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Introduction

Description of the research area. We study a�ne algebraic varieties over an alge-
braically closed �eld K of characteristic zero and their regular automorphisms. It is
known that the automorphism group Aut(X) of an a�ne variety X need not be a (�nite-
dimensional) algebraic group, and it is an important problem to describe algebraic sub-
groups of Aut(X). A subgroup G in Aut(X) is said to be algebraic if G has a structure of
an algebraic group such that the action G×X → X is a morphism of algebraic varieties.
A normal algebraic variety is called toric if it admits an action of an algebraic torus

with an open orbit. The theory of toric varieties has deep connections with combinatorics,
commutative algebra and convex geometry; see for example monographs [Fu93, CLS11]. In
particular, any toric variety is given by its fan consisting of rational polyhedral cones, and
a lot of geometric questions on toric varieties have answers in combinatorial terms.
Any a�ne algebraic group G has a unique maximal torus T up to conjugation. If G

is connected, then it is generated by its maximal torus T and one-parameter unipotent
subgroups Ga = (K,+) normalized by T , which are called root subgroups with respect
to T ; see [Hu75]. One may apply this to describe the automorphism group Aut(X) of a
complete toric variety X, which is known to be an a�ne algebraic group; see also [Br21].
In his seminal work [De70], Demazure described Aut(X) and introduced special elements
in the character lattice of the acting torus, which are in bijection with root subgroups.
Nowadays, these elements are called Demazure roots.
In [Cox95], Cox suggested another method to describe the automorphism group of a

complete toric variety. He de�ned an important invariant of a variety called the homoge-
neous coordinate ring or the Cox ring; see also [Bat93]. In the toric case, the Cox ring is
a graded polynomial ring, and the description of the automorphism group of a complete
toric variety can be reduced to the description of Ga-actions on an a�ne space normalized
by the diagonal torus action and centralized by a certain quasitorus.
An important tool to study Ga-actions are locally nilpotent derivations. A K-linear

map δ : R → R is called a derivation of the algebra R if δ(fg) = δ(f)g + fδ(g) for any
f, g ∈ R. A derivation δ is said to be locally nilpotent if for any f ∈ R there exists k ∈ Z>0

such that δk(f) = 0. If R is graded by some abelian group, then a derivation δ of R is
called homogeneous if it maps homogeneous elements of R to homogeneous ones. In other
terms, a torus action on an a�ne variety X is given by a grading of the algebra of regular
functions K[X] by the character lattice of the acting torus. In turn, regular actions of one-
parameter unipotent subgroups Ga on X are in bijection with locally nilpotent derivations
on K[X]. Further, a Ga-action is normalized by a torus if and only if the corresponding
locally nilpotent derivation is homogeneous with respect to the grading de�ned by this
torus. This technique is used in many works in order to describe automorphisms and to
study the geometry of a�ne varieties, see e.g. [FZ05, AH06, Li10, AKZ12, AG17, Sh17,
Ar18, GS19, Ga21, LRU22]. Moreover, lifting automorphisms to the spectrum of the Cox
ring, one can reduce the study of automorphisms of certain projective varieties to the
study of homogeneous automorphisms of a�ne varieties equipped with an action of the
so-called Neron-Severi quasitorus, see [Cox95, HK00, BH03] for the original approach and
[Ga08, AG10, AHHL14, APS14, AK15, ADHL15] for further developments. This method
opens a wide area of applications and motivates the study of graded a�ne algebras and
homogeneous locally nilpotent derivations.
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Recall that the complexity of a torus action is the codimension of a generic orbit. Toric
varieties are precisely varieties with a torus action of complexity zero. Their natural gener-
alization are varieties with torus actions of complexity one. Any a�ne toric variety is given
by binomials, see e.g. [St96, Chapter 4]. At the same time, the study of varieties with torus
action of complexity one is related to some speci�c relations called trinomials.
By a trinomial we mean a polynomial of the form g = T l0

0 + T l1
1 + T l2

2 such that each
variable appears in at most one monomial T li

i . While the Cox ring of a toric variety is a
polynomial ring, the Cox ring of a variety with a torus action of complexity one is a factor-
algebra of a polynomial ring by an ideal generated by trinomials; see [HS10, HHS11, HH13,
AHHL14, HW17]. This motivates us to study homogeneous locally nilpotent derivations
on trinomial algebras; see Section 1.
In parallel to the theory of algebraic groups, the theory of algebraic monoids has been

developed. An algebraic variety X with an associative multiplication X ×X → X is called
an algebraic monoid if the multiplication is a morphism of algebraic varieties and has a
unity. The group of invertible elements of an algebraic monoid X is an algebraic group,
which is Zariski open in X, see [Ri98, Theorem 1] and [Ri07, Theorem 5].
By a group embedding we mean an irreducible a�ne variety X with an open embed-

ding G ↪→ X of an a�ne algebraic group G such that the action of the group G × G by
left and right multiplications on G can be extended to the action of G × G on X. It ap-
pears that for an a�ne algebraic group G there is a natural correspondence between group
embeddings of G and monoid structures with group of invertible elements G; see [Vi95,
Theorem 1] for characteristic zero and [Ri98, Proposition 1] for the general case. The the-
ory of a�ne algebraic monoids and group embeddings is a rich area of mathematics lying
at the intersection of algebra, algebraic geometry, combinatorics and representation theory;
see [Pu88, Vi95, Ri98, Re05] for general presentations.
An a�ne algebraic monoid is called reductive if its group of invertible elements is a

reductive a�ne algebraic group. The theory of reductive monoids is the most developed,
see e.g. the combinatorial classi�cation of reductive monoids in [Vi95, Ri98]. It is based on
the representation theory of reductive groups, i.e., the highest weight theory.
The next possible aim is a classi�cation for other classes of monoids, for example, solvable

or commutative. A monoid is both reductive and commutative if and only if it is a toric
variety with a canonical multiplication. It is important to �nd all monoid structures on
a �xed variety, for example, on an a�ne space. It is also interesting to obtain explicit
formulas for multiplications in monoids; see Section 2.
Let us focus on a�ne varieties with big automorphism groups. The most interesting is

the transitive case. The classical examples here are homogeneous spaces of a�ne algebraic
groups. It is natural to ask whether there are other varieties with the transitive action
of the automorphism group. Such example can be found among Danielewski surfaces and
Danilov-Gizatullin surfaces, see [Gi70, GD77, ML01, Du04] and Section 3.
Let us recall the notion of �exibility, which is close to that of homogeneity. The subgroup

of the automorphism group Aut(X) of a varietyX generated by all Ga-subgroups in Aut(X)
is called the special automorphism group SAut(X). A smooth point x of a variety X is
called �exible if the tangent space to X at the point x is generated by tangents to orbits of
Ga-subgroups passing through the point x. A varietyX is called �exible if any smooth point
of X is �exible. In [AFKKZ13, Theorem 0.1], it is proved that the following conditions are
equivalent for an irreducible a�ne variety X:

(a) the variety X is �exible;
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(b) the group SAut(X) acts on the set of smooth points of X transitively.

Moreover, if the variety X has dimension at least 2, then these conditions are equivalent to

(c) the group SAut(X) acts on the set of smooth points of X in�nitely transitive.

There are many interesting examples of �exible varieties. One useful construction here is
a suspension Susp(X, f) = {uv = f(x)} ⊆ A2×X over an a�ne variety X. If X is a �exible
irreducible a�ne variety of positive dimension, then any suspension over X is �exible as
well; see [AKZ12] for an algebraically closed �eld of characteristic zero and [KM12] for
the case of the ground �eld R. In the context of automorphism groups suspensions were
considered for the �rst time in [KZ99].
The last subject we are interested in is an additive analogue of toric varieties. The idea

is to replace the multiplicative group of the ground �eld by an additive one and consider a
commutative unipotent group Gn

a . By an additive action on a variety we mean an action of
the group Gn

a with an open orbit. In other words, we consider open equivariant embeddings
of vector groups into algebraic varieties. The a�ne case is trivial here since any orbit
of a unipotent group on an a�ne variety is closed. For projective varieties, the theory
is nontrivial even for a projective space. In [HT99], Hassett and Tschinkel establish a
correspondence between �nite-dimensional commutative local unital algebras and additive
actions on projective spaces; see also [KL84]. It appears that there are in�nite families of
pairwise non-equivalent additive actions on Pn starting from n = 6.
Similar approach may be applied to the study of additive actions on projective hyper-

surfaces. This time we need an additional data: a hyperplane U in the maximal ideal m
of the algebra A. It is known that the degree of the hypersurface X corresponding to a
pair (A,U) equals the maximal exponent d with md ⊈ U , see [AS11]. An additive action
on a non-degenerate quadric is unique [AS11], and (in�nitely many) induced additive ac-
tions on degenerate quadrics of corank one are described in [AP14]. In [Baz13], the case of
cubic hypersurfaces is studied; in particular, it turns out that an induced additive action
on a non-degenerate cubic hypersurface is also unique. The next step is to study both
non-degenerate and degenerate hypersurfaces of arbitrary degree; see Section 4.

Main results. Main results of the thesis are as follows.

1. All homogeneous locally nilpotent derivations on trinomial algebras are elementary.
2. Classi�cations of commutative monoid structures on A3 and of monoid structures

of corank one on an arbitrary normal a�ne variety.
3. A classi�cation of Danielewski surfaces that are homogeneous varieties but not ho-

mogeneous spaces.
4. The uniqueness of an induced additive action on a non-degenerate projective hyper-

surface.

Publications. The results of the thesis are published in 7 articles:

[Z19] Yulia Zaitseva. Homogeneous locally nilpotent derivations of non-factorial trino-
mial algebras. Mathematical Notes 105 (2019), no. 6, 818-830

[GZ19] Sergey Gaifullin and Yulia Zaitseva. On homogeneous locally nilpotent derivations
of trinomial algebras. Journal of Algebra and Its Applications 18 (2019), no. 10,
article 1950196, 1-19

[ABZ20] Ivan Arzhantsev, Sergey Bragin, and Yulia Zaitseva. Commutative algebraic
monoid structures on a�ne spaces. Communications in Contemporary Mathe-
matics 22 (2020), no. 8, article 1950064
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[DZ21] Sergey Dzhunusov and Yulia Zaitseva. Commutative algebraic monoid structures
on a�ne surfaces. Forum Mathematicum 33 (2021), no. 1, 177-191

[AZ22] Ivan Arzhantsev and Yulia Zaitseva. Equivariant completions of a�ne spaces.
Russian Mathematical Surveys 77 (2022), no. 4, 571-650

[AZ24] Ivan Arzhantsev and Yulia Zaitseva. A�ne homogeneous varieties and suspen-
sions. Research in the Mathematical Sciences 11 (2024), no. 2, article 27, 1-13

[Z24] Yulia Zaitseva. A�ne monoids of corank one. https://arxiv.org/abs/2312.
08316, 15 pages, accepted to Results in Mathematics

Approbation. The results of the thesis were presented in the following talks.

• Seminar of Department of Mathematics and Computer Science, 11 April 2024, Saint
Petersburg

• The Third Conference of Mathematical Centres of Russia, 10-15 October 2023, Maykop
• Conference �Mathematics in Contemporary World�, 19-23 September 2023, Vologda
• Conference of Small Research Groups, 26-30 June 2023, Saint Petersburg
• Spring School-conference in Algebra in Euler Institute, 29 April - 3 May 2023, Saint
Petersburg

• Workshop �A�ne Spaces, Algebraic Group Actions, and LNDs�, 13-17 March 2023,
Kolkata, India

• Shafarevich Seminar, Steklov Institute of Mathematics, 21 February 2023, Moscow
• The Tenth School-conference on Lie Algebras, Algebraic Groups and Invariant Theory,
28 January - 2 February 2023, Moscow

• The Second Conference of Mathematical Centres of Russia, 7-11 November 2022, Moscow
• Conference �Algebraic Groups: the White Nights Season - II�, 4-8 July 2022, Saint
Petersburg

• The Ninth School-conference on Lie Algebras, Algebraic Groups and Invariant Theory,
21-26 August 2021, Samara

• The First Conference of Mathematical Centres of Russia, 9-13 August 2021, Sochi
• Mini-workshop �Algebraic Groups: the White Nights Season�, 12-16 July 2021, Saint
Petersburg

• Iskovskih Seminar, Steklov Institute of Mathematics, 12 March 2020, Moscow
• Conference �Algebraic Transformation Groups: the Mathematical Legacy of Domingo
Luna�, 28-30 October 2019, Rome, Italy, poster

• Conference �Department of Higher Algebra becomes 90�, 28-31 May 2019, Moscow
• Seminar on Lie Groups and Invariant Theory, 31 October 2018, Moscow
• The Seventh School-conference on Lie Algebras, Algebraic Groups and Invariant Theory,
18-26 August 2018, Samara

Main de�nitions and results of the thesis are formulated in further sections. All results
are new and relevant to the subject of the dissertation. They may be used in the further
studies of algebraic transformation groups and automorphisms of varieties.
I would like to express my sincere gratitude to Ivan Arzhantsev for his invaluable help,

advice and constant support.

1. Locally nilpotent derivations on trinomial algebras

A trinomial is a polynomial g = T l0
0 + T l1

1 + T l2
2 ∈ K[Tij, 0 ⩽ i ⩽ 2, 1 ⩽ j ⩽ ni], where

n0, n1, n2 ∈ Z>0, n = n0+n1+n2 and T li
i = T li1

i1 . . . T
lini
ini

for 0 ⩽ i ⩽ 2. Consider a trinomial

https://arxiv.org/abs/2312.08316
https://arxiv.org/abs/2312.08316
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algebra R(g) = K[Tij]/(g). Denote by K the factor group K = Zn/ ImL∗, where

L∗ =

−l0 −l0
l1 0
0 l2


is an (n× 2)-matrix L∗ corresponding to the trinomial g, and by Q : Zn → K the canonical
projection. Then the equations deg Tij = Q(eij) de�ne a K-grading on the algebra R(g).
The construction of elementary derivations is given in [AHHL14] and is described below

in the case of trinomial hypersurfaces. Let us de�ne a derivation δC,β of R(g), where the
input data are a sequence C = (c0, c1, c2), ci ∈ Z, 1 ⩽ ci ⩽ ni, and a vector β = (β0, β1, β2),
βi ∈ K, β0 + β1 + β2 = 0. If βi ̸= 0 for all i = 0, 1, 2 and there is at most one i1 with
li1ci1 > 1, then we set

δC,β(Tij) =

βi

∏
k ̸=i

∂T
lk
k

∂Tkck

, j = ci,

0, j ̸= ci.

If βi0 = 0 for a unique i0 and there is at most one i1 with i1 ̸= i0 and li1ci1 > 1, then

δC,β(Tij) =

βi

∏
k ̸=i,i0

∂T
lk
k

∂Tkck

, j = ci,

0, j ̸= ci.

These assignments de�ne a derivation δC,β on the algebra R(g), which is homogeneous and
locally nilpotent. If h ∈ R(g) is a homogeneous element in the kernel of δC,β, then hδC,β is
also a homogeneous locally nilpotent derivation. Such derivations are called elementary.
In [Z19], homogeneous locally nilpotent derivations on a class of trinomial algebras R(g)

are described. This class includes all non-factorial trinomial algebras. More precisely, we
assume that there is at most one monomial in g including a variable with exponent 1. The
remaining case is done in [GZ19]. The result is obtained in inseparable collaboration with
Sergey Gaifullin. Joining two cases, we obtain the following theorem.

Theorem 1 ([GZ19, Theorem 1], [Z19, Theorem 1]). Every homogeneous locally nilpotent

derivation of a trinomial algebra R(g) is elementary.

2. Affine algebraic monoids

An irreducible algebraic variety X with an associative multiplication µ : X ×X → X is
called an algebraic monoid if µ is a morphism and has a unity. By the rank of a monoid we
mean the dimension of a maximal torus in the group of invertible elements. In [ABZ20],
we study commutative algebraic monoid structures on An. There are unique commutative
monoid structures of ranks 0 and n on An; the operation is isomorphic to a coordinatewise
addition and multiplication in these cases. Using results of [AK15], we obtain a classi�cation
of commutative monoid structures of rank n−1 on An [ABZ20, Proposition 1]. This covers
all commutative monoid structures on A1 and A2 [ABZ20, Proposition 2].
Let us formulate the result for A3. For b, c ∈ Z>0, b ⩽ c, denote by Qb,c the polynomial

Qb,c(x1, y1, x2, y2) =
d∑

k=1

(
d+ 1

k

)
x
e+b(k−1)
1 y

e+b(d−k)
1 xd−k+1

2 yk2 ,

where c = bd+ e, d, e ∈ Z, 0 ⩽ e < b.
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Theorem 2 ([ABZ20, Theorem 1]). Every commutative monoid on A3 is isomorphic to

one of the following monoids:

rk Notation (x1, x2, x3) ∗ (y1, y2, y3)
0 3A (x1 + y1, x2 + y2, x3 + y3)

1 M +
b
A+

c
A

(
x1y1, x

b
1y2 + yb1x2, x

c
1y3 + yc1x3

)
, b, c ∈ Z⩾0, b ⩽ c

1 M +
b
A +

b,c
A

(
x1y1, x

b
1y2 + yb1x2, x

c
1y3 + yc1x3 +Qb,c(x1, y1, x2, y2)

)
, b, c ∈ Z>0, b ⩽ c

2 M +M +
b,c

A (x1y1, x2y2, x
b
1x

c
2y3 + yb1y

c
2x3), b, c ∈ Z⩾0, b ⩽ c

3 3M (x1y1, x2y2, x3y3)

Moreover, every two monoids of di�erent types or of the same type with di�erent values of

parameters from this list are non-isomorphic.

The most di�cult case is that with group of invertible elements Gm × G2
a, where

Gm = (K×,×) is the multiplicative group of the ground �eld. Here we reduce the problem
to the classi�cation of pairs of commuting locally nilpotent derivations δ1, δ2 on the poly-
nomial algebra K[x, y, z] which are homogeneous of degree zero with respect to the grading
coming from the Gm-action.
In [Bi22], the classi�cation of non-commutative monoid structures on normal a�ne sur-

faces is given. In [DZ21] and [Z24], we obtain a classi�cation of commutative and noncom-
mutative monoid structures of rank n− 1 on normal a�ne varieties of dimension n, respec-
tively. Let Xσ be an a�ne toric variety given by a cone σ in a vector space NQ = N ⊗Z Q,
where N is the lattice of one-parameter subgroups of the acting torus T. Denote by
M the character lattice of T. There is a natural pairing ⟨ · , · ⟩ : NQ × MQ → Q, where
MQ = M ⊗Z Q. Consider the polyhedral cone σ∨ dual to the cone σ with respect to this
pairing:

σ∨ = {u ∈ MQ | ⟨v, u⟩ ⩾ 0 for all v ∈ σ}.
The set Sσ = M ∩ σ∨ is a �nitely generated semigroup with K[Sσ] ∼= K[Xσ]. For a lattice
element u ∈ M , let χu : T → K× be the corresponding character. Since T can be identi�ed
with the open orbit, any character χu is identi�ed with a rational function on Xσ. Then
the algebra of regular functions on Xσ admits a decomposition K[Xσ] =

⊕
u∈Sσ

Kχu.

Let pi ∈ N, 1 ⩽ i ⩽ m, be primitive vectors on the rays of the cone σ. For any 1 ⩽ i ⩽ m,
denote

Ri = {e ∈ M | ⟨pi, e⟩ = −1, ⟨pj, e⟩ ⩾ 0 for all j ̸= i, 1 ⩽ j ⩽ m}.
Elements of the set R =

⊔
1⩽i⩽m

Ri are called the Demazure roots of the toric variety Xσ.

Theorem 3 ([Z24, Theorem 1]). Let X be an a�ne monoid of corank one. Then X = Xσ

is toric, and the comultiplication K[Xσ] → K[Xσ]⊗K[Xσ] has the form

χu 7→ χu ⊗ χu (1⊗ χe1 + χe2 ⊗ 1)⟨p,u⟩, (1)

where p is the primitive vector on a ray of the cone σ and e1, e2 are Demazure roots cor-

responding to p. Conversely, for any a�ne toric variety Xσ, any primitive vector p on a

ray of the cone σ, and any Demazure roots e1, e2 corresponding to the same p, formula (1)
de�nes a monoid structure of corank one on Xσ.

Also, we describe the sets of invertible elements and idempotents of such a monoid Xσ.
They depend on the mutual position of Demazure roots e1, e2 and the cone σ. Namely,
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denote by Oγ ⊆ Xσ the toric orbit corresponding to the face γ of σ and by xγ a special
point given in Oγ by equations χu(xγ) = 1 for all u ∈ γ⊥. The set of invertible elements
appears to be equal to the union Oρ∪O0, where ρ is the ray of σ with primitive vector p [Z24,
Theorem 1]. Let E(Xσ) be the set of idempotents in Xσ and Eγ = E(Xσ) ∩Oγ. Then the
following holds [Z24, Theorem 3]:

(a) Eγ = {xγ} if ρ is a ray of γ;
(b) Eγ = ∅ if ρ is not a ray of γ and e1, e2 /∈ γ⊥;
(c) Eγ = ∅ if ρ is not a ray of γ and e1, e2 ∈ γ⊥;
(d) Eγ = Oγ ∩ {χu = 1 ∀u ∈ cone(γ, ρ)⊥ ∩ Sσ} otherwise.

Geometrically, irreducible components of the subvariety of idempotents do not intersect,
each of them is either a point or is isomorphic to the a�ne line [Z24, Proposition 3(b)]. The
a�ne line appears here as the closure of a set Eγ from item (d); this closure is the union of Eγ

and one point, which is an idempotent from item (a) [Z24, Proposition 3(a)]. Idempotents
are also connected with the action of the group G × G by left and right multiplication,
where G is the group of invertible elements in the monoid. More precisely, any irreducible
component of E(Xσ) is a subset of a (G × G)-orbit, and any (G × G)-orbit contains at
most one irreducible component of E(Xσ) [Z24, Proposition 3(c)]. One of possibly existing
idempotents is the zero element, i.e., such an element 0 ∈ Xσ that 0∗x = x∗0 = 0 for any
x ∈ Xσ. We show that the monoid Xσ has zero if and only if σ⊥ = 0 and −e1,−e2 /∈ σ∨;
in this case 0 = xσ [Z24, Proposition 4].
The center of the monoid Xσ is described as well. Namely, it equals

Oρ ∩ {χu+e1 = χu+e2 ∀u ∈ Sσ : ⟨p, u⟩ = 1}
if e1 ̸= e2, i.e., if Xσ is non-commutative [Z24, Proposition 5]. It follows that the dimension
of the center equals dimXσ − 2 [Z24, Corollary 3]. Moreover, irreducible components
of E(Xσ) that are isomorphic to the a�ne line do not intersect the center, and isolated
points in E(Xσ) lie in the center [Z24, Proposition 6].

3. Affine homogeneous varieties

Let us call an algebraic variety X homogeneous if the automorphism group Aut(X) acts
on X transitively. Recall that X is a homogeneous space if there exists a transitive action
of an algebraic group G on X; in this case, X is identi�ed with the variety of left cosets
G/H, where H is the stabilizer in G of a point in X.

Let us give a de�nition of a suspension.

De�nition 1. Let Y be an a�ne variety and f ∈ K[Y ] be a nonconstant regular function
on Y . Then the hypersurface Susp(Y, f) that is given in the direct product A2 × Y by the
equation uv = f(y), where y ∈ Y and A2 = SpecK[u, v], is called a suspension over Y .

In [AZ24], we �nd a criterion of smoothness of a suspension. Namely, the suspension
Susp(Y, f) over an a�ne variety Y with a nonconstant f ∈ K[Y ] is smooth if and only if
the variety Y and the scheme SpecK[Y ]/(f) are smooth [AZ24, Corollary 1]. This gives a
criterion of smoothness of iterated suspensions and allows to construct many homogeneous
varieties [AZ24, Corollaries 1�4].
To provide an explicit class of examples, we give criteria for a Danielewski surface to

be a homogeneous variety and a homogeneous space. Let x, y, z be coordinates in A3.
A Danielewski surface is a surface in A3 given by equation xzn = f(y), where n ∈ Z>0

and f ∈ K[y]. Two Danielewski surfaces with parameters n1, n2 ∈ Z>0 and polynomials
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f1(y), f2(y) are isomorphic if and only if n1 = n2 and f1(y) = af2(by+c) for some a, b ∈ K×,
c ∈ K, see [Da04, Lemma 2.10].
It is known that for n ̸= 1 the Danielewski surface xzn = f(y) is not homogeneous; for

example, this follows from the description of its automorphism group given in [ML01]. It
is easy to check that X is smooth if and only if the polynomial f has no multiple roots.
Let X be given by the equation xz = f(y), where f has no multiple roots. Note that X
is homogeneous. Indeed, X is a suspension over the a�ne line, so it is �exible [AKZ12].
According to [AFKKZ13], the action of SAut(X) is transitive on the set of regular points
in X, which coincides with X since X is smooth.

Theorem 4 ([AZ24, Theorem 3]). Let X be an a�ne surface given in A3 by equation

xz = f(y), where f is a nonconstant polynomial with no multiple roots. Then X is a

homogeneous variety but not homogeneous space if and only if deg f ⩾ 3.

To prove this theorem, we use the classi�cations of surfaces admitting an action of an
algebraic group with an open orbit such that the complement to this orbit is �nite; see [Gi71,
Po73]. For deg f = 1 and deg f = 2 the surface X is isomorphic to the a�ne space A2 and
the homogeneous space SL2 /T respectively, where T is a maximal torus in SL2.

4. Additive actions on projective hypersurfaces

In [AZ22], we study additive actions, that is, e�ective regular actions of the group Gn
a

with an open orbit. We apply the Hassett-Tschinkel correspondence to the study of induced
additive actions on projective hypersurfaces, i.e., additive actions that can be extended to an
action on the ambient projective space. More precisely, there is a bijection between induced
additive actions on hypersurfaces in Pn+1 that are not hyperplanes and pairs (A,U), where
A is a local commutative associative unital algebra of dimension n+ 2 with maximal ideal
m and U ⊆ m is a subspace of dimension n generating the algebra A.

De�nition 2. Suppose a projective hypersurface X ⊆ Pn+1 of degree d is given by the
equation f(z0, . . . , zn+1) = 0. A hypersurface X is called non-degenerate if there is no
linear change of variables such that the number of variables in f after this change is at
most n+ 1.

A �nite-dimensional commutative associative algebra is called Gorenstein if the dimension
of the socle SocA = {x ∈ A | mx = 0} equals 1. It turns out that the case of non-degenerate
hypersurfaces corresponds to Gorenstein local algebras. More precisely, the induced additive
actions on non-degenerate hypersurfacesX of degree d in Pn+1 are in bijection with the pairs
(A,U), where A is a Gorenstein algebra of dimension n+2 with socle md, and m = U ⊕md

[AZ22, Theorem 2.30].
Several results on additive actions may be proved using this technique. In particular,

we prove that an induced additive action on a non-degenerate projective hypersurface is
unique if it exists.

Theorem 5 ([AZ22, Theorem 2.32]). Let X ⊆ Pn+1 be a non-degenerate hypersurface.

Then there is at most one induced additive action on X up to equivalence.

In order to prove the theorem, we consider the d-linear form F corresponding to the
equation of X. Denote

KerF = {x ∈ A | F (x, z(2), . . . , z(d)) = 0 ∀z(2), . . . , z(d) ∈ A}.
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We show that KerF is the maximal ideal in A that is contained in U , where (A,U) is
the pair corresponding to the hypersurface X; see [AZ22, Lemma 2.19(b)]. The condition
that X is non-degenerate means that KerF = 0, so there is no non-zero ideal of A that is
contained in U . This is a key point in the proof of the uniqueness of the pair (A,U).
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