M -matrices. On the other hand,
the same operators can be derived from KZ or KZB equations. We demonstrate these relations for slN
R-matrix-valued Lax pair. The link between the operator-valued Lax pairs and KZ equations comes from
the Matsuo-Cherednik duality. Its quasi-classical version provides the so-called quantum-classical duality
between the quantum spin chains (Gaudin models) and the classical many-body systems of Ruijsenaars-
Schneider (Calogero-Moser) type [64]. In this chapter, we deal with another example of quantum-classical
relation. We treat the Lax equations for the classical Calogero-Moser model (1.12)-(1.14) with R-matrix-
valued Lax pairs as half-quantum model (1.25), which quantum part is described by the spin exchange
operator known previously as the ”noncommutative spin interactions” [47]. The spin variables are quantized
in the fundamental representation, while the particles degrees of freedom remain classical. We show that the
classical counterpart of the elliptic anisotropic spin exchange operator comes from the Hitchin type system
on SLNÑ -bundle with nontrivial characteristic class over elliptic curve. See the Proposition 1.2.

It was shown in [48] that the spin exchange operator F0 for Ñ = 2 being reduced to the equilibrium
position qj = j/N provides the Hamiltonian for anisotropic extension of the Inozemtsev elliptic long-range

chain. In view of the relation of the R-matrix-valued Lax pairs and the Hitchin systems on SL(NÑ)-bundles
we expect that these types of long-range integrable spin chains admit Lax representations of size NÑ ×NÑ
at both - classical and quantum levels. They are obtained from the one for interacting tops by the substitu-
tion pj = 0, qj = j/N . Such a Lax pair allows us to calculate the higher Hamiltonians. These questions are
discussed in [25].

6.2 Second part

In the second part of the thesis (which follows the paper A. Grekov, A. Zabrodin, A. Zotov, ”Supersymmetric
extension of qKZ-Ruijsenaars correspondence”), we have proved the supersymmetric version of the qKZ-
Ruijsenaars correspondence. Consider the supergroup GL(N |M), with N + M = K. Denote CN |M its
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fundamental representation. And let: V := (CN |M )n The qKZ equations taking values in V have the form

eηℏ∂xi

∣∣∣Φ〉 = K
(ℏ)
i

∣∣∣Φ〉, i = 1, . . . , n , (6.89)

where the operators in the r.h.s

K
(ℏ)
i = Ri i−1(xi−xi−1+ηℏ) . . .Ri1(xi−x1+ηℏ)g(i)Rin(xi−xn) . . .Ri i+1(xi−xi+1) (6.90)

are constructed by means of the quantum R-matrix R, which is a (unitary) solution of the graded Yang-
Baxter equation.

The operators K
(ℏ)
i commute with the set of operators:

Ma =
n∑

i=1

e(i)aa (6.91)

where eab is a standard basis in End(CN |M ). Hence from now on we will restrict our qKZ-equation to the
subspace V({Ma}) with fixed eigenvalues Ma of the operators Ma.
We start with a rational case:

Theorem 6.1. Let

Rij(x) =
xI+ ηPij

x+ η
, (6.92)

where Pij is the graded permutation operator :

P12(ea ⊗ eb) = (−1)p(a)p(b)(eb ⊗ ea) (6.93)

for 2 vectors ea, eb with parities p(a), p(b).

Consider a covector
〈
Ω
∣∣∣ ∈ V∗, such that:〈

Ω
∣∣∣Pij =

〈
Ω
∣∣∣ ∀ i, j = 1, ..., n (6.94)

And define:

Ψ =
〈
Ω
∣∣∣Φ〉 (6.95)

Then:
n∑

i=1

 n∏
j ̸=i

xi − xj + η

xi − xj

 eηℏ∂xiΨ =

(
N+M∑
a=1

gaMa

)
Ψ ,

where:
n∑

i=1

g(i) =

N+M∑
a=1

gaMa, (6.96)

In the trigonometric case we have the following:

Theorem 6.2. Let:

R12(x)= P12 +
sinhx

sinh(x+η)

(
I−Pq

12

)
+G+

12 , (6.97)

where q = eη, and Pq
12 is a quantum graded permutation operator:

Pq
12 =

N+M∑
a=1

(−1)p(a)eaa ⊗ eaa + q

N+M∑
a>b

(−1)p(b)eab ⊗ eba + q−1
N+M∑
a<b

(−1)p(b)eab ⊗ eba (6.98)
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and

G+
12 =

N+M∑
a=1

( sinh(x+ η − 2ηp(a))

sinh(x+ η)
− (−1)p(a)+

+
sinh(x)

sinh(x+ η)
((−1)p(a) − 1)

)
eaa ⊗ eaa

= 2
∑
a∈F

(cosh η − 1) sinhx

sinh(x+ η)
eaa ⊗ eaa

(6.99)

or

G+
12 =

N+M∑
a=1

G+
a eaa ⊗ eaa , G+

a =
(1− (−1)p(a))(cosh η − 1) sinhx

sinh(x+ η)
. (6.100)

Define a covector
〈
Ωq

∣∣∣ ∈ V∗, such that: 〈
Ωq

∣∣∣Pq
i,i−1 =

〈
Ωq

∣∣∣ (6.101)

then for:

Ψ =
〈
Ωq

∣∣∣Φ〉 (6.102)

one has:
n∑

i=1

 n∏
j ̸=i

sinh(xi − xj + η)

sinh(xi − xj)

 eηℏ∂xiΨ =

(
N+M∑
a=1

ga
sinh(ηMa)

sinh η

)
Ψ . (6.103)

6.3 Third part

In the third part of the thesis (which follows the paper Grekov, A. Zotov, ”Characteristic determinant and
Manakov triple for the double elliptic integrable system”), using the Hamiltonians (4.49), we construct a
generalization of the Macdonald determinant operator for the Dell system and study its applications.

We use a slightly modified and extended version of the generating function Ô′(z, λ) (4.49), which depends
on the additional spectral parameter z, and generates an equivalent10 set of operators Ô′

k:

Ô′(z, λ) =
∑
k∈Z

ϑ(z − kη)

ϑ(z)
λkÔ′

k =

=
∑

n1,...,nN∈Z

ϑ(z − η
∑N

i=1 ni)

ϑ(z)
ω
∑

i

n2
i−ni
2 (−λ)

∑N
i ni

N∏
i<j

ϑ(qi − qj + η(ni − nj))

ϑ(qi − qj)

N∏
i

eniℏ∂qi .

(6.104)

This part of the thesis is organized as follows.
In Section 15 we derive the expression for the generalized Macdonald determinant:

Ô′(z −Nq0, λ) =
1

det Ξ(z)
det

1≤i,j≤N

{∑
n∈Z

(−λ)nω
n2−n

2 Ξi(qj + nη, z)enℏ∂qj

}
, (6.105)

where q0 is the center of mass coordinate. The determinant is well defined as the columns of the matrix
commute. For the precise form of the matrix Ξij = Ξi(qj , z) see (appendix of the main text).

In Section 16 we express the generating function (6.104) in terms of the Lax matrix of the Ruijsenaars-
Schneider model:

Ô′(z, λ) = : det
1≤i,j≤N

{
L̂Dell
ij (z, λ | q, t | τ, ω)

}
: , (6.106)

10Details of the relation between Ô′
k and Ôk are given in the appendix of the main text.
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where

L̂Dell
ij (z, λ | q, t | τ, ω) =

∑
k∈Z

ω
k2−k

2 (−λ)kL̂RS
ij (z |kη, kℏ |τ) (6.107)

and the normal ordering is defined in the main body of the manuscript. The trigonometric and rational
limits (for coordinate dependence) of (6.104)-(6.107) are described as well.

In Section 17 we study the eigenvalue problem for the operator Ô(u) (4.49) in the (coordinate) trigono-
metric limit p = 0, which corresponds to the dual to elliptic Ruijsenaars model11, and compare our results
to the known in the literature [128, 114].

The main statement here is the following: The operators Ô(u) in the limit p = 0 for different u could be
simultaneously brought to the upper triangular form in some basis, their eigenvalues are labelled by Young
diagrams λ = (λ1, ..., λN ), and equal to:

E(u)λ =

N∏
i=1

θω(ut
N−iqλi) . (6.108)

In Section 18 we study the classical limit of the Dell system. Using the classical analogue L(z, λ) of
(6.107) we show that the L-matrix

L(z, λ) = L(z, 1)−1L(z, λ) ∈ Mat(N,C) (6.109)

satisfies the Manakov triple representation [99, 124] (instead of the Lax equation):

L̇ = [L,A] +BL , trB = 0 . (6.110)

The conservation laws are generated by the function detL(z, λ) only. It reduces to expression for the spectral
curve of the Ruijsenaars-Schneider model in the ω → 0 limit.

In Section 19 we describe the factorized structure for the L-matrix (6.109) L(z, λ). Up to an inessential
modification it is presented in the form, which is similar to the elliptic Kronecker function12 (see appendix
of the main text):

Ľ(z, λ|τ, τ̃) = Φ[G(z, τ), u|τ̃ ] :=

=
ϑ′(0|τ̃)
ϑ(u|τ̃)

[
ϑ(− adNη∂z |τ̃)G(z, τ)

]−1

ϑ(u− adNη∂z |τ̃)G(z, τ) ,

u = log(λ) , G(z, τ) = g(z, τ) exp
( z

Ncη
diag(p1, ..., pN )

)
,

(6.111)

thus generalizing the classical version of the factorization (3.46) to the double elliptic case. The elliptic
moduli τ̃ appears as ω = e2πıτ̃ . It is responsible for the ellipticity in momenta, while τ controls the ellipticity
in positions of particles.

We also describe connection of the L-matrix with the Sklyanin Lax operators, and propose its quantization
in terms of the elliptic quantum R-matrix in the fundamental representation of GLN .

Possible applications of the obtained results and future plans are discussed at the end of the chapter.
Appendices contain the elliptic functions definitions and properties, description of the intertwining matrices
Ξ, computations of GL2 examples, and relations between different forms of the generating functions.

11The terminology like dual to elliptic Ruijsenaars (or Calogero) model comes from the Mironov-Morozov description of the
Dell model based on the p-q duality. Here and in what follows we use it meaning the trigonometric (or rational) p = 0 limit of
(4.49), though its relation to p-q duality needs to be clarified.

12It is used in the widely known Lax pairs with spectral parameter [95, 135] in many-body systems.
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6.4 Fourth part

In the fourth part of the thesis (which follows the paper A. Grekov, A. Zotov, ”On Cherednik and Nazarov-
Sklyanin large N limit construction for double elliptic integrable system”), we study the infinite particle limit
of the (ell, trig) member of the Calogero-Ruijsenaars many-body systems family. The chapter is organized
as follows.
In Section 26 we introduce the (ell, trig) version of the Cherednik operators (4.53), acting on the space
C[x1, ..., xN ]:

Pθω(uCi) =
∑
n∈Z

ω
n2−n

2 (−u)ntn(i−1)Ri,i+1(t
n)...RiN (tn)γn

i R1,i(t
n)−1 ... Ri−1,i(t

n)−1 , (6.112)

where Rij(t) is given by (4.54), and u is a spectral parameter. These operators do not commute with each
other. However, we prove the following relation between (6.112) and DN (u) (4.50):

DN (u) =

N∏
i=1

Pθω(uCi)
∣∣∣
ΛN

= Pθω(uC1)...Pθω(uCN )
∣∣∣
ΛN

. (6.113)

It is the (ell, trig) version of the relation (4.55). The order of operators in the above product is important.
In what follows a product of non-commuting operators is understood as it is given in the r.h.s of (6.113). It
is also mentioned in the list of notations.

In Section 27, using the covariant version of the Cherednik operators (4.56)

Pθω(uZi) =
∑
n∈Z

ω
n2−n

2 (−u)n
[∏

k ̸=i

xi − tnxk

xi − xk
γn
i +

∑
j ̸=i

(tn − 1)xi

xi − xj

∏
k ̸=i,j

xj − tnxk

xj − xk
γn
j σij

]
(6.114)

and the auxiliary covariant operators

Pθω(uUi) =
∑
n∈Z

ω
n2−n

2 (−u)n(tn − 1)
∏
k ̸=i

xi − tnxk

xi − xk
γn
i (6.115)

we prove the following analog of (4.59):

IN (u) := DN (ut)DN (u)−1 = 1 +

N∑
i=1

Pθω(uUi)
1

Pθω(uZi)

∣∣∣
ΛN

. (6.116)

In Section 28 the matrix resolvent of the construction is presented. Namely, consider N ×N matrix Z
with elements

Zii =
(∏

l ̸=i

xi − txl

xi − xl

)
γi (6.117)

Zij =
(t− 1)xj

xi − xj

( ∏
l ̸=i,j

xi − txl

xi − xl

)
γj for i ̸= j . (6.118)

It is the Lax matrix of the trigonometric quantum Ruijsenaars-Schneider model. Together with the column
vector

E =


1
1
...
1

 (6.119)
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and the row vector
Pθω(uU) =

[
Pθω(uU1) ... Pθω(uUN )

]
(6.120)

it provides the generating function of the (ell, trig)-model Hamiltonians in the following way:

IN (u) = DN (ut)DN (u)−1 = 1 + Pθω(uU)Pθω(uZ)−1E
∣∣∣
ΛN

. (6.121)

In Sections 29 and 30 we describe the generalization of the Nazarov-Sklyanin N →∞ limit construction
for the (ell, trig)-model Hamiltonians and the covariant Cherednik operators.

Extend the homomorphism (4.61) to the space Λ[w] of polynomials in a formal variable w with coefficients
in Λ in the following way:

τN (pn) = πN (pn) , τN : Λ[w]→ ΛN ,

τN (w) = tN .
(6.122)

Let I(u) be the operator Λ→ Λ[w], satisfying

IN (u)πN = τNI(u) . (6.123)

See (??) for details. Then the main result of these two Sections is as follows. The operator

I(u) = θω(u)

θω(uw)
I(u)

does not depend on w, thus mapping the space Λ to itself. It has the form:

I(u) = θω(u)
[
θω(u) + Pθω(uY β)− Pθω(uY α)Pθω(uXα)−1Pθω(uXβ)

]−1

, (6.124)

where the operators α[n], β[n], X [n], Y [n] are defined in the main body of the manuscript.
In Section 31 the expressions for the operators α[n], β[n], X [n], Y [n] are derived in a more explicit form.

These operators yields the generating function of the N →∞ Hamiltonians. We prove, that these Hamilto-
nians commute as soon as the Shakirov-Koroteev Dell Hamiltonians commute13.

In Section 32 we write down the explicit form of the first few non-trivial N →∞ Hamiltonians to the
first power in ω. The generating function equals:

I (u) = 1− u+ ω(u2 − u−1)

1− u− uJ(u) + ωK(u)
+O(ω2) , (6.125)

where J(u) and K(u) are given in the body of the main text. As well as the formulae for the first and
the second Hamiltonians up to the first order in ω. In the limit ω = 0, our answer (6.125) reproduces the
Nazarov-Sklyanin result [131]:

I (u) = 1− u

1− u− uJ(u)
. (6.126)

In Section 33 we also verify directly that the first and the second Hamiltonians commute with each
other up to the first order in ω.
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