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1 Introduction

1.1 Topic of the Work
Speech recordings frequently suffer from background noise, reverberation, re-
duced frequency bandwidth, and other distortions, diminishing both their in-
telligibility and the listener’s aesthetic satisfaction. Speech enhancement tech-
niques are designed to restore perceptually plausible and intelligible clean
speech from such corrupted signals. Speech enhancement can lower the tech-
nical requirements for recording equipment, enabling professionals to produce
studio-quality recordings without sophisticated studio equipment. These mod-
els can be used to promote communication in acoustically contaminated en-
vironments and are particularly important for hearing assistance technologies
for individuals with hearing impairments. Additionally, speech enhancement
models play a critical role in creating high-quality datasets for deep learning
systems, which rely on extensive datasets of clean speech for effective training.
As a result, even publicly available data, irrespective of the initial recording
conditions, can be improved to meet the quality standards necessary for ad-
vanced speech synthesis models. Therefore, speech enhancement techniques
are crucial for a wide range of applications.

A more formal definition of the speech enhancement problem could be ex-
pressed in probabilistic formulation. Let 𝑝(𝑦) be a clean speech distribution,
and let 𝑝(𝑥|𝑦) be the degradation model. The problem of speech enhancement is
to retrieve a sample from the conditional distribution 𝑝(𝑦|𝑥), where 𝑥 ∼ 𝑝(𝑥|𝑦)
is a speech signal corrupted by the degradation model. The degradation model
distribution 𝑝(𝑥|𝑦) can include various forms of signal transformation, including
background noise injection, reduction of frequency bandwidth, codec artifacts,
reverberation, etc. Depending on the available resources and the particular ap-
plication, one can distinguish several formulations of the speech enhancement
problem:

• Basic Speech Enhancement [48, 32]: This setting involves supervised
speech enhancement without latency constraints. In this formulation,
the degradation model distribution is known in advance, and the model
is not restricted to be streaming.

• Streaming Speech Enhancement [19, 10]: In this scenario, it is re-
quired to build speech enhancement models with a limited algorithmic
delay, i.e., causal models. Streaming speech enhancement enforces the
model to use only a limited window of future information, typically rang-
ing from 3-8 ms (low latency) to 60 ms (high latency).

• Unsupervised Speech Enhancement [30, 35]: This formulation does
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not assume the degradation model 𝑝(𝑥|𝑦) to be known in advance. The
model is adapted to the particular degradation model only at the infer-
ence stage.

The development of efficient generative models for speech enhancement in
the context of all of these formulations is the topic of this work.

1.2 Relevance
Historically, the field of audio processing has been dominated by methods that
rely on handcrafted heuristics and statistical models, often employing unre-
alistic assumptions about the structure of speech and disturbances [14, 13].
However, the rise of machine learning and, more specifically, deep learning,
has marked a paradigm shift towards leveraging data-driven methodologies. In
contrast to traditional approaches, the data-driven paradigm learns the char-
acteristics of the signals directly from the data. This approach has been shown
to be beneficial in many domains, including speech processing.

Initial attempts to apply deep learning methods to the speech enhancement
problem were based on treating this problem as a predictive problem [10, 16, 5,
19]. Following the principle of empirical risk minimization, the goal of predic-
tive modeling is to find a model with minimal average error over the training
data. Given a noisy waveform or spectrogram, these approaches try to predict
the clean signal by minimizing point-wise distance in waveform or spectral do-
mains, or jointly in both domains, thus treating this problem as a predictive
task.

However, given severe degradations applied to the signal, there is an inher-
ent uncertainty in the restoration of the speech signal (i.e., given the degraded
signal, the clean signal is not restored unambiguously), which often leads to
oversmoothing of the predicted speech. From the probabilistic point of view,
minimization of the point-wise distance leads to an averaging effect. For ex-
ample, optimization of the mean squared error between waveforms delivers the
expectation of the waveform over the conditional distribution of clean speech
given its degraded version. The key issue is that the expectation over this
distribution is not guaranteed to lie within this distribution.

An illustrative example of this phenomenon and its impact on speech en-
hancement is shown in Figure 1. The model is trained to extend the frequency
bandwidth of the speech signal given the signal with reduced bandwidth by
minimizing the mean squared error distance between clean and generated wave-
forms [3]. Notably, the model is not able to restore high-frequency content
while minimizing the MSE objective. Due to high uncertainty, the model over-
smooths the high frequencies, being unable to restore speech content above 5
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kHz. A similar effect occurs with other point-wise losses, including spectral-
based losses.

Input (MSE = 1e-4)

Predicted, MSE minimization (MSE = 5e-5) 

Ground Truth

Predicted, GAN training (MSE = 1e-3) 

Figure 1: Example of speech signal spectrograms. Mean squared error min-
imization leads to oversmoothing of the predicted signal, resulting in missing
high-frequency content. While the prediction provided by the generative model
delivers MSE even higher than the input, the predicted signal resembles the
original speech content. A similar effect is reported for image super-resolution
models [27].

Unlike predictive models, generative models aim at sampling from the clean
speech distribution conditioned on the degraded signal rather than minimizing
point-wise loss. The advantage of this approach is that the speech enhancement
model is enforced to produce a signal lying within the clean speech distribu-
tion, as illustrated in Figure 1. This work studies generative models in
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the context of speech enhancement, proposes novel methods, and
improves the efficiency and quality of existing solutions.

In the first part of this work, we focus on developing efficient solutions for
basic speech enhancement [48, 32]. The basic speech enhancement formulation
does not impose constraints on the available signal context, and the degrada-
tion model is assumed to be known during training. We, firstly, argue that
the speech enhancement problem does not necessitate the model to learn the
complete conditional distribution 𝑝(𝑦|𝑥), instead the focus is on capturing the
mode of this distribution.

We show that the GAN framework is naturally suited for this formulation
of the speech enhancement problem since it tends to retrieve the main mode
of the distribution—precisely what speech enhancement should typically do.
Therefore, in this work, we employ the GAN framework for the basic speech
enhancement formulation and design efficient architectures of generator and
discriminator neural networks.

In the second part of the work, we focus on streaming speech enhance-
ment [19, 10, 45, 51], in particular, on low-latency speech enhancement [45, 51].
Streaming models are an essential component of real-time speech enhancement
tools. The streaming regime constrains speech enhancement models to use only
a tiny context of future information. As a result, the low-latency streaming
setup is generally considered a challenging task and has a significant negative
impact on the model’s quality.

However, the sequential nature of streaming generation offers a natural pos-
sibility for autoregression, that is, utilizing previous predictions while making
current ones. The conventional method for training autoregressive generative
models is teacher forcing, but its primary drawback lies in the training-inference
mismatch that can lead to a substantial degradation in quality. We propose
a straightforward yet effective alternative technique for training autoregressive
low-latency speech enhancement models. We demonstrate that the proposed
approach leads to stable improvement across diverse architectures and training
scenarios.

Lastly, we focus on the unsupervised speech enhancement problem [30, 35].
We introduce a diffusion probabilistic model capable of solving various speech
inverse tasks with unknown degradation models during training. Once trained
for speech waveform generation in an unconditional manner, it can be adapted
to different tasks including degradation inversion and neural vocoding.

1.3 Key Results and Conclusions

1.3.1 Contributions

The main contributions of this work can be summarized as follows:
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1. We propose the HiFi++ composite generator architecture by combining
the HiFi-GAN generator with three new modules: SpectralUnet, Wave-
UNet, and SpectralMaskNet. This new generator architecture allows
building a unified framework for bandwidth extension and speech en-
hancement, delivering state-of-the-art results in these tasks.

2. We design a novel architecture for direct spectrogram estimation based on
the fast Fourier convolution operator. The architecture allows direct ma-
nipulation with cepstrum features and further improves HiFi++ results
on speech enhancement problems while being more parameter-efficient.

3. We investigate various feature extractors as backbones for speech per-
ceptual loss and introduce criteria for selecting an extractor based on
the structure of its feature space. The effectiveness of these criteria is
validated by empirical results.

4. Based on these developments, we develop a novel universal speech en-
hancement model, FINALLY, which achieves state-of-the-art performance,
outperforming all existing solutions while being more computationally ef-
ficient.

5. We propose a novel method for training autoregressive models for low-
latency streaming speech enhancement. The method allows mitigating
training-inference mismatch arising during training with teacher forcing.
The model allows a considerable improvement in streaming speech en-
hancement models with autoregressive conditioning.

6. We investigate a diffusion-based technique for unsupervised speech en-
hancement. The proposed unconditional diffusion model can be trained
for the unconditional speech generation task and then be adapted for
various speech restoration tasks without additional training.

1.3.2 Theoretical and Practical Significance

This work theoretically shows that adversarial training can be used for implicit
regression for the main mode of the distribution, making it a suitable tool for
learning speech enhancement models. It also studies the structural properties
of different speech feature extractor spaces and formulates a new perceptual
loss.

Additionally, the work proposes new neural architectures, HiFi++ and
FFC-SE, for deep generative models, improving the quality and computational
efficiency of speech enhancement solutions. Based on these developments, the
work proposes a highly efficient speech enhancement algorithm, FINALLY,
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which achieves state-of-the-art quality with significantly fewer computational
resources than prior methods.

The work also outlines a novel method for training autoregressive models in
situations with high training-inference mismatch, significantly improving upon
the conventional teacher forcing technique. The proposed iterative autoregres-
sion method holds significant practical novelty due to the widespread usage of
autoregressive models nowadays.

Furthermore, the work studies the problem of unsupervised speech enhance-
ment and proposes a novel diffusion generative model, Undiff, for unsupervised
speech restoration. This work provides pioneering developments in the unsu-
pervised speech enhancement problem.

1.3.3 Key Aspects/Ideas to be Defended

1. HiFi++ architecture for multi-domain signal processing in speech en-
hancement.

2. FFC-SE archietcure for direct complex spectrogram estimation.

3. FINALLY model for universal speech enhancement.

4. Iterative autoregression technique for mitigation of training-inference mis-
match within autoregressive models, studied in application to low-latency
speech enhancement.

5. Undiff diffusion probabilistic model for unsupervised speech enhance-
ment.

1.3.4 Personal Contribution

The idea of HiFi++ and FFC-SE generator architectures was proposed by the
author of this work. The initial implementation of the HiFi++ architecture
was done by the author while Aibek Alanov and Oleg Ivanov helped to refine
and prepare the codebase for experiments. The FFC-SE network was jointly
developed with Ivan Shcheckotov. The experiments for validation of the net-
works’ effectiveness were designed by the author. The implementation and
paper writing were done jointly with Aibek Alanov, Oleg Ivanov, and Ivan
Shcheckotov. Dmitry Vetrov provided scientific guidance for this work.

The proof of mode-seeking LS-GAN behavior and formulation of the speech
enhancement problem as a mode-finding problem were developed by the au-
thor of the thesis. The FINALLY model was developed together with Kirill
Tamogashev and Nicholas Babaev. The author was responsible for scientific
guidance, experiment planning, and code review.
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The iterative autoregression technique was proposed and theoretically stud-
ied by the author of this work. The actual implementation and experimental
validation were done jointly with Nicholas Babaev. The paper was written by
the author with some assistance from Nicholas Babaev and Aibek Alanov.

The Undiff generative model was designed and implemented jointly with
Anastasia Yaschenko and Ivan Shcheckotov. Dmitry Vetrov provided scientific
guidance for this work.

1.4 Publications and Probation of the Work
The results of this thesis are published in 3 first-tier publications and 1 second-
tier publication. The PhD candidate is the main author in all of these articles1.

1.4.1 First-Tier Publications

• Andreev, P.*, Babaev, N.*, Saginbaev, A., Shchekotov, I., Alanov,
A. (2023). Iterative autoregression: a novel trick to improve your low-
latency speech enhancement model. Proc. INTERSPEECH 2023, 2448-
2452, doi: 10.21437/Interspeech.2023-365 (Core A)

• Shchekotov, I.*, Andreev, P.*, Ivanov, O., Alanov, A., Vetrov, D.
(2022). FFC-SE: Fast Fourier Convolution for Speech Enhancement.
Proc. INTERSPEECH 2022, 1188-1192, doi: 10.21437/Interspeech.2022-
603 (Core A)

• Iashchenko, A.*, Andreev, P.*, Shchekotov, I.*, Babaev, N., Vetrov, D.
(2023). UnDiff: Unsupervised Voice Restoration with Unconditional Dif-
fusion Model. Proc. INTERSPEECH 2023, 4294-4298, doi: 10.21437/
Interspeech.2023-367 (Core A)

1.4.2 Second-Tier Publications

• P. Andreev*, A. Alanov, O. Ivanov* and D. Vetrov, "HIFI++: A Uni-
fied Framework for Bandwidth Extension and Speech Enhancement,"
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Rhodes Island, Greece, 2023, pp. 1-5,
doi: 10.1109/ICASSP49357.2023.10097255. (Core B)

1.4.3 Reports at Scientific Conferences

• 2023 IEEE International Conference on Acoustics, Speech and Signal
Processing, Rhodes Island, Greece, June 8, 2023. Topic: "HIFI++: A

1* indicates equal contribution
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Unified Framework for Bandwidth Extension and Speech Enhancement"

• 24th INTERSPEECH Conference, Dublin, Ireland, August 22, 2023.
Topic: "Iterative autoregression: a novel trick to improve your low-
latency speech enhancement model"

• 24th INTERSPEECH Conference, Dublin, Ireland, August 23, 2023.
Topic: "UnDiff: Unsupervised Voice Restoration with Unconditional Dif-
fusion Model"

• 23rd INTERSPEECH Conference, Incheon, Korea, September 20, 2022.
Topic: "FFC-SE: Fast Fourier Convolution for Speech Enhancement"

1.4.4 Volume and Structure of the Work

The thesis contains an introduction chapter, which formulates the topic of this
work, a background chapter, which introduces the necessary context, 3 content
chapters, which describe the approaches developed for each of the introduced
formulations, and a conclusion chapter, which summarizes the developments of
this work and concludes the study. The full volume of the thesis is 102 pages.

2 Content of the Work

In the Background chapter, we introduce basic degradation models and met-
rics. We also provide a literature review describing deep learning-based speech
enhancement approaches from prior work.

In the three subsequent chapters, we elaborate the developments for the
introduced formulations of the speech enhancement problem:

1. Basic speech enhancement is discussed in chapter three, "Genera-
tive Models for Basic Speech Enhancement." This chapter first refines
the probabilistic formulation of the speech enhancement problem by tak-
ing a closer look at its practical goal. We argue that a speech enhance-
ment model should retrieve the most probable reconstruction of the clean
speech given the degraded version. Given the refined formulation, we
show that a GAN-based training framework naturally suits this goal by
encouraging the generator to retrieve the mode of the conditional dis-
tribution. The chapter then introduces practical developments for the
architecture of neural networks and perceptual losses to guide training
to proper solutions.

2. Streaming speech enhancement is discussed in the fourth chapter,
"Iterative Autoregression for Streaming Speech Enhancement." In this
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chapter, we argue that the streaming regime provides a natural possibility
for autoregressive conditioning of speech enhancement models. We show
that the conventional teacher forcing algorithm leads to high training-
inference mismatch and introduce a novel training algorithm that miti-
gates this problem.

3. Unsupervised speech enhancement is discussed in the fifth chap-
ter, "Unsupervised Speech Enhancement with Unconditional Diffusion
Model." This chapter introduces UnDiff, a diffusion probabilistic model
capable of solving various speech inverse tasks. Once trained for speech
waveform generation in an unconditional manner, it can be adapted to
different tasks of speech restoration without additional training. We first
tackle the challenging problem of unconditional waveform generation by
comparing different neural architectures and preconditioning domains.
After that, we demonstrate how the trained unconditional diffusion model
could be adapted to different tasks of speech processing by means of re-
cent developments in post-training conditioning of diffusion models.

2.1 Generative Models for Basic Speech Enhancement

2.1.1 GANs for Speech Enhancement

We first concretize the probabilistic formulation of the speech enhancement
problem by taking a closer look at its practical goal. The practical goal of a
speech enhancement model is to restore the audio signal containing the speech
characteristics of the original recording, including the voice, linguistic content,
and prosody. Thus, the speech enhancement model should not generate new
speech content but rather "refine" existing speech as if it were recorded in
ideal conditions (studio-like quality). From a mathematical point of view, this
means that the speech enhancement model should retrieve the most probable
reconstruction of the clean speech 𝑦 given the corrupted version 𝑥, i.e., 𝑦 =
argmax𝑦 𝑝clean(𝑦|𝑥).

Given this formulation, we argue that the framework of generative adver-
sarial networks (GANs) is more naturally suited for the speech enhancement
problem than diffusion models. We show that GAN training naturally leads to
the mode-seeking behavior of the generator, which aligns with the formulation
introduced above.

Let 𝑝𝑔(𝑦|𝑥) be a family of waveform distributions produced by the generator
𝑔𝜃(𝑥). Mao et al. [33] showed that training with Least Squares GAN (LS-GAN)
leads to the minimization of the Pearson 𝜒2 divergence 𝜒2

Pearson(𝑝𝑔‖(𝑝clean +
𝑝𝑔)/2). We propose that if 𝑝𝑔(𝑦|𝑥) approaches 𝛿(𝑦−𝑔𝜃(𝑥)) under some parametriza-
tion, the minimization of this divergence leads to 𝑔𝜃(𝑥) = argmax𝑦 𝑝clean(𝑦|𝑥).
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This means that if the generator deterministically predicts the clean waveform
from the degraded signal, the LS-GAN loss encourages the generator to pre-
dict the point of maximum 𝑝clean(𝑦|𝑥) density. We note that although prior
work [29] demonstrated the mode-covering property for the optimization of
Pearson 𝜒2 divergence, our result pertains to a deterministic generator setting,
which is outside the scope of analysis provided by Li et al. [29].

Proposition 1. Let 𝑝clean(𝑦|𝑥) > 0 be a finite and Lipschitz continuous density
function with a unique global maximum and 𝑝𝜉𝑔(𝑦|𝑥) = 𝜉𝑛/2𝑛·1𝑦−𝑔𝜃(𝑥)∈[−1/𝜉,1/𝜉]𝑛,
then

lim
𝜉→+∞

argmin
𝑔𝜃(𝑥)

𝜒2
Pearson(𝑝

𝜉
𝑔||(𝑝clean + 𝑝𝜉𝑔)/2) = argmax

𝑦
𝑝clean(𝑦|𝑥) (1)

Thus, LS-GAN training under ideal conditions should lead to the solution
𝑔𝜃(𝑥) = argmax𝑦 𝑝clean(𝑦|𝑥) for the generator. In practice, however, success is
highly dependent on technicalities, such as additional losses to stabilize training
and architectures of neural networks. In the following sections, we approach
these problems by designing new architectures and training losses.

2.1.2 HiFi++: a Unified Framework for Bandwidth Extension and
Speech Enhancement

We propose a novel HiFi++ architecture that adapts HiFi generator [21] to
the speech enhancement problem by introducing new modules: SpectralUNet,
WaveUNet and SpectralMaskNet (see Figure 2). The HiFi++ generator is
based on the HiFi part that takes as an input the enriched mel-spectrogram
representation by the SpectralUNet and its output goes through postprocess-
ing modules: WaveUNet corrects the output waveform in time domain while
SpectralMaskNet cleans up it in frequency domain. We describe the introduced
modules in details in the next paragraphs.

SpectralUNet We introduce the SpectralUNet module as the initial part
of the HiFi++ generator that takes the input mel-spectogram (see Figure 2).
The mel-spectrogram has a two-dimensional structure and the two-dimensional
convolutional blocks of the SpectralUnet model are designed to facilitate the
work with this structure at the initial stage of converting the mel-spectrogram
into a waveform. The idea is to simplify the task for the remaining part of
the HiFi++ generator that should transform this 2d representation to the 1d
sequence. We design the SpectralUNet module as UNet-like architecture with
2d convolutions. This module also can be considered as the preprocess part
that prepares the input mel-spectrogram by correcting and extracting from it
the essential information that is required for the desired task.
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Upsampler 
(HiFi-like) WaveUNet SpectralMaskNetSpectralUNet

z

Waveform 
 

Mel-spectrogram 

Output waveform

Discriminator
Discriminator
Discriminators

STFT and mel-
scale

Mel-spectrogram
loss

Adversarial and
feature matching

losses

Final loss

Channel-
wise STFT

Amplitudes

SpectralUnet

Phases

Softplus Multiply
Inverse

channel-wise
STFT

UNet architecture with 2d convolutions
UNet architecture with 1d

convolutions

WaveUNetSpectralUNet SpectralMaskNet

STFT and mel-scale Concatenation 

487.8k 891.5k 238.2k 102.5k

Figure 2: HiFi++ architecture and training pipeline. The HiFi++ genera-
tor consists of the HiFi-like Upsampler and three introduced modules Spec-
tralUNet, WaveUNet and SpectralMaskNet (their sizes are in yellow boxes).
The generator’s architecture is identical for BWE and SE.

WaveUNet The WaveUNet module is placed after the HiFi part (Upsam-
pler) and takes several 1d sequences concatenated with the input waveform as
an input. This module operates directly on time domain and it can be consid-
ered as a time domain postprocessing mechanism that improves the output of
the Upsampler and merges the predicted waveform with the source one. The
WaveUNet module is an instance of the well-known architecture Wave-U-Net
[42] which is a fully convolutional 1D-UNet-like neural network. This module
outputs the 2d tensor which consists of 𝑚 1d sequences that will be processed
and merged to the output waveform by the next SpectralMaskNet module.

SpectralMaskNet We introduce the SpectralMaskNet as the final part of
the generator which is a learnable spectral masking. It takes as an input the
2d tensor of 𝑚 1d sequences and applies channel-wise short-time Fourier trans-
form (STFT) to this 2d tensor. Further, the SpectralUNet-like network takes
the amplitudes of the STFT output to predict multiplicative factors for these
amplitudes. The concluding part consists of the inverse STFT of the modified
spectrum (see Figure 2). Importantly, this process does not change phases.
The purpose of this module is to perform frequency-domain postprocessing of
the signal. We hypothesize that it is an efficient mechanism to remove artifacts
and noise in frequency domain from the output waveform in a learnable way.

Training We use the multi-discriminator adversarial training framework for
the time-domain models’ training. It consists of three losses, namely LS-GAN
loss ℒ𝐺𝐴𝑁 [33], feature matching loss ℒ𝐹𝑀 [25, 24], and mel-spectrogram loss
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ℒ𝑀𝑒𝑙 [21]:

ℒ(𝜃) = ℒ𝐺𝐴𝑁(𝜃) + 𝜆𝑓𝑚ℒ𝐹𝑀(𝜃) + 𝜆𝑚𝑒𝑙ℒ𝑀𝑒𝑙(𝜃) (2)
ℒ(𝜙𝑖) = ℒ𝐺𝐴𝑁(𝜙𝑖), 𝑖 = 1, . . . , 𝑘. (3)

where ℒ(𝜃) denotes loss for generator with parameters 𝜃, ℒ(𝜙𝑖) denotes loss for
i-th discriminator with parameters 𝜙𝑖 (all discriminators are identical, except
initialized differently).

Experiments The comparison of the HiFi++ with baselines is demonstrated
in the Table 1. Our model achieves comparable performance with VoiceFixer
[31] and DEMUCS [10] counterparts while being drastically smaller. Interest-
ingly, VoiceFixer achieves high subjective quality while being inferior to other
models according to objective metrics, especially to SI-SDR and STOI. Indeed,
VoiceFixer doesn’t use waveform information directly and takes as input only
mel-spectrogram, thus, it misses parts of the input signal and is not aiming
at reconstructing the original signal precisely leading to poor performance in
terms of classic relative metrics such as SI-SDR, STOI, and PESQ. Our model
provides decent relative quality metrics as it explicitly uses raw signal wave-
form as model inputs. At the same time, our model takes into account signal
spectrum, which is very informative in speech enhancement as was illustrated
by the success of classical spectral-based methods. It is noteworthy that we
significantly outperform the SEANet [44] model, which is trained in a similar
adversarial manner and has a larger number of parameters, but does not take
into account spectral information.

Table 1: Speech denoising results on Voicebank-DEMAND dataset. * indicates
re-implementation.

Model MOS WV-MOS SI-SDR STOI PESQ DNSMOS # Par
(M)

Ground truth 4.60± 0.03 4.50 - 1.00 4.64 3.15 -

HiFi++ (ours) 4.33± 0.06 4.27 18.4 0.95 2.76 3.10 1.7
VoiceFixer 4.32± 0.05 4.14 -18.5 0.89 2.38 3.13 122.1
DEMUCS 4.22± 0.05 4.37 18.5 0.95 3.03 3.14 60.8
MetricGAN+ 4.01± 0.09 3.90 8.5 0.93 3.13 2.95 2.7
*SEANet 3.99± 0.09 4.19 13.5 0.92 2.36 3.05 9.2
*SE-Conformer 3.39± 0.09 3.88 15.8 0.91 2.16 2.85 1.8

Input 3.36± 0.06 2.99 8.4 0.92 1.97 2.53 -
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2.1.3 FFC-SE: Fast Fourier Convolution for Speech Enhancement

We further improve the result of HiFi++ by proposing new neural architectures
based on the fast Fourier convolution (FFC) operator [7], which we adapt for
speech enhancement problems. The FFC layers were originally proposed for
computer vision tasks as a non-local operator replacing vanilla convolutional
layers within existing neural networks. Fast Fourier convolution has a global
receptive field and was shown to be helpful for the restoration of periodic back-
grounds in inpainting problems [43]. These properties of FFC are especially
helpful for the complex spectrum prediction. Indeed, the harmonics of spec-
trograms are known to form periodic structures that can be naturally handled
by fast Fourier convolution (see Figure 3). Besides, we experimentally observe
that a large receptive field of FFC is useful for producing coherent phases.

Based on these insights, we design new neural architectures for direct
complex-valued spectrogram estimation in speech enhancement problems. The
proposed models achieve state-of-the-art performance on VoiceBank-DEMAND
[46] and Deep Noise Suppression [12] datasets with much fewer parameters than
the baselines.

STFT FFT1d

Figure 3: Harmonics of short-time Fourier transform constitute periodic struc-
tures which can be naturally processed in the Fourier domain by the global
branch of fast Fourier convolution.

Fast Fourier Convolution Fast Fourier Convolution (FFC) [7] is a neural
operator that allows performing non-local reasoning and generation within a
neural network. FFC uses a channel-wise fast Fourier transform [36], followed
by a point-wise convolution and inverse Fourier transform, thus globally affect-
ing the input tensor across dimensions involved in the Fourier transform. FFC
splits channels into local and global branches. The local branch uses conven-
tional convolutions for local updates of feature maps, while the global branch
performs a Fourier transform of the feature map and updates it in the spectral
domain, affecting global context.
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Figure 4: Proposed architectures for speech enhancement. Left: fast Fourier
convolutional autoencoder which adopts architecture introduced in [43] for
speech enhancement task. Right: fast Fourier convolutional U-Net.

Architectures We implement two neural network architectures for speech
enhancement. The first one (FFC-AE) is inspired by [43]. This architecture
consists of a convolutional encoder (strided convolution) which downsamples
the input STFT representation across time and frequency dimensions by a fac-
tor of two. The encoder is followed by a series of residual blocks, each consisting
of two sequential fast Fourier convolution modules. The output of the residual
blocks is then upsampled by transposed convolution and used to predict the
real and imaginary parts of the denoised complex-valued spectrogram. The
architecture is depicted in Figure 4 (left). We call this model the fast Fourier
convolutional autoencoder (FFC-AE). The second architecture is inspired by
the classic work [38]. We incorporate FFC layers into the U-Net architecture
as shown in Figure 4 (right). At each level of the U-Net structure, we utilize
several residual FFC blocks with convolutional upsampling or downsampling.

Experiments We compare the quality of the proposed models with strong
baselines. On Voicebank-DEMAND, as it can be seen from Table 2, our models
significantly outperform all the baselines by MOS and give competitive results
on objective metrics. Overall, we observe that neural architectures built upon
fast Fourier convolution significantly outperform vanilla convolution-based ar-
chitectures in terms of quality of speech enhancement, phase estimation and
parameter efficiency. In general, the proposed architectures deliver state-of-art
results on speech denoising benchmarks, being significantly smaller than the
baselines.
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Table 2: Speech denoising results on Voicebank-DEMAND dataset. Best three
results are highlighted in bold.

Model MOS WV-MOS SI-SDR PESQ # Params (M)

Ground Truth 4.46± 0.06 4.50 - 4.64 -
Input 3.44± 0.06 2.99 8.4 1.97 -

MetricGAN+ [15] 3.82± 0.06 3.90 8.5 3.13 2.7
ResUNet-Decouple+ [22] 3.94± 0.04 4.13 18.4 2.45 102.6
DEMUCS (non-caus.) [10] 4.06± 0.03 4.37 18.5 3.03 60.8
VoiceFixer [31] 4.10± 0.03 4.14 -18.5 2.38 122.1
HiFi++ 4.15± 0.07 4.27 18.4 2.76 1.7

FFC-AE-V0 (ours) 4.24± 0.09 4.34 17.9 2.88 0.42
FFC-AE-V1 (ours) 4.33± 0.03 4.37 17.5 2.96 1.7
FFC-UNet (ours) 4.28± 0.03 4.38 18.1 2.99 7.7

FFC-AE-V1 (abl.) 3.98± 0.07 4.05 16.7 2.68 2.9
vanilla UNet 4.10± 0.07 4.11 17.2 2.73 20.7

2.1.4 FINALLY: Fast and Universal Speech enhancement with Studio-
like Quality

The previously discussed approaches deliver impressive results on simulated
data contaminated with additive noise. However, in practice, real-life record-
ings are often contaminated with several distortions at the same time. We
found that models trained to eliminate additive noise generalize poorly to real
data. Therefore, we revisit the HiFi++ framework for speech enhancement and
demonstrate that it provides rapid and high-quality universal speech enhance-
ment, i.e., one model could be used to reverse several degradations simultane-
ously. Our model outperforms both diffusion models and previous GAN-based
models, achieving an unprecedented level of quality on both simulated and
real-world data.

To achieve this, we investigate various feature extractors as backbones for
perceptual loss and propose criteria for selecting an extractor based on the
structure of its feature space. These criteria are validated by empirical results
from a neural vocoding task, indicating that the convolutional features of the
WavLM neural network are well-suited for perceptual loss in speech enhance-
ment. We also develop a novel model for universal speech enhancement that
integrates the proposed perceptual loss with MS-STFT discriminator training
and enhances the architecture of the HiFi++ generator [1] by combining it
with a self-supervised pre-trained WavLM encoder [6].

Architecture We introduce two modifications to the HiFi++ generator’s
architecture (see Figure 5). First, we modify the generator by incorporating
WavLM-large model output (last hidden state of the transformer) as an ad-

17



ditional input to the Upsampler. Prior works [18, 4] have demonstrated the
usefulness of Self-Supervised Learning (SSL) features for speech enhancement
tasks, and we validate this by observing significant performance gains from
using SSL features. Second, we introduce the Upsample WaveUNet at the end
of the generator. This allows the model to output a 48 kHz signal while taking
a 16 kHz signal as input.

Upsampler
(HiFi-GAN
generator)

WaveUNet Spectral
MaskNet

SpectralUNet

Output waveform
(48 kHz)

Discriminator
DiscriminatorMS-STFT
Discriminators

Final loss

SpectralUNet

UNet architecture with 2d convolutionsInput waveform
(16 kHz)

Upsample
WaveUNet

STFT and mel-scale

WaveUNet

UNet architecture with 1d
convolutions 

Up 3x

Channel-
wise STFT

Amplitudes

SpectralUnet

Phases

Softplus Multiply
Inverse

channel-wise
STFT

SpectralMaskNet

LMOS lossWavLM
(SSL network)

Concat Concat

PESQ and
UTMOS losses

Figure 5: FINALLY model architecture.

Training During training, before mixing with noise, we convolve the speech
signal with a randomly chosen microphone impulse response and apply other
digital distortions. We train the model in three stages. The first two stages
concentrate on restoring the original speech content, and the final stage aims
to enhance the aesthetic perception of the speech. The loss functions that we
use can be written as follows:

ℒLMOS(𝜃) = E
𝑥,𝑦∼𝑝(𝑥,𝑦)

[︀
100 · ‖𝜑(𝑦)− 𝜑(𝑔𝜃(𝑥))‖22 + ‖|STFT(𝑦)| − |STFT(𝑔𝜃(𝑥))|‖1

]︀
, (4)

ℒgen(𝜃) =

2nd stage (16 kHz)⏞  ⏟  
𝜆LMOS · ℒLMOS(𝜃)⏟  ⏞  

1st stage (16 kHz)

+𝜆GAN · ℒGAN-gen(𝜃) + 𝜆FM · ℒFM(𝜃)+𝜆HF · ℒHF(𝜃)

⏟  ⏞  
3rd stage (48 kHz)

, (5)

ℒdisc(𝜙𝑖) = ℒGAN-disc(𝜙𝑖), 𝑖 = 1, . . . , 𝑘. (6)

Here, 𝜑 denotes the WavLM-conv feature mapping, 𝑔𝜃(𝑥) denotes the gen-
erator neural network with parameters 𝜃, ℒGAN-gen(𝜃) denotes the LS-GAN
generator loss [33], ℒ(𝜃) denotes the combined generator loss, ℒGAN-disc(𝜙𝑖)
denotes the LS-GAN discriminator [33] loss for the 𝑖-th discriminator with pa-
rameters 𝜙𝑖, ℒFM denotes the feature matching loss [24, 11], ℒHF denotes the
human feedback loss, and 𝜆* denotes the corresponding loss weights.
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Table 3: Comparison with prior work.
VoxCeleb (HiFi-GAN-2 validation set, real data)

Model MOS DNSMOS UTMOS WV-MOS - RTF

Input 3.46 ± 0.07 2.72 ± 0.11 2.76 ± 0.13 2.90 ± 0.16 - -
VoiceFixer 3.41 ± 0.07 3.08 ± 0.06 2.60 ± 0.09 2.79 ± 0.09 - 0.02
DEMUCS 3.79 ± 0.07 3.27 ± 0.04 3.51 ± 0.08 3.72 ± 0.08 - 0.08
STORM 3.75 ± 0.06 3.17 ± 0.04 3.29 ± 0.08 3.54 ± 0.09 - 1.05
BBED 3.97 ± 0.06 3.23 ± 0.04 3.30 ± 0.10 3.47 ± 0.08 - 0.43
HiFi-GAN-2 4.47 ± 0.05 3.32 ±±± 0.03 3.67 ± 0.09 3.96 ±±± 0.06 - 0.50
Ours 4.63 ±±± 0.04 3.31 ±±± 0.04 4.05 ±±± 0.07 3.98 ±±± 0.06 - 0.03

UNIVERSE validation set (simulated data)

Model MOS DNSMOS UTMOS WV-MOS PhER RTF

Input 2.87 ± 0.05 2.25 ± 0.19 2.27 ± 0.28 1.72 ± 0.61 0.31 ± 0.05 -
Ground Truth 4.39 ± 0.05 3.33 ± 0.04 4.26 ± 0.06 4.28 ± 0.06 0 -
UNIVERSE 4.10 ± 0.07 3.23 ±±± 0.07 3.89 ± 0.15 3.85 ± 0.12 0.20 ± 0.04 0.5
Ours (16 kHz) 3.99 ± 0.07 3.24 ±±± 0.05 4.21 ±±± 0.08 4.43 ±±± 0.07 0.14 ±±± 0.03 0.03
Ours 4.23 ±±± 0.07 3.25 ±±± 0.05 4.21 ±±± 0.10 4.43 ±±± 0.08 0.14 ±±± 0.03 0.03

Experiments We consider BBED [26], STORM [28], and UNIVERSE [40]
diffusion models, along with Voicefixer and DEMUCS regression models, as
our baselines. In addition, we consider our closest competitor, HiFi-GAN-2, as
a GAN-based baseline. The data for comparison with HiFi-GAN-2 and UNI-
VERSE were taken from their demo pages since the authors did not release any
code. We conduct comparisons with BBED, STORM, Voicefixer, DEMUCS,
and HiFi-GAN-2 on real-world VoxCeleb1 samples, and the comparison with
UNIVERSE on the simulated data provided by the authors of this work. We
also provide results for our predictions resampled to 16 kHz, in addition to the
base predictions at 48 kHz, since the UNIVERSE model outputs only 16 kHz
tracks. The comparison is outlined in Table 3.

By integrating WavLM-based perceptual loss into the MS-STFT adversar-
ial training pipeline and enhancing the HiFi++ architecture with a WavLM
encoder, we develop a novel speech enhancement model, FINALLY, which
achieves state-of-the-art performance, producing clear and high-quality speech
at 48 kHz.

2.2 Iterative Autoregression for Streaming Speech En-
hancement

The nature of streaming generation follows a sequential pattern that lends itself
well to autoregression. The conventional approach for training autoregressive
models is through "teacher forcing" [47], whereby the model is presented with
past ground-truth samples to predict the subsequent ones during training. Dur-
ing the inference stage, the model utilizes its own samples for autoregressive
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conditioning (free-running mode) since ground-truth is not available. Teacher
forcing is an efficient means of training and convergence as it can be parallelized
effectively for convolution-based networks. However, its primary limitation is
the mismatch between training and inference which can result in a significant
degradation in quality during the test phase. We observe that autoregressive
speech enhancement models rely heavily on ground-truth conditioning and are,
therefore, particularly vulnerable to training-inference mismatch. The com-
mon approaches address this mismatch by utilizing free-running mode during
training [2]. However, these methods are typically used for recurrent networks
operating on low resolution features as their application to convolution-based
networks on high resolution features substantially slows down training, which
hampers practical application.

Model
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waveform

Noisy
wavefrom

Concat

First order
predictions

Model

Concat

Second order
predictions

Model

Concat

Third order
predictions

Compute loss
No grad context

Training
(Iterative Autoregression, IA)

Model

Concat

First order
predictions

Compute loss

Groundtruth
waveform

Noisy
wavefrom

Training
(Teacher Forcing, TF)

1 2 ... 32 33 34 ... 64 65 66 67

-32 -31 ... -1 1 2 ... 32 33 34 33
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noisy waveform

1 2 ... 32 33 34 ... 64 65 66 67

chunk 1 chunk 2

chunk 1 chunk 2

Denoised
waveform

Model Model
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Figure 6: Left: illustration of autoregressive conditioning for the model with
algorithmic latency 32 timesteps (2 ms at 16 kHz sampling rate). Predicted
timesteps from chunk 1 are re-used then making predictions for chunk 2 during
inference (free-running mode). Middle: Illustration of teacher forcing training.
Right: Stage 3 of the iterative autoregression training process. The model uses
its own predictions to produce predictions of higher orders. We shift ground-
truth waveform and predictions before forming a channel with autoregressive
conditioning to avoid leakage of future information.

Iterative autoregression We present a straightforward yet highly efficient
algorithm for training autoregressive models that significantly reduces the training-
inference mismatch (see Figure 6). Our approach is based on the iterative sub-
stitution of ground-truth conditioning with the model’s predictions in teacher-
forcing mode. Specifically, we divide the entire training process into 𝑁 stages,
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starting with the standard teacher forcing in the initial stage. In the second
stage, the forward pass of the model comprises two steps: in the first step,
model predicts conditioned on the ground-truth, in the second step, it predicts
conditioned on the predictions from the first step. Similarly, at the 𝑛-th stage,
the forward pass consists of 𝑛 steps, and at each step, the model is condi-
tioned on the predictions from the previous step. We refer to this algorithm
as "iterative autoregression" (IA) and demonstrate that it helps to alleviate
the training-inference mismatch caused by teacher forcing. Furthermore, we
show that autoregressive conditioning offers significant advantages over non-
autoregressive baselines across various training losses and neural architectures.
Notably, our proposed IA algorithm is versatile and can potentially be applied
to training autoregressive models beyond the speech enhancement domain.

Table 4: Autoregressive training improves speech enhancement quality in
different scenarios. All AR models are trained with iterative autoregression if
not indicated otherwise (TF).

Experiment UTMOS DNSMOS SISDR CMOS
Base configuration

w/o AR 3.53 2.97 17.0 -
w/ AR (TF) 3.38 2.92 12.6 -0.5± 0.08

w/ AR 3.61 3.03 18.4 0.1± 0.05

Different losses
w/o AR (adv.) 3.68 3.02 15.2 -
w/ AR (adv.) 3.74 3.04 15.3 0.12± 0.04

w/o AR (si-snr) 3.51 2.95 17.0 -
w/ AR (si-snr) 3.57 2.96 17.8 0.13± 0.05

DNS dataset
w/o AR 2.42 2.98 14.5 -
w/ AR 2.47 3.03 14.6 0.1± 0.05

ConvTasNet architecture
w/o AR 3.08 2.86 15.3 -
w/ AR 3.33 2.99 15.8 0.52± 0.06

Different latencies
w/o AR (2 ms) 3.47 2.94 17.1 -
w/ AR (2 ms) 3.55 2.98 18.3 0.04± 0.04

w/o AR (4 ms) 3.5 2.96 17.2 -
w/ AR (4 ms) 3.59 3.02 18.6 0.16± 0.05

w/o AR (16 ms) 3.57 2.99 17.3 -
w/ AR (16 ms) 3.64 3.02 18.6 0.09± 0.04
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Experiments In all our experiments, we consider additive noise as the dis-
tortion to be removed from speech recordings. As shown in Table 4, we conduct
a number of experiments to test the proficiency of iterative autoregression in
different training scenarios. For each experimental setting, we train the base-
line model without autoregressive conditioning (w/o AR) and the model with
autoregressive conditioning (w/ AR). The training conditions and models are
identical except AR models are trained with iterative autoregression if not
stated otherwise. The experiments can be divided into 5 settings, depending
on the training scenario employed. In each training scenario, we change only
one training condition (dataset/model architecture/loss/latency) while leaving
other parameters as in the base configuration described below.

The proposed method of iterative autoregressive training allows for improv-
ing the quality of streaming speech enhancement models in all studied scenar-
ios. Furthermore, it dramatically outperforms the conventional teacher forcing
method, which fails to provide any improvements over the non-autoregressive
baseline due to a high training-inference mismatch. We believe that the pre-
sented technique provides a practical alternative to teacher forcing and takes
an important step toward improving streaming models by means of autoregres-
sion.

2.3 Unsupervised Speech Enhancement with Uncondi-
tional Diffusion Model

In recent years, diffusion models [41, 17, 20] have gained attention due to their
ability to efficiently model complex high-dimensional distributions. Diffusion
models are designed to learn the underlying data distribution’s implicit prior
by matching the gradient of the log density. This learned prior can be use-
ful for solving inverse problems, where the objective is to recover the input
signal 𝑦 from the measurements 𝑥, which are typically linked through some
differentiable operator 𝐴, s.t. 𝑥 = 𝐴(𝑦) + 𝑛, where 𝑛 is some noise. In this
part of the work, we introduce UnDiff, a diffusion probabilistic model specif-
ically designed to tackle various inverse tasks for speech processing including
degradation inversion and neural vocoding.

The key advantage of UnDiff is its ability to be trained in an uncondi-
tional manner for speech waveform generation and then be adapted for the
inverse problem without any additional supervised training. This is in contrast
to existing approaches that utilize conditional diffusion models for waveform
restoration or utilize specialized training pipelines [40, 37, 39].

Inverse problems with diffusion models The inverse problems address
the task of retrieving object y given its partial observation x and the degra-
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dation model 𝑝(x|y). To utilize reverse SDE for sampling from conditional
distribution 𝑝(y|x), one needs to know the score function of conditional distri-
bution ∇y𝑡

log 𝑝𝑡(y𝑡|x).
One way to estimate ∇y𝑡

log 𝑝𝑡(y𝑡|x) is to apply imputation guidance (data
consistency) [41, 34, 8]. The idea of this method is to explicitly modify the score
so that some parts of a denoised estimate ŷ0 =

1√
�̄�(𝑡)

(y𝑡 − (1− �̄�(𝑡))𝑠𝜃(y𝑡, 𝑡))

are imputed with observations x.
Another way to formalize the search for y is the usage of Bayes’ rule:

𝑝(y|x) = 𝑝(x|y)𝑝(y)/𝑝(x), (7)

thus,
∇y𝑡

log 𝑝𝑡(y𝑡|x) = ∇y𝑡
log 𝑝𝑡(x|y𝑡) +∇y𝑡

log 𝑝𝑡(y𝑡), (8)

∇y𝑡
log 𝑝𝑡(x|y𝑡) is generally intractable. However, Chung et al. [9] showed that

one can make the approximation ∇y𝑡
log 𝑝(x|y𝑡) ≈ ∇y𝑡

log 𝑝(x|ŷ0), where ŷ0

can be estimated from score function and ∇y𝑡
log 𝑝(x|ŷ0) can be computed

using the degradation model. Given the observation operator 𝐴 and assuming
Gaussian likelihood, the final approximation becomes:

∇y𝑡
log 𝑝𝑡(x|y𝑡) ≈ −𝜉(𝑡)∇y𝑡

‖x− 𝐴(ŷ0)‖22 (9)

where 𝜉(𝑡) is a weighting coefficient which we set to be inversely proportional
to the gradient norm similarly to [34]. Likewise, [34] we refer to this method
as reconstruction guidance.

Bandwidth extension Frequency bandwidth extension [23, 1] (also known
as audio super-resolution) can be viewed as a realistic restoration of waveform’s
high frequencies. The observation operator is a lowpass filter x = 𝐴(y) =
LPF(y). Thus, imputation guidance in this case corresponds to substituting
the generated estimate of low frequencies with observed low frequencies x at
each step. More formally, this corresponds to modifying the score function
during sampling as

𝑠𝜃(y𝑡, 𝑡) =
1

1− �̄�(𝑡)
(
√︀

�̄�(𝑡)˜̂y0 − y𝑡), (10)

where ˜̂y0 = ŷ0 −LPF(ŷ0) + x is imputed estimate of y0, and ŷ0 =
1√
�̄�(𝑡)

(y𝑡 +

(1− �̄�(𝑡))𝑠𝜃(y𝑡, 𝑡)) is estimate of y0 with original score function. In our band-
width extension experiments, we use recordings with a sampling rate of 16 kHz
as targets and consider two frequency bandwidths for input data: 2 kHz and
4 kHz. We artificially degrade the signal to the desired frequency bandwidth
(2 kHz or 4 kHz) using polyphase filtering. The results and comparison with
other techniques for the challenging 2 kHz setting are outlined in Table 5.
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Table 5: Results of bandwidth extension (BWE 2 kHz) on VCTK.
Model Supervised WV-MOS LSD MOS

Ground Truth - 4.17 0 4.09± 0.09

HiFi++ ✓ 4.05 1.09 3.93± 0.10
Voicefixer [31] ✓ 3.67 1.08 3.64± 0.10
TFiLM [3] ✓ 2.83 1.01 2.71± 0.10

UnDiff (Diffwave) × 3.48 0.96 3.59± 0.11
UnDiff (FFC-AE) × 3.59 1.13 3.50± 0.11

Decliping We consider clipping as an inverse problem with observation func-
tion defined as 𝐴 = clip(y) = 1

2(|𝑦+𝑐|−|𝑦−𝑐|) and apply reconstruction guid-
ance strategy. We compare our models against popular audio declipping meth-
ods A-SPADE [49] and S-SPADE [50], as well as the general speech restoration
framework Voicefixer [31] on clipped audio recordings with input SDR being
equal to 3 db (see Table 6).

Table 6: Results of declipping (input SNR = 3 db) on VCTK.
Model Supervised WV-MOS SI-SNR MOS

Ground Truth - 3.91 - 3.84± 0.11

A-SPADE [49] × 2.63 8.48 2.67± 0.11
S-SPADE [50] × 2.69 8.50 2.55± 0.11
Voicefixer [31] ✓ 2.79 -22.58 2.98± 0.12

UnDiff (Diffwave) × 3.62 10.57 3.59± 0.12
UnDiff (FFC-AE) × 3.01 7.35 3.06± 0.12

Input - 2.30 3.82 2.19± 0.09

The results show that despite UnDiff was never explicitly trained to solve
any of the considered tasks, it performs comparably (though inferior) to su-
pervised baselines for bandwidth extension and declipping. Overall, the results
highlight the potential of the unconditional diffusion models to serve as general
unsupervised voice restoration tools.

3 Conclusions

The main conclusions drawn from the results of this work are the following:

1. Composite multi-domain generator architectures provide a better trade-
off between quality and complexity of BWE and SE models. In particular,
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it is useful to enhance audio processing models with modules that perform
both time-domain and spectral-domain signal correction to achieve more
efficient parameter utilization and lower computational complexity, as
demonstrated in the HiFi++ study.

2. Fast Fourier Convolution blocks provide an efficient architectural choice
for designing spectrum-based processing modules. The global receptive
field of this neural layer allows for effective phase estimation, reducing
the memory consumption for the weights of the neural network.

3. The theoretical analysis reveals that LS-GAN training can be used for
implicit regression for the mode of distribution, which is naturally aligned
with the practical goals of the speech enhancement problem. The prac-
tical implementation of GAN-based training supports this analysis and
shows that GAN-based models are able to achieve fast and high-quality
speech enhancement, outperforming other types of generative models
with fewer resources.

4. Autoregressive conditioning is able to improve streaming speech enhance-
ment models by utilizing information about past predictions during in-
ference. However, the application of the standard technique for training
autoregressive models, which is teacher forcing, leads to high levels of
training-inference mismatch and consequently poor enhancement quality.
The developed iterative autoregression technique provides a practical al-
ternative to teacher forcing and allows for efficient and effective training
of autoregressive speech enhancement models.

5. Unsupervised speech enhancement presents a significant challenge due to
the unknown degradation model during training. The problem could be
tackled by the unconditional diffusion model. The unconditional diffusion
model can be used to learn the prior distribution of speech signals during
training and then be adapted to the particular degradation model during
inference. Unfortunately, our study reveals significant challenges arising
with this approach, and the resulting models tend to perform significantly
worse than their supervised counterparts.
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