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1 Introduction

Interior point methods were originally developed as an alternative to the simplex method for solving
linear programming problems. Unlike the latter, they generate a sequence of points for which all
inequality constraints are strictly fulfilled. Actually, methods generating a sequence of interior points
of a feasible set have been used for a long time to solve nonlinear problems. By interior point methods
we will understand here the methods that explicitly or implicitly use a barrier on the feasible set or
on the cone underlying the problem. In the case of linear programming, this cone is a non-negative
orthant.

The first to propose such a method was [Dikin, 1967]. In principle, this method defined the next
point as an argument of the minimum of the linear price function on Dikin’s ellipsoid with the center
in the previous iteration. However, this method had no guarantees on the convergence rate, and it
required a strictly feasible initial point. Later [Karmarkar, 1984] constructed the first interior point
method for linear programming, which was proved to have polynomial complexity. This method used
a projective transformation of the feasible set at each step before constructing an ellipsoid inscribed in
that set. Since the class of linear functions is not invariant with respect to projective transformations,
one had to extend this class to fractional linear functions, which were minimized on the constructed
ellipsoids. This shortcoming of Karmarkar’s method motivated the development of variants of methods
using affine transformations, which eventually led to the rediscovery of Dikin’s method ([Barnes, 1986],
[Vanderbei et al., 1986]). All later versions of Karmarkar’s method could compete with the simplex
method in practice, but had no theoretical guarantees of convergence rate. Note that Karmarkar
himself has already pointed out that, on the one hand, his method can be interpreted as a barrier
method, i.e. minimizing the weighted sum of the initial cost function and the standard logarithmic
barrier on the orthant, and, on the other hand, as a potential reduction method.

In a series of papers, D. Bayer and J. Lagarias studied in detail the relationship between Karmarkar-
type methods and barrier methods. In particular, the methods were classified into projective- and
affine-scaling methods, depending on which transformations are applied to the feasible set. In the
future, mainly affine scaling methods were developed. The notion of central path was also intro-
duced. [Renegar, 1988] constructed a path-following method which produced a sequence of points
close to the central path and which was provably of polynomial complexity. Primal-dual methods
were proposed in [Kojima et al., 1989] and [Monteiro and Adler, 1989]. In [Kojima et al., 1993] and
[Mizuno et al., 1995] infeasible primal-dual methods were proposed, with iterations for which equality-
type constraints might not be satisfied. Potential reduction methods for linear programming were pro-
posed in [Tanabe, 1988] and [Todd and Ye, 1990]. The Tanabe-Todd-Ye potential proposed in these
works has formed the basis of more recent, advanced potential reduction methods for semi-definite
programming.

In the late 1980s, Yu. Nesterov and A. Nemirovsky generalized the interior point methods for
linear programming to optimization problems with arbitrary convex conic constraints and introduced
the concepts of a conic program and a self-concordant barrier. In particular, they proposed polynomial
complexity methods for solving semi-definite programs. In [Nesterov and Nemirovsky, 1992] they also
constructed the theory of conic duality, which generalizes duality in linear programs. The complete
theory is described in the monograph [Nesterov and Nemirovskii, 1994], which describes both central
path following and potential-reducing methods. Later, [Nesterov, 1997] found that the methods of
potential reduction take steps similar to the long steps in the path-following methods.

The methods for solving linear programs were independently generalised to the case of semi-definite
programming in a series of works by [Alizadeh, 1995]. However, his methods used scaling automor-
phisms of a cone and in principle could not be used for solving problems over non-symmetric cones.

The next phase was the development of the theory of autoscaled barriers and the long-step meth-
ods based on this theory, which exploited the rich structure of symmetric cones ([Monteiro, 1997,
Monteiro and Zhang, 1998, Nesterov and Todd, 1997, Nesterov and Todd, 1998, Tunçel, 2000]). This
class of methods has proved to be the most effective in practice and is still used in solvers today
[Todd et al., 1998] and [Toh et al., 1999].

Note that the special role of symmetric cones as the most natural generalization of the non-negative
orthant in conic programming was first noted by L. Faibuzovich, who explicitly used their algebraic
structure to construct algorithms ([Faybusovich, 1997a] and [Faybusovich, 1997b]). While the property
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of autoscalability is inherent to a barrier, symmetry is a property of a cone. In the early 2000s it was
discovered that these two concepts are closely related and that autoscaled barriers exist on all symmetric
cones and only on them. An overview of these developments is presented in [Hauser and Güler, 2002].

In [Güler, 1997], methods based on the autoscaling property were generalized to the class of hyper-
bolic cones, and in [Chua, 2009] to the class of homogeneous cones. In [Nesterov, 2012], the notion of
a scaling point was also defined for arbitrary self-concordant barriers.

In the last decade, several new universal constructions of self-concordant barriers have been pub-
lished for cones and convex sets ([Bubeck and Eldan, 2019, Hildebrand, 2014, Lee and Yue, 2021]), as
well as for linear programming ([Lee, 2016][Section 6.3]). In [Abernethy and Hazan, 2016], a relation-
ship between path-following methods using the entropic barrier and the simulated annealing algorithm
was found. In [Nesterov and Tunçel, 2016], instead of the auto-scalability property, the weaker negative
curvature property, which is fulfilled in particular for standard barriers on hyperbolic cones, was used
to construct algorithms. In recent years, there has been a growing interest in barriers on asymmetric
cones, e.g., the exponential cone ([Dahl and Andersen, 2022]).

Note that along with the interior point methods, generalizations of the simplex method to semi-
definite programming have been developed, in particular, in the series of works by V. Zhadan.

The results of this thesis are published as the following two articles:

1. Ivanova, A. and Hildebrand, R. (2023). Optimal step length for the maximal decrease of a
self-concordant function by the newton method. Optimization Letters, pages 1–8

2. Hildebrand, R. and Ivanova, A. (2022). Extremal cubics on the circle and the 2-sphere. Results
in Mathematics, 77(3):1–33

We outline the rest of the manuscript and highlight the main contributions.

• Chapter 2, which is described in Section 2 of this summary, is devoted to applying optimal control
theory to find the optimal step size for Newton’s method and the path-following method on the
class of self-concordant functions. For the Newton method our goal is to find an optimal step
length in terms of the functional value, i.e. this optimal step-size should maximize the decrease
of the functional value. For the path-following method the quality of the current point x0 is
measured by the distance in the local metric to the straight line approximating the central path.
Our goal is to move as far along the straight line as possible without losing in quality in terms
of the distance to the central path. This leads to a problem: how large this distance can be
if we pass from x0 to another point x1. In both problems we consider the evolution of values
(function and its derivatives) over the whole segment between starting and endpoints. Thus, we
are looking at an infinite-dimensional object and a suitable apparatus for solving this problem is
optimal control theory. So, we state these problems as optimal control problems and use optimal
control theory to solve them.

• In Chapter 3, which is described in Section 3 of this summary, we consider homogeneous cubic
polynomials on the unit sphere. We consider the set of cubics which are bounded by 1 on the unit
sphere as a 10-dimensional convex body, since each cubic has 10 coefficients. Our main goal is to
provide a complete classification of the extremal points of this body. Since homogeneous cubic
polynomials in 3 variables have 10 independent coefficients, we can define all these coefficients
if we fix 4 maxima of this polynomial on a sphere. Each maximum point corresponds to 3
optimality conditions, therefore 4 maxima define a system of 12 linear equations. Note that P is
invariant with respect to rotation in R3. That is, if we rotate the sphere, then the 4 points on the
sphere rotate too, and this new point also corresponds to some extreme polynomial. It turns out
that instead of values of maxima vectors, we should consider angles between these vectors, since
they are invariant with respect to rotation. Solving this problem, we get a representation of the
cubic polynomialas a function of the Gramian of the maxima points, i.e. in the general case an
extreme polynomial is more elegantly described by the maxima, or their Gramian, than by the
coefficients themselves. Moreover, we consider some special cases and provide a full classification
of the extremal cubics. The motivation for this investigation is that the unit norm ball defined
by condition

∑n
r,s,t=1 Prstxrxtxs ≤ 1 for all x ∈ Rn, ||x|| = 1 in the space of polynomials is used
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as set of admissible controls in the control problem formulated for finding the optimal step in the
path-following methods, and its extreme points define the possible optimal controls.

• In Chapter 4, which is described in Section 4 of this summary, we discuss some future directions
of this work.

2 Optimal control approach to find the optimal step length

This chapter is devoted to the optimal control approach to find the optimal step for the Newton method
and for the path-following method. The idea to use optimal control methods for the worst-case analysis
of first order methods has been developed by Laurent Lessard and co-authors in [Lessard et al., 2016],
where they use robust control techniques related to the search for quadratic Lyapunov functions to
derive numerical upper bounds on convergence rates for the Gradient method, the Heavy-ball method,
Nesterov’s accelerated method, and related variants by solving small, simple semi-definite program-
ming problems. The same technique was also considered in [Taylor et al., 2018, Hu and Lessard, 2017].
In contrast to this finite-dimensional approach we shall use optimal control theory in the infinite-
dimensional setting of the Pontryagin maximum principle.

The first part of the chapter is devoted to the problem of finding the optimal step length of New-
ton’s method on the class of self-concordant functions, motivated by the appearance of this class in
barrier methods for conic programming, in particular, when solving linear programs, second-order cone
programs, and semi-definite programs.

Definition 2.1. A convex C3 function f : D → R on a convex domain D is called self-concordant if
it satisfies the inequality

|f ′′′(x)[h, h, h]| ≤ 2(f ′′(x)[h, h])3/2 (1)

for all x ∈ D and all tangent vectors h.

Step lengths for the damped Newton method were also considered in [Burdakov, 1980, Ralph, 1994,
Nesterov, 2018]. The behaviour of the Newton decrement and the function value under specific step
sizes has been studied in [Renegar, 2001, Section 2.2]. In [De Klerk et al., 2020a, Corollary 6.1] the
decrease of the distance from the optimum and of the norm of the gradient, both in the local metric
of the initial point, have been bounded for self-concordant functions if the initial point is close enough
to the minimum. The same bound has been obtained in [De Klerk et al., 2020a, Corollary 6.3] for
the local metric of the minimum. A bound on the decrease in function value can be derived from
[De Klerk et al., 2020a, Theorem 5.3], however, it depends on the difference between the current and
optimal function values. In that paper an inexact Newton step can be taken, and the bound depends
on the error. The methods used in [De Klerk et al., 2020a] rely on semi-definite programming (see also
[Drori and Teboulle, 2014]) and are completely different from those employed here.

In this chapter we find the optimal step length of Newton’s method with respect to the decrease
of the function value. This criterion was considered in [Nesterov and Nemirovskii, 1994, Theorem
2.2.1], where the decrease has been lower bounded by an explicit function of the step length γk and
the Newton decrement ρk. The same bound has been derived in [Gao and Goldfarb, 2019] in a more
general context. In the latter paper it is shown that the step length γk = 1

1+ρk
maximizes this lower

bound. The same expression for the step length is also proposed in [Nesterov and Nemirovskii, 1994,
Theorem 2.2.3] for larger values of the decrement. While in [Gao and Goldfarb, 2019], and implicitly
in [Nesterov and Nemirovskii, 1994], the step length has been obtained as the maximizer of a bound,
in the present paper we show by employing optimal control theory that this step length is actually
optimizing the function value itself. It turns out, however, that no further improvement over the results
in the mentioned papers occurs, despite the use of the exact criterion.

Optimal control theory has already been used in [Hildebrand, 2021] to find an optimal step-length
γ∗ for the Newton method on self-concordant functions. However, a different strategy has been adopted
there. Instead of the worst-case function value, as in the present work, the worst-case Newton decrement
in the next iteration is minimized. This criterion is more in line with the philosophy of interior-
point methods as presented in [Nesterov and Nemirovskii, 1994], but it has the drawback that if the
decrement is larger than 1, no progress can be guaranteed at all. Also, the optimal value of the step
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length turns out to be not expressible in closed form in general. The criterion used in the present paper,
on the contrary, can be strictly improved at each step, no matter how far we are from the optimum at
the current iteration, and the value of the optimal step length is a simple analytic function of the data
available at the current iteration.

The second part of the chapter is devoted to the problem of finding the optimal step for the path-
following method on the class of self-concordant functions. The distance to the central path was also
considered in [Nesterov and Todd, 1998]. The distance to the central path in the local metric was
chosen as the criterion.

2.1 Optimal step length for the maximal decrease of a self-concordant func-
tion by the Newton method

In this chapter we consider Newton’s method with a damped step, producing iterations according to

xk+1 = xk − γk(F
′′(xk))

−1F ′(xk), (2)

where γk ∈ (0, 1] is the step-size and γk = 1 corresponds to a full step.
The authors of [Nesterov and Nemirovskii, 1994] describe the state at iteration k by a single scalar,

the Newton decrement

ρk = ||F ′(xk)||F ′′(xk) :=
√

(F ′(xk))⊤(F ′′(xk))−1F ′(xk). (3)

In this section consider the problem of finding a step length γk which maximizes the decrease
F (xk)−F (xk+1) of the function value in the worst case realization of the function F (·). So, we firstly
need for given step length and given decrement to find the worst realization of the function giving the
minimal decrease, and then to maximize this progress over the value of the step length, yielding the
optimal step length as a function of the decrement. This leads to the following optimization problem:

max
γk

min
F∈S

(F (xk)− F (xk+1)) , (4)

where γk is the step length, xk+1 is given by (2), the decrement ||F ′(xk)||F ′′(xk) is fixed to some value
ρk, and S is the class of functions satisfying (1).

To solve problem (4) we consider a single iteration of the Newton method. Let the end point xk+1

be given by (2) and consider the line segment between xk and xk+1. We study the evolution of the
values of the function and its derivatives along this segment. This distinguishes our approach from
the approach in [De Klerk et al., 2020a], where n iterations and only the values of the function and
its derivatives at the points x1, . . . , xn, i.e., a finite dimensional object, are considered. In contrast
to this we consider an infinite dimensional object. The suitable apparatus to solve this problem is
optimal control theory. We can solve this problem analytically. As a result we get that γ⋆ = 1

1+ρ is the

optimal step. The same step length was already proposed in [Nesterov and Nemirovskii, 1994], and
in [Gao and Goldfarb, 2019] it is shown that this step-size maximizes a lower bound on the decrease
of the function value. In our work we have proved that this step length is actually optimal for this
criterion.

2.2 Optimal step for the path following method

This chapter is devoted to the problem of conditional minimisation of a linear functional on a given
feasible set. Assume that we need to solve the following optimization problem

min
x∈X

⟨c, x⟩,

where X is a convex closed set with non-empty interior D not containing a straight line, equipped with
a self-concordant barrier F : D → R. Here c ∈ Rn = (Rn)∗ is a non-zero linear functional on D. We
assume the existence of a solution x∗ of this problem. As we described in Section ??, instead of the

4



initial problem we can consider the following family of problems, parameterized by a real parameter
τ ∈ R+:

min
x

τ⟨c, x⟩+ F (x).

Thus we pass to the problem of unconditional minimization where the objective functional is strongly
self-concordant. Therefore, to solve these auxiliary problems we can use Newton’s method.

For large enough τ the minimizers x∗(τ) of the auxiliary problem exist and are unique. Moreover,
they are differentiable with respect to the parameter τ and form a curve called the central path. The
approximation of the central path at the point x̂ is given by the affine line

x∗(τ, x̂) = x̂− (F ′′(x̂))−1(F ′(x̂) + τc).

The approximation lies on a straight line with direction

p(x̂) = −(F ′′(x̂))−1c

and passes through the point x̂+ r(x̂), where

r(x̂) = −(F ′′(x̂))−1(F ′(x̂) + τ0c)

and τ0 is arbitrary.
The quality of the current point x̂ is measured by the distance in the local metric to the straight

line approximating the central path. So, the nearest point to x̂ on this line, measured in the local
metric, has parameter

τ∗x̂ = argmin
τ∈R

∥x∗(τ, x̂)− x̂∥x̂ = argmin
τ∈R

∥(F ′′(x̂))−1 (F ′(x̂) + τc) ∥x̂

= argmin
τ∈R

√
(F ′(x̂) + τc) (F ′′(x̂))−1 (F ′(x̂) + τc) =

cT (F ′′(x̂))−1F ′(x̂)

cT (F ′′(x̂))−1c
.

The corresponding distance to the approximation of the central path is given by

δ(x̂) = ∥(F ′′(x̂))−1 (F ′(x̂) + τ∗x̂c) ∥x̂

=

√
(F ′(x̂))T (F ′′(x̂))−1F ′(x̂)− cT (F ′′(x̂))−1F ′(x̂)

cT (F ′′(x̂))−1c
.

Note that the general criterion is to measure the distance to a target point on the central path, but in
our work we measure the distance to the central path, that is, we do not fix the target point.

Our goal is to move as far along the straight line as possible without losing quality in terms of
the distance to the central path. This leads to a problem: how large this distance can be if we
pass from x0 to another point x1. An approximation of the central path for the different points
is represented in Figure 1. In this figure, the black point corresponds to the starting point, and the
black line corresponds to the approximation of the central path at that point. We start moving from
the current point, but the line itself moves with the point. For example, if we step to the blue point,
which is close enough to the initial approximation of the central path, this new point has its own
approximation of the central path, the blue line. The distance to this line from the blue point is larger.
But it is important for us that this distance is not worse than the distance from the starting point to
the initial approximation. If we step too far then the approximation will change a lot and the distance
can increase a lot. If we step too close, we will move slower than we could, that is, it will be slower
to converge to the solution. So the goal is to figure out how far we can move along the central path
without losing in quality at the new point.

In [De Klerk et al., 2020b] authors also study the quality of iterations of the path-following method,
but they consider the current and the next point and the values of function and its derivatives at
these points. Moreover, they consider several iterations, whereas we consider only one iteration. We
consider not only values at the endpoints but the evolution of values (function and its derivatives) over
the whole segment between starting and endpoints. Thus, we are looking at an infinite-dimensional
object, whereas in [De Klerk et al., 2020b] a finite-dimensional object has investigated. Therefore, we
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Figure 1: An approximation of the central path for the different points.

use more information that can help us to estimate an optimal step length more precisely. To this end,
we shall investigate the evolution of the derivatives of f along the segment between x0 and x1, which
leads to an infinite-dimensional problem and a suitable apparatus for solving this problem is optimal
control theory. We formulate this problem as an optimal control problem and further numerically solve
it.

3 Extremal cubics on the circle and the 2-sphere

The problem of maximizing a homogeneous cubic over the unit sphere is NP-hard and arises in vari-
ous applications in non-convex and combinatorial optimization, e.g., the stable set problem which was
considered in [Nesterov et al., 2003]. Several approaches for the solution of this problem have been
proposed in [So, 2011, Nie, 2012, Zhang et al., 2012, Ahmed and Still, 2019, Buchheim et al., 2019,
de Klerk and Laurent, 2020, Fang and Fawzi, 2021].
The problem is equivalent to determining the intersection of a given ray in the space of homogeneous
cubics with the boundary of the unit norm ball in this space

B1(S
n−1) := {p ∈ R[x1, . . . , xn]3 | ∥p∥ ≤ 1} ,

where the norm is defined by
∥p∥ = max

∥x∥2=1
p(x), (5)

and ∥ · ∥2 is the usual Euclidean norm in Rn. A semi-definite description of this norm ball for n = 3
follows from Propositions 4.8 and 5.1 in [Saunderson, 2019], for n = 2 such a description is readily
constructed from the semi-definite description of the cone of nonnegative univariate trigonometric poly-
nomials [Nesterov, 2000, Section 3.4]. Inequivalent semi-definite descriptions which can be generalized
to balls of non-homogeneous cubics can be found in [Hildebrand, 2022].

In this work we analyze the corresponding semi-definite representable norm balls in the space of
homogeneous cubics, which have dimensions 10 and 4, respectively. In particular, we determine all
their extreme points and study their facial structure.

Extremal nonnegative polynomials have among others been studied in [Choi and Lam, 1977, Reznick, 1978,
Reznick, 2000, Naldi, 2014]. Extremal homogeneous cubics in three variables which are nonnegative on
the orthant have been studied in [Ando, 2021]. The facial structure of cones of nonnegative polynomi-
als has been studied in [Kunert, 2014, Blekherman et al., 2015]. In particular, the exposed faces of the
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cone of nonnegative polynomials have been characterized as the set of nonnegative polynomials which
vanish on a certain subset of points [Blekherman et al., 2013, Section 4.4.5], [Kunert, 2014, Prop. 1.69].

Our motivation for studying the structure of the norms balls B1(S
n−1) for n = 2, 3 is that in

the analysis of optimization algorithms on self-concordant functions by methods of optimal con-
trol these balls appear as control sets, and the optimal controls are extreme points of these balls
[Hildebrand, 2021].

In this work we define some basic notations, in particular, faces of a convex set, and investigate the
connection between the faces of the norm ball B1(S

n−1) and the maxima of cubics on Sn−1, after we
consider the norm balls B1(S

1) and B1(S
2). For n = 2 we completely describe the facial structure of

this norm ball, while for n = 3 we classify all extremal points and describe some families of faces.

4 Conclusion

Interior point methods have a history of more than 35 years and their appearance made a major
breakthrough in convex optimization. These methods are still actively used for solving large-scale
optimization problems and remain out of competition.

One of the important practical aspects of implementing any algorithm is the appropriate choice of
step length. This problem for interior point methods is the focus of this thesis. In this work, we propose
to use an approach in which the problem of finding the optimal step of the method is formulated as
an optimal control problem and then optimal control theory is applied to solve it. In Chapter ??, we
gave the history of interior point methods and summarised the main theoretical concepts that were
used in the study, among them Newton’s method, self-concordant functions, path-following methods
and optimal control theory.

In Chapter 2, we considered the problem of finding the optimal step or iterate for optimisation
methods using optimal control theory. In the first part of the chapter we consider the problem of
finding the optimal step length for the Newton method on the class of self-concordant functions, with
the decrease in function value as criterion. The second part is devoted to finding an optimal step
of the path-following method when minimizing a linear function using a self-concordant barrier. The
quality of the current point x0 is measured by the distance in the local metric to the straight line
approximating the central path. Our goal is to move as far along the straight line as possible without
losing in quality in terms of the distance to the central path. This leads to a problem: how large this
distance can be if we pass from x0 to another point x1. We formulate both problems as optimal control
problems and use optimal control theory to solve them.

In Chapter 3, we study balls of homogeneous cubics on Rn, n = 2, 3, which are bounded by unity
on the unit sphere. For n = 2 we completely describe the facial structure of this norm ball, while for
n = 3 we classify all extremal points and describe some families of faces. The motivation for studying
this problem is that these balls of polynomials appear as control sets in the aforementioned optimal
control problems, and their extreme points are candidates for the optimal control.

4.1 Future directions

In this thesis we solved the problem of finding the optimal iterate for a path-following method numeri-
cally in two dimensions. If the space where the initial optimization problem takes place has dimension
n ≥ 3, then the optimal control problem arising for the corresponding task of finding the optimal
iterate has a similar structure, but the variables y, q are 3-dimensional vectors. The general dimension
n hence reduces to dimension 3.

One of the main directions of development of this work is hence to solve the problem of finding the
optimal step of the central path method using self-concordant barriers in the three-dimensional case.
Contrary to the two-dimensional case, in the three-dimensional case the optimal control set is a set of
homogeneous cubic polynomials bounded by one on the sphere. As a first step towards solving this
problem, we solved the problem of classifying the extremal points of this set; the complete classification
is presented in Chapter 3. The optimal control problem itself, which can be solved also only numerically,
could not be considered in the framework of this thesis and is subject to future research.
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