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INTRODUCTION 

1. General description of the research area 
 

The proposed thesis examines a number of non-standard mathematical models that can be 

expressed in the form of a system of conservation laws in the presence of both dissipative terms 

and source members. Namely, the corresponding systems of partial differential equations have 

the form 

             2

1

, , , ,
m

j

j j

t t t t
t x

 
  

 
U x F U x D U x R U x , (1.1) 

where    1, , ,..., mt t x xx ,  , : m nt   U x ,       1, , ,..., ,nt x u t u tU x x ;

        , , : , 0, , m

Tt t t T    x x x ;    1 1,..., ,...,n j j nj, f f = F =  

are sufficiently smooth (at least  1 n

j, CF ) vector functions of variables  1,..., nu u . 

Further,   2 ,tD U x  is, generally speaking, a nonlinear second-order operator, but  

  ,tR U x  is nonlinear right-hand side. At the same time, the nonlinearities included in these 

expressions are also assumed to be smooth. The specific type of expressions of type (1.1) under 

consideration and the corresponding conditions for their constituent functions will be given in 

the relevant sections of the work. Here and further, vector quantities will be indicated in bold in 

the formulas. 

The general problems considered in the thesis are mostly related to systems of 

conservation laws of type (1.1), where the operator 
2

D U , the function   and the right part of 

R  are absent or have an auxiliary character, changing the specific form of solutions, but 

retaining their features characteristic of traditional systems of conservation laws 

      
1

, , 0
m

j

j j

t t
t x

 
 

 
U x F U x . (1.2) 

The main property of solutions (1.2) is that even with smooth initial/boundary data, these 

solutions, in general, turn out to have singularities of different types. The most characteristic are 

discontinuous solutions. This circumstance makes it difficult to choose the main functional 

spaces and, accordingly, the need for a sufficiently detailed consideration of particular solutions. 

The study of quasi-linear hyperbolic systems of the form (1.2) has a long history, but the 

construction of a general theory has encountered difficulties, which will be discussed in more 

detail below and which have not yet been overcome. Therefore, the consideration of systems of 
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the type (1.2) requires the search for non-standard approaches. Also, a number of physical 

processes lead to the consideration of non-standard systems and equations of the form (1.1), the 

solutions of which reveal specific behavior requiring theoretical understanding. However, it turns 

out that these solutions of non-standard systems and equations of the form (1.1) have properties 

characteristic of systems of conservation laws of the type (1.2) and can be naturally considered 

from the standpoint of the theory of systems of conservation laws. The proposed thesis contains 

a more specific and detailed study of these problems in the case of one ( 1m  ) or two ( 2m  ) 

spatial variables. 

The theory of quasi-linear systems of conservation laws in the modern version began to 

develop in the second half of the last century. However, despite a number of impressive 

achievements, a fairly complete theory, including the multidimensional case, was built for only 

one conservation law, see, for example, [Vo], [Kr]. In the case of systems, fairly general results 

are obtained for only one spatial variable and, as a rule, assuming a small domain of change for 

at least unknown functions, see, for example, the fundamental works [L1, G, Gl] and a more 

complete presentation in [B]. Intermediate results of works in the field of conservation laws 

theory can be found, for example, in books [S1], [S2], [BGS]. A modern presentation of the 

fundamentals of the theory of conservation laws, including physical applications and numerical 

methods, can be found, for example, in the monographs [Da], [He], [LTP]. The need to work 

with, generally speaking, discontinuous functions in constructing the theory of systems of 

conservation laws led to the use of the concept of a generalized solution, i.e. a solution 

understood in the sense of satisfying a given integral identity for (1.2) (more on this will be 

discussed in subsequent sections). However, when trying to move on to the case of not a small, 

but an arbitrary limited, domain of change of unknown functions, it became necessary to expand 

the concept of solution and consider stronger singularities than discontinuities. A new concept of 

measure-valued solutions [DP] has appeared, and along the way it was possible to find a proof of 

fairly general theorems of the existence of generalized solutions to systems of two conservation 

laws (one spatial variable) using the principle of compensated compactness based on the 

vanishing viscosity method. However, the developed technique as a whole could not be extended 

even to systems of three conservation laws with one spatial variable. Nevertheless, interest in the 

concept of measure-valued solutions remains due to computational aspects for multidimensional 

systems of conservation laws, see, for example, [FST], as well as obtaining some additional a 

priori estimates [S3]. 
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In the late 80s of the last century, it was also discovered that under certain conditions 

(namely, if Hugoniot's adiabata turns out to be a compact set), even for strictly hyperbolic, 

genuinly nonlinear systems of two equations with one spatial variable, the traditional solution of 

the Riemann problem (in the form, in general, of a discontinuous function) does not exist, and 

the solution, determined on the basis of the vanishing viscosity method, contains a delta-like 

singularity in the limit, [KK]. At the same time, difficulties arise in determining in what sense an 

object of the delta function type can satisfy a nonlinear equation. A concentrated presentation of 

the entire range of issues mentioned can be found, for example, in [K], [Se], see also, for 

example, [DS]. In addition, other extensions of the concept of a generalized solution have 

appeared in the Russian literature based on the introduction of specially constructed integral 

identities and other similar approaches, see, for example, [PSh], [Sh1]. In relatively recent works 

[MY1], [MY2], the concept of a weak* solution is proposed, which weakens the requirement of 

measurability and interprets solutions of systems of conservation laws as trajectories in a space 

conjugate to a suitable basic space, which requires generalization of the integration procedure. It 

was expected that this concept would be useful in the study of systems with many spatial 

variables. 

However, it seems that these approaches have not led to any satisfactory solution to the 

accumulated problems in the theory of systems of conservation laws. The current situation was 

also noted by a well-known expert on systems of conservation laws, Peter Lax, in his book [L2, 

p. 165]. Apparently, the main tools of the theory of conservation law systems – the construction 

of a sequence of approximate solutions with further implementation of a limit transition; the 

vanishing viscosity method – are not sufficient to overcome the difficulties, especially in the case 

of several spatial variables. In addition, attempts to include delta-like singularities in the main 

solution space of nonlinear systems based on the construction of certain special integral identities 

create rather cumbersome constructions with limited possibilities for applying mathematical 

analysis. In a broader context, an attempt to construct a new (nonlinear) theory of generalized 

functions was made in [Co]. In this regard, it is important to note by Ya. G. Sinai that the study 

of cases of degenerate quasi-linear systems of equations may lead to new methodological 

approaches. From the point of view of the above, the thesis presents a new view on the structure 

of generalized solutions of quasi-linear systems of conservation laws based on a special 

representation for discontinuous generalized solutions. 

Interest in the consideration of non-standard systems of the type (1.2), which from the 

point of view described can include systems of the type (1.1), arose both from the side of 

physical applications and from the side of theoretical research. As we will see below, 
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perturbations or degenerations of the system (1.2) can lead to the use of new methods for 

constructing a solution, as well as to a better understanding of the nature of the emerging 

singularities. For greater clarity, we will introduce a number of definitions, and then point out the 

non-standard models considered in the thesis. 

Definition 1.1. Let 1m   and the index j  of the corresponding variables and functions 

be omitted. The system (1.2) is called strictly hyperbolic if the matrix  F U  has exactly n  

different real eigenvalues    1 ... n  U U  and, accordingly, a complete set of right 

   1 ,..., nr U r U  (and left    1 ,..., nl U l U ) eigenvectors. The system (1.2) is called 

genuinely nonlinear if 0 , 1,..., .i i i n  r  In case some i  coincide for some values of ,U  

but the set of eigenvectors remains complete, the system (1.2) is called non-strictly hyperbolic. 

Definition 1.2. Let 1m   and the index j  of the corresponding variables and functions 

be omitted. Let’s call the system (1.2) degenerate non-strictly hyperbolic, if the matrix  F U  

does not have a complete set of eigenvectors, but has the same Jordan form for all values of U  

under consideration. 

For systems from Definition 1.1 it is possible to infer the characteristic form of system 

(1.2), 1m  , by multiplying (1.2) from the left by any left eigenvector 

      , , 0i it x t x
t x


  

   
  

l U U U . (1.3) 

There is a large volume of literature devoted to the study of various deviations from the 

structure of strictly hyperbolic, genuinely nonlinear (in the sense of Definition 1.1) systems of 

type (1.2). Without going into details, we will give only the book [LF] for illustration and then 

focus only on specific non-standard models. 

The first model that we will consider is a model of the so-called pressureless gas 

dynamics. The corresponding system of conservation laws in the case of a single spatial variable 

( 1m  ) has the form 

 
 

   2

/ / 0

/ /
,

0
,

t u x

u t u
x

x
t

 

 



 



    

     
. (1.4) 

Here 0   is a density, u  is a velocity. The system (1.4) can be formally derived from the 

system of equations of isentropic gas dynamics, assuming the pressure P  to be zero. This 

system has a single eigenvalue u   and a single right eigenvector  1,ur . According to 

Definition 1.2, the system (1.4) is degenerate non-strictly hyperbolic. 
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The study of the motion of media in which one can neglect its own pressure drop at a 

given time (briefly: pressureless media) is of both mathematical and applied interest. From the 

point of view of applications, pressureless media arise when describing various physical 

phenomena, such as the evolution of multiphase flows, the movement of dispersed media, in 

particular dust particles or droplets, the phenomenon of cumulation, the interaction of hypersonic 

flows in some extreme cases, the movement of granular media, etc., see, for example, [Che], 

[Se], [St]. From a mathematical point of view, the absence of pressure leads to the appearance of 

non-classical shock waves, the laws of evolution of which are radically different from, for 

example, gas-dynamic shock waves. The most interesting effects are obtained for a two-

dimensional system of equations of pressureless gas dynamics 

   
     2

/ 0
, , , , / , /

/
,

0

t
x y t x y

t

 

 






    
       

     





x

U
x

U

U U
, (1.5) 

where 0   has the meaning of the density of matter, U  is the velocity vector, and   denotes 

the tensor product. The system (1.5) can also be derived from the equations of traditional gas 

dynamics, assuming the pressure to be zero. Here we also note that, generally speaking, the 

complete system of equations of gas dynamics also includes the equation of conservation of total 

energy, therefore, putting the pressure equal to zero in the traditional law of conservation, the 

following equation should be added to the system (1.5) 

 / 0E t E     U , (1.6) 

where  2
/ 2E e  U , e  is specific internal energy. However, equation (1.6), unlike 

ordinary gas dynamics, turns out to be independent of the system (1.5) in the sense that the 

evolution of singularities is determined only by (1.5), and (1.6) determines the law of variation 

of an additional value e  – specific internal energy – "along" already known singularities. 

In this thesis, it is shown that non-classical shock waves are measures, generally 

speaking, on manifolds of different dimensions, the laws of evolution of these measures are 

obtained, which differ significantly from the Rankine-Hugoniot relations for gas dynamics, and 

the laws of formation of a hierarchy of singularities (a set of singularities on manifolds of 

different dimensions) in the two-dimensional case (1.5) are also obtained.  

The next model is a two-dimensional system of incompressible Navier-Stokes equations, 

to which a term of the second time derivative with a small parameter is added. This system of the 

form (1.1) is written as follows,  ,x yx , 

 
2

2
2

d 0,v ,i , divP
t t

g t   
 

   


 


U U
U U U U x , (1.7) 
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here 0   is a small parameter, P  is a pressure,   is the Laplacian, g  is an external force. 

The system (1.7) can be obtained from the kinetic Boltzmann equation by taking into account 

additional terms after the averaging operation and is defined in [El1], [El2] as a quasi-gas-

dynamic system of equations. The same system of equations can be obtained by introducing a 

relaxation mechanism into the Euler equations, see, for example, [BNP], in fact (1.7) represents 

the so-called hyperbolization of the Navier-Stokes system of equations. The system (1.7) is used 

for an alternative description of gas dynamic flows, in particular, flows of rarefied gas, and its 

modifications arise when describing viscoplastic phenomena [CK]. In the thesis for a system of 

equations of the form (1.7), it is shown that a strong solution to the initial boundary value 

problem in a bounded domain exists for sufficiently small   and bounded initial data energy. 

For the one-dimensional version of the system (1.7), an example is given that even for small   

the solution explodes in a finite time if the initial energy is large enough. 

Another model is a one-dimensional system of equations for compressible two-phase 

multicomponent filtration, ,x t   , 

     1 0 1,...,,iG G iL L iG G G iL L L i Nx s x s x V x V
t x
    

 
    

 
, (1.8) 

where N  is the number of components in the mixture, 0   is the porosity, 0iGx  , 0iLx   

are thermodynamic equilibrium constants (i.e. they represent the molar concentrations of the 

component i ) for the gas (G) and liquid (L) phases, respectively, 0G  , 0L   are the 

densities of the gas and liquid phases, respectively, 0 1s   is the saturation of the gas phase. 

In this case, the filtration rates of the gas GV  and liquid LV  phases have the form  

 ,rG rL
G L

G L

Kk P Kk P
V V

x x 

 
   

 
, (1.9) 

where 0K   is the so-called absolute permeability of the rock, 

0 , 0 , 0rG rL rG rLk k k k      are relative permeabilities of gas and liquid phases, 

0 , 0G L    represent the viscosities of the gas and liquid phases, respectively, 0P   

denotes the pressure. Taking into account the relations of thermodynamics of multicomponent 

mixtures, the system of equations (1.8), (1.9) can be written as (1.1), but without second-order 

operators, and can be considered as a system of conservation laws. Mathematical models of 

filtration are well studied in the case of one component and one phase, when the unknown 

function is only pressure (or density), see, for example, the book [BER]. In this case, the 

situation is modeled using degenerate parabolic equations, see, for example, the review [Ka]. In 
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the case of many components, there is an extensive literature devoted to the incompressible case. 

In this situation, the system of equations of multicomponent filtration (in the case of a single 

spatial variable and assuming a constant filtration rate) can be transformed into a non-strictly 

hyperbolic system of conservation laws, see [Or]. It is worth emphasizing that the property of 

non-strict hyperbolicity significantly complicates the study, see an article [KM] devoted to 

model systems of equations (but some of which have a physical origin, in particular, comes from 

the description of filtration processes) and illustrates different sides of the mathematical concept 

of non-strict hyperbolicity. When taking into account the compressibility property, as in the 

system (1.8), (1.9), the property of hyperbolicity, generally speaking, is lost, it is also not 

parabolic, and the question arises from which positions to consider this system of equations. The 

thesis shows that if we approach this system of equations as a degenerate system of conservation 

laws, then we can come to a natural concept of characteristics, formulate the concept of a 

generalized solution and apply methods developed in the theory of conservation laws, for 

example, consider the Riemann problem. However, all these concepts acquire specific features 

that are not typical for systems of hyperbolic equations. 

Finally, the last model is an equation of the form (1.1) with nonlinear viscosity and a so-

called bounded dissipation flow 

    / / / / , ,u t f u x Q u x xx t            , (1.10) 

here    1 2,f C Q C  ,    0 0 0 , 0f Q Q    and   constQ   . Due to 

these properties, at large /u x  , equation (1.10), which has the form (1.1), becomes close to 

the law of conservation of form (1.2) at 1m n  . Equation (1.10) is a modification of the 

Burgers equation and is a highly degenerate parabolic equation that admits discontinuous 

solutions of a special kind. In the context of degenerate parabolic equations, as a rule, only 

continuous solutions have been studied, see, for example, [Ka]. From a physical point of view, 

the appearance of equations of type (1.10) is described, for example, in [Ro] and is associated 

with a special regularization of the Chapman-Enskog decomposition, as well as in [BBP] in 

relation to the theory of special turbulent flows. Equation (1.10) is the simplest model describing 

the interaction between nonlinear transport and nonlinear dissipative processes. The thesis 

examines the issues of the formulation of the concept of a generalized solution, the conditions of 

its existence and uniqueness.  
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2. List of the main results of the thesis submitted for defense 

 

The main results submitted for defense are contained in the paragraphs below. A 

complete and mathematically rigorous description of the results, including all the necessary 

concepts and definitions, will be set out in section 3. 

1) A number of new representations of generalized solutions of systems of quasi-linear 

conservation laws have been found, which we will define by the term variational representation, 

namely: 

a) in the case of a single spatial variable 1m   and a system of n  conservation laws, a 

functional J  associated with a generalized solution  ,t xU  and defined on trajectories 

      , ,w x t t  w  in space  ,t w  is found; here w  is one of the Riemann invariants, 

such that the fulfillment of equality =0J  along a certain path     ,t t w  implies the 

fulfillment of characteristic relations at points of smoothness of     ,t t   and Rankine–

Hugoniot relations on breaks; in addition, if two trajectories   1x t ,  2x t  come to a 

certain curve  x X t  and  
   1 2x t x t

= = 0
 

 
 

J J , 
   1 2x t x t

=
  

J J  then the Rankine-

Hugoniot relations also hold on the curve  x X t ; this result is a generalization of the results 

obtained by E. By Hopf for one equation, see [H]; 

b) in the case of one and two spatial variables 1,2m   and a system of n  conservation 

laws, a functional J  is found, which is associated with a generalized solution  ,tU x , 

 ,x yx  for 2m   and xx  for 1m  , and defined on trajectories/surfaces in space 

 ,t x , such that the fulfillment of the relation =0J  along any trajectory/surface 

    , , ,t s t s x , in the case of a surface s  is a parameter along it, entails the validity of 

the system (1.2) in the classical sense if  ,tU x  is a smooth function and the Rankine-Hugoniot 

relations, if there is a discontinuity; 

c) in the case of one spatial variable 1m   and a system of n  conservation laws, a 

functional  associated with a generalized solution  ,t xU  is found such that the generalized 

solution  ,t xU  is expressed in terms of a minimum of  in some Banach space; the property 

of minimizing some functional can be used as an alternative definition of the concept of a 

generalized solution of the system (1.2). 
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2) For a system of equations of pressureless gas dynamics:  

a) in the case of a single spatial variable for the system (1.4), as well as for its 

generalization, including an external force, a definition of the concept of a generalized solution 

in the Radon measures space is proposed, the theorem of the existence of a generalized solution 

for either a continuous or completely discrete distribution of matter is proved; a variational 

representation of the generalized solution, which looks like a characteristic of continuity, is also 

found. Namely, in the case of system (1.4) we have: a point    0, , ax at x tu   is a point of 

absolute continuity of the measure of mass of matter  tP dx  and continuity of velocity  ,u t x  

if and only if the following relation is fulfilled for any , ,aa aa a     

 

    


 


    


 


0 0 0 0

, ,

0 0

, ,

a a a a

a a a a

s tu s P ds s tu s P ds

P ds P ds

 

 

 
 

 
 

 



 

 
,  

where    00P da ,u a  are the initial distribution of matter and the initial velocity;     

 b) in the case of two spatial variables, a system of equations is found describing the 

evolution of strong singularities along surfaces     , , , ,t t l t l   , which differs in type 

from the traditional Rankine-Hugoniot relations 

 

         

         

 
 ,

P
V v U u

t l l

V v U u
t l l

U V
t

 
   

 
   



  
      


  

   
  


 



I
u u u u

U

,  

where PI U  and for any value f  it is indicated: f 
 – the value of f  on both sides of   

and  f f f   ;      

the emergence of a hierarchy of strong singularities, i.e. a system of strong singularities 

arising on manifolds of different dimensions, is proved, including the Rankine-Hugoniot 

relations for strong singularities along curves; 

an approximate dynamics of adhesion in the two-dimensional case is constructed and 

estimates of the degree of deviation from the weak solution for a discrete particle system are 

obtained; 
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a variational description of generalized solutions is obtained, which differs significantly 

from the one-dimensional version and is associated with the use of vector functionals on 

domains G  

      0 0, ;
G

t G d
t


 

  
 


x a

F x u a a a .  

3) For the hyperbolization of Navier-Stokes equations (1.7) in the case of two spatial 

variables, a theorem for the existence of a strong solution with a small hyperbolization parameter 

and bounded initial energy is obtained in the space 

        
2 2

1 2 1 1

0 0, , 0 0,H H H
                 U V U V    

with the norm 

      1 1 2 2

2 2 22

H L H
t / t t / t t





      U U UA ,  

where       ,t t t / t  U UA ; an example of the destruction of a strong solution in a 

finite time is given when these conditions are violated , even in the one-dimensional case. 

4) For a one-dimensional system of equations of compressible two-phase 

multicomponent filtration (1.8), (1.9), such a reformulation of the basic equations is given, which 

allows the use of methods of the theory of systems of conservation laws. The resulting system of 

equations is defined as almost hyperbolic, having the properties of both hyperbolic and parabolic 

systems of equations. For this system of equations, the Rankine-Hugoniot relation is derived and 

the theorem on the structure of the set of shocks is proved. In the case of two components, the 

structure of the solution to the Riemann problem is obtained, the properties of which differ 

significantly from traditional systems of conservation laws. So, for example, it turns out that the 

solution to the Riemann problem is always discontinuous and, in addition, there is an infinite 

velocity of propagation of perturbations. In the incompressible case, an expression is found for 

all entropy-flux pairs, which turns out to be significantly richer than for a single scalar 

conservation law. 

5) For an equation with a bounded dissipation flux (1.10), the concept of a generalized 

solution is formulated, taking into account the possibility of discontinuities in, generally 

speaking, a parabolic equation. For initial functions from space  2,1W  that are piecewise 

smooth on a compact set with a finite set of discontinuity points, the existence theorem of a 

generalized solution is proved. The uniqueness theorem of a generalized solution satisfying the 

Oleinik E  condition and the condition of continuity of the dissipation flux is proved for a rather 
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narrow, although reflecting all the features of the problem, class of functions that are piecewise 

  2 0,C T   with a finite number of discontinuity lines belonging to  1 0,C T . 

 

3. Detailed presentation of the results obtained 
 

In this section, the results announced in section 2 will be presented at the mathematical 

level of rigor, including all definitions and formulations. Additional literature will also be 

provided characterizing the contribution to the problem that the thesis has made. 

3.1 Variational representation for generalized solutions of systems of quasi-linear conservation 

laws 

 

Let us first introduce the necessary concepts and definitions. Consider the Cauchy 

problem for a system of quasi-linear equations of general form, see also (1.2), 

          0

1

, , 0 , 0,
m

j

j j

t t
t x

 
  

 
U x F U x U x U x , (3.1.1) 

where         , , : , 0, m

Tt t t T   x x x ,       1, , ,..., ,nt x u t u tU x x , 

   1, , ,..., mt t x xx ,  , : m nt   U x , а  1 ,...,j j njf fF =  are sufficiently 

smooth (at least  1 n

j CF ) vector functions of variables  1,..., nu u . Multidimensional 

integrals over spaces of many variables and over surfaces in these spaces will be written as 

single or double integrals to shorten the record, if this does not lead to ambiguity. For example, 

writing  ...

T

d dt


 x  would mean the integration with respect to the Lebesgue measure d dtx  in 

the space 
m  . Individual exceptions will be specifically specified. 

The solutions of the system (3.1.1), which take the given initial values, are understood in 

a generalized sense in accordance with the following Definition 3.1.1. 

Definition 3.1.1. Let  0

nU x  be a locally bounded measurable function. Then we 

call a locally bounded measurable in 
T  function  ,tU x  a generalized solution of the 

problem (3.1.1) if for any test function   0, mC T   ,    0, mt C    for a fixed 

 0,t T , 0   at 
1 1,T t T T T   , the following integral identity is fulfilled 
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    0

1

0, 0
m

T

m

j

j j

d dt d
t x

 




  
   

   
 U F U x U x x . (3.1.2) 

If  ,tU x  is a continuously differentiable function, then it is easy to see the equivalence 

of formulations (3.1.1) and (3.1.2). Let  ,tU x  be a continuously differentiable function 

outside some hypersurface 
m

   of codimension 1 having a continuous normal vector 

 0 1, ,..., mn n n . Let there be a discontinuity of  ,tU x  on this hypersurface, and the values 

 , 0= t U U x  are determined along  . Then (3.1.2) will be fulfilled if the equation (3.1.1) 

is valid in the smoothness regions of  ,tU x , and along   the so-called Rankine-Hugoniot 

relation is true 

       0

1

0
m

j j j

j

n n   



   U U F U F U . (3.1.3) 

On the other hand, it is well known that within the definition 3.1.1, the generalized 

solution of the problem (3.1.1) is not unique. Therefore, for the system (3.1.1), additional 

concepts of entropy and entropy solution are introduced as follows. 

Definition 3.1.2. Let's call a convex positive function    1 nC U  entropy for the 

system (3.1.1) if an additional conservation law holds for classical solutions to (3.1.1) 

       
1

, , 0
m

j

j j

t q t
t x




 
 

 
U x U x  (3.1.4) 

with some sufficiently smooth flux functions  1,...,j nq u u . 

Definition 3.1.3. A function  ,t xU  that is a generalized solution to the problem (3.1.1) 

in the sense of definition 3.1.1, is called an entropy solution of the system (3.1.1) if for each 

entropy   U  from definition 3.1.2 and the test function  , 0t x from definition 3.1.1 the 

following inequality is fulfilled 

        0

1

0, 0
m

T

m

j

j j

q d dt d
t x

 
  



  
   

   
 U U x U x x . (3.1.5) 

In the case of a piecewise smooth function  ,t xU , which is an entropy solution to 

(3.1.1), an additional to (3.1.3) relation will be true on the discontinuity hypersurfaces   (with 

appropriate determination of the positive and negative sides of  ) 
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          0

1

0
m

j j j

j

n q q n    



   U U U U . (3.1.6) 

The question of the existence and uniqueness of generalized entropy solutions for (3.1.1) 

is currently solved only for special cases, despite great efforts, see section 1. Within the 

framework of section 3.1, the thesis presents a new view on the structure of generalized solutions 

of quasi-linear systems of conservation laws based on a special representation for discontinuous 

generalized solutions. 

3.1.1 On the generalization of E. Hopf's results to systems of quasi-linear conservation laws in the 

case of a single spatial variable 

 

The variational representation for generalized solutions in the one-dimensional case is 

known for a single equation. In the paper [H] for the Cauchy problem 

        2

0/ 2 0 , , , 0,t x
u u t x u x u x     , (3.1.7) 

where  0u x  was assumed to be integrable at each finite interval with some natural restriction 

of growth at infinity, the following representation was obtained for a generalized solution  

 
2

0

0

( )
( , ) ( , ) / ; ( , ) min ( , , ) min ( )

2

y

y y

x y
u t x x y t x t y t x F t x y u s ds

t

 
     

 
 , (3.1.8) 

where min y  implies a global minimum. If there is one such minimum, then  ,t x  is a point of 

continuity of  ,u t x , and if there are several such points, then  ,t x  is a discontinuity point. It 

is important that the resulting set of discontinuity points automatically satisfies the Rankine-

Hugoniot relations (3.1.3) for equation (3.1.7). Further, formulas of the type (3.1.8) were 

generalized to the case of a more general flux  , ,t x u  instead 
2 / 2u , see [L3], [O]. In papers 

[1], see also short version in [ERS], the formulas (3.1.8) were generalized to a degenerate non-

strict, see definition 1.2, hyperbolic system (1.3). An analogue of the representation (3.1.8) for 

general systems was not proposed, this gap was filled in the thesis, the results were published in 

[2].  

Consider the system of conservation laws (3.1.1). Let 1m   and the index j  of the 

corresponding variables and functions be omitted. Let this system be strictly hyperbolic, see 

Definition 1.1. 
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Definition 3.1.4. The Riemann invariant for the system (3.1.1) in the case 1m   is called 

a function  1,..., nw u u  such that w  l , where l  is any left eigenvector of the system 

(3.1.1). 

The system (3.1.1), 1m  , can have no more than n  Riemann invariants. Let 

 1,..., ,IR n IR   be such a set of indices that there are Riemann invariants  1,...,k nw u u  

for (3.1.1), 1m  , i.e. ,k kw k IR  l . For the rest of the set of indices  1,...,O n  we 

define additional functions  1,...,k np u u   such that 0 ,k kp k O   l , and the combination 

,kw k IR  and ,kp k O  represents a non-degenerate change of variables in the phase space. 

For convenience, we introduce the notation ,k kw k IR    and ,k kp k O   . 

Now let's consider special classes for functions  ,t xU  and trajectories  t  that are 

close to the corresponding classes in [O]. 

Definition 3.1.5. Let   Tx t  , 0 t T  . Let’s call the path  x t  

belonging to the class  , if the following conditions are met. Let there be a finite set of points 

   0, , 1,...,it T i N   (the set of points for each path is its own, but the maximum number of 

points for all considered paths is the same) such that 

    1

1 0 1, ; 1,..., 1; 0,i i Nt C t t i N t t T        and     0,t C T  . In addition, 

assume that under small transformations of  t  the points 

     , 0, , 1,...,i it t T i N     form piecewise continuously differentiable curves  

 ix s t  (which, in fact, are discontinuity lines of  ,t xU ). Now let's consider piecewise 

continuously differentiable functions  ,t xU , we will say that  ,t xU  belongs to the class K  

if for any path  x t  from the class   the following is true. There is a function 

    ,t t tU U ,     1

1, ; 1,..., 1i it C t t i N  U , and there exist onesided limits 

 0 , 1,...,it i N U .  

Further, variables can be changed by    1 1,..., ,...,n nu u   . Let’s choose some 

0k IR , in the next theorem, when considering variation U , only 
0k  and x  will be 

considered as varied, the remaining variables 0,k k k   will be considered as functions of ,t x  
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that need to be defined along with the trajectories    
0

,k t t  . The corresponding variation is 

denoted as 
0k . 

We fix some 0 t T  . Let’s define a vector functional J , defined on a set of 

trajectories    ,  U , 

           0

0 0

, ; , ; 0 ,

y t

s ds d y t x           J U L U L U U F U . (3.1.9) 

Theorem 3.1.1. Fix an arbitrary 0k IR . Let the functions ,k k O   satisfy the 

Liouville equation 
0

0k k r . Then for functions  ,t xU  from the class K  the fulfillment 

of equality 
0

0k = J  along a certain path  x     entails the fulfillment of the 

characteristic relations (1.3) at the points of smoothness of    , where the curve  x    

turns out to be a characteristic, and the Rankine-Hugoniot relations (3.1.3) on the breaks. 

We will now assume that 
0,k k k   are fixed and characteristic relations (1.3) are 

fulfilled. Let’s construct a trajectory connecting the points  0, y  and  ,t x  with the aid of 

relations  
0 0

0 ,k k    U . At this the trajectory can have breaks at points 

  , , 1,...,i i i N     that we will consider lying on fixed discontinuity curves  is  . 

Then J  from (3.1.9) turns from a functional into a function of variables  , , 1,...,iy i N  . 

We will write    1, ,..., ; , , ; ,N i= y t x y t x  J J J . 

Theorem 3.1.2. For functions  ,t xU  belonging to the class K , the vector function J  

constructed above satisfies the equalities 0, 0i i   J /  and 

   0 0,y y y   J / U U . In addition, if for each point of a curve  x X t  for some 0k  

there are two trajectories connecting the points  10, y ,   20, y  and   ,t X t , and, besides 

that, 
         1 2

1 2, ; , , ; ,i iy t X t y t X t J J , then the curve  x X t  satisfies the 

Rankine-Hugoniot relations (3.1.3). 
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3.1.2 Variational representation for generalized solutions of systems of quasi-linear conservation 

laws in the case of one and two spatial variables 

 

As far as the author knows, the results presented below are of an original nature. Unlike 

second-order equations, the variational approach for first-order equations has not been 

formulated. Some thoughts in this direction were expressed by E. Tadmor, [Ta]. The results 

obtained are published in [2], see also additional work [R1]. 

Consider successively the one-dimensional, 1m  , and two-dimensional, 2m  , case. 

Let    0, , TG T X X    , where X  is some positive number. Let us consider a 

class K  of functions  ,t xU  in G  that are piecewise doubly continuously differentiable with a 

finite number of piecewise continuously differentiable discontinuity lines, see also [O]. Let's also 

consider the trajectory space       1 1 0, , ,Xt C C T X X    .  

Definition 3.1.6. Let's call a certain set of trajectories  
1

XC  acceptable for 

 ,t x KU  if for any point      , 0, ,t x T X X    there exists the single trajectory 

     such that  t x  , as well as for any      and every discontinuity line 

 s   of the function  ,t xU  there are only a finite number of points of their intersection, and 

in case    0 0s    the relation    0 0s    is also true. 

Consider a vector functional J  similar to (3.1.9), and such that   1: n

XC   J , 

         
0

, ; , ; 0 ,

t

d y t x         J L U L U U F U . (3.1.10) 

Theorem 3.1.3. Let  ,t x KU  and let for some acceptable trajectory  x    the 

equality 0= J  is fulfilled. Then, at those points   where  ,t xU  is smooth, equation 

(3.1.1) is fulfilled in the classical sense, and at the points of intersection of   and discontinuity 

line of the function  ,t xU  the Rankine-Hugoniot relations (3.1.3) are true. In addition, the 

expression for 
2 J  on the trajectory  x    where 0= J , contains only the terms 

depending on  
2

  . 

Let’s now 2m  , denote        1 2 F U F U , F U G U . Let 

     0, , , TG T X X Y Y      , where ,X Y  are some positive numbers. Let us 
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consider a class K  of functions  ,t x,yU  in G  that are piecewise doubly continuously 

differentiable, with one (for simplicity) continuously differentiable discontinuity surface  . 

Consider a set of surfaces     , , , ,s s    S , s  is the internal parameter of the surface, 

  is the time parameter,             1 1

,, , , 0, 0,1 , , ,X Ys s C C T X X Y Y          . 

Let the discontinuity surface   of the function  ,t x,yU  be given by the equations 

   , , , ,t x s y s       .  

Definition 3.1.7. Let’s call a certain set of surfaces 
1

,X YC  acceptable for 

 ,t x,y KU  if for any point        , , 0, , ,t x y T X X Y Y      there exist a single 

surface S  and a value 0s  such that    0 0, , ,t s x t s y   , and the set S    

consists of a finite number of sufficiently smooth lines, moreover on this set the following 

relation is true      0s s            . 

Consider an analogue J  of the vector functional (3.1.10) such that 

  1

,: , n

X YS s C  J , 

   
S

dx dy dy dt dt dx     J U F U G U , (3.1.11) 

here the sign   denotes an exterior product. 

Theorem 3.1.4. Let  ,t x,y KU  and let the equality 0= J  is fulfilled on some 

acceptable surface S . Then at those points of S  where  ,t x,yU  is smooth, the equation 

(3.1.1) is fulfilled in the classical sense, and at the points of intersection of S  and discontinuity 

surface of the function  ,t x,yU  the Rankine-Hugoniot relations (3.1.3) are true. 

Expression (3.1.11) is essentially a differential form, therefore, generally speaking, the 

generalization of this entry to the multidimensional case is not difficult. 

3.1.3 Representation of a generalized solution of system of quasi-linear conservation laws in the 

case of one spatial variable as a minimum of some functional 

 

The content of this paragraph is a development of the previous one. Again, as far as the 

author knows, the results presented below are of an original nature. They are published in [3], 

see also the additional work [R1]. 
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In the case of one spatial variable, 1m  , it is possible to obtain another form of 

representation of generalized solutions using the functional minimization procedure. Within the 

framework of this paragraph, we will use the concepts and notations introduced in section 3.1.2. 

We will denote    , ,t x t p dp V U . Let's introduce a vector functional of the form (3.1.10) 

    
0

, ,
T

d                     J U F U , (3.1.12) 

where     belongs to the same class as    .  

Theorem 3.1.5. Let  ,t x KU  and satisfy the system (3.1.1) in a weak sense, i.e. in 

the sense of Definition 3.1.1. Then the following relation is true  

 
0

= ( , )
Td d d

d
d d d

     
  

 J V , and (3.1.13) 

the function  

 ( , )V t x
t x

  
   
  

V V
M F   (3.1.14) 

is continuous and does not depend on x . 

The equalities (3.1.12), (3.1.13) are related to the transformations used in [R1] and to the 

functionals introduced there. Based on Theorem 3.1.5, the following definition can be proposed 

for the generalized solution of the system (3.1.1), which is not based on the fulfillment of the 

integral identity (3.1.2).  

Definition 3.1.8. Consider the function 
1,( , ) ( )Tt x W B  V  and the initial 

condition 
1,

0 0 0( ) ( ), ( ) = ( )'x W x xV V U . Denote by  a subset B  such that 

0( 0, ) = ( )x xV V . Also, in the space B  consider the functional 

 
=1

( )
n

i
i

xt i

v
esssup Var f

t x

    
    

   


V
V ,  (3.1.15) 

where  1= , , nv vV , and 
x

Var  denotes a variation of the expression with respect to variable 

x . Then we will call the function = / x U V  назовем a generalized solution to the problem 

(3.1.1), 1m  , if the function V  implements the minimum of the functional  on the set . 

The connection of a generalized solution in the sense of Definition 3.1.8 with a weak 

solution, i.e. a solution in the sense of Definition 3.1.1, illustrates the following statement. 

Theorem 3.1.6. Let B  denotes a set of such V  that the functions ( , )V t xM  from 

(3.1.14) have a bounded variation with respect to x  for almost all t . Then the functional  
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from (3.1.15) is semi-continuous from below on the set . Let the minimum of  be 

achieved. Denote min ( )m



V

V , then if 0m  , then = / x U V  satisfies the system 

(3.1.1) in the sense of Definition 3.1.1.  

The meaning of the introduction of Definition 3.1.8 is that, firstly, it indicates a natural 

way to construct a generalized solution and, secondly, it can serve as a generalization of the 

concept of a weak solution if it is necessary to consider as solutions of a nonlinear equation the 

delta functions, for example, a Keifitz-Kranzer type system, see [KK]. Definition 3.1.8 avoids 

direct consideration of delta functions in quasi-linear systems of conservation laws. 

3.2 Singular solutions of the system of equations of pressureless gas dynamics in the case of 

one and two spatial variables 

3.2.1 The case of a single spatial variable 

 

The study of the laws of concentration of matter, based on physical considerations, was 

already contained in the article [Z1] and the book [Z2]. In [Kra], it was also shown at the 

physical level of rigor that singularities arise in solving equations for pressureless media, but 

these equations make sense even after the singularities arise. In this case, a new type of 

discontinuous solutions arises, in which strong density singularities are formed on hypersurfaces 

of different codimension. In particular, in [Kra], also at the physical level of rigor, the laws of 

evolution of such hypersurfaces were obtained. In the three-dimensional case, the author called 

such singularities as "sheets" and "filaments" to distinguish them from gas-dynamic shock 

waves. The appearance of the [Bou] article stimulated the study of pressureless media from a 

mathematical point of view. For example, in [Ov], [Chu], classical solutions of a 

multidimensional system of equations of pressureless gas dynamics were studied up to the 

moment of occurrence of singularities based on the technique of group-theoretic analysis. In the 

works of the thesis author with co-authors [1], [ERS] for the first time, in parallel with the article 

[Gr], the existence of generalized solutions for the system (1.4) in the measure space is proved at 

the mathematical level of rigor and a variational principle is proposed that allows finding 

generalized solutions using the minimization procedure of some function constructed from initial 

data. Later, this approach was developed in the works of other authors in the case of a single 

spatial variable, see, for example, [HW], [LiW], [Hy1], [Hy2]. Additionally, we note that, 

despite the apparent simplicity of the system (1.4), it allows for a fairly rich set of solutions, in 

particular, it can describe the processes of not only concentration, but also the decomposition of 

matter [KlR]. 
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Along with the system (1.4), we will also consider its more general version with an 

external force 

 

 

   2

/ / 0

/ ,

/ 2

,/

t u x

u t u x g

x

x t

g

 

  












  


    





   

  

. (3.2.1) 

We will define the concept of a generalized solution of the Cauchy problem only for (3.2.1), 

since the system (1.4) is obtained from (3.2.1), assuming 0g   and excluding the third 

equation. Due to the degeneracy of the systems (1.4), (3.2.1), it is natural to assume that they set 

the dynamics in the space of pairs of measures  ,t tP I , where 0tP   is responsible for the 

distribution of mass, and, generally speaking, alternating tI  – for the distribution of momentum. 

Definition 3.2.1. Let  ,t tP I  be families of Radon measures defined on Borel subsets of 

, weakly continuous in t , and, moreover, 0tP  , and the measure tI  is absolutely 

continuous with respect to tP  for almost all positive t . Let’s define the function  ,u t x  as 

Radon-Nikodym derivative  , /t tu t x dI dP . Then we call the pair  ,t t tP I  a 

generalized solution to the Cauchy problem for (3.2.1) if 

1) for any vector function    2 1 2

1 2 0: , ,= C     and every 

1 20 t t     the following integral identity is true 

         

        

2

2 1

1

2

1

2

=

(0,1) , ,

t

t t

t

t

t

x dx x dx d u dx
x

d x P x P x P dx



  



 


 



   

   

 


   

, (3.2.2) 

where  denotes a component-by-component product (Hadamard’s product); 

2) in a weak sense as 0 00 ,t tt P P I I   . 

Theorem 3.2.1. Let the initial measures  0 0 00,P I   be Radon measures on  

and let the following conditions be fulfilled: 1) 0P  is discrete measure or absolutely continuous 

measure with respect to Lebesgue measure, in the case of absolute continuity its density 

   0 00, suppx x P   , and with unbounded support the following is true 
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 0

0

as

x

sdP s x  ; 2) the measure 0I  is absolutely continuous with respect to 0P , 

0 0 0/u dI dP   and in the case of absolute continuity of 0P  the function 0u  is also continuous; 

3) for any 0s   the following relations are fulfilled 

     0 0 0sup , lim / 0sx s
u x b s b s s

  ; 4)  0P  . Then a generalized solution of 

the system (3.2.1) exists. In the case of system (1.4), a generalized solution exists without 

fulfilling condition 4). 

Now we describe the variational principle for generalized solutions of the system (3.2.1), 

for the system (1.4) the expressions are similar. 

Theorem 3.2.2. The point       2

0 0, , / 2t x u a gx a t a t  , where 

 0 0 0

a

a

g a dP dP





   , is the point of absolute continuity of the measure  tP dx  and of 

continuity of the function  ,u t x  if and only if for any , ,aa aa a     the following 

relation is true 

    


 


    

    


 


    

0 0
2
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0 0

0

,

0 0
2
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0 0

0

,
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2

, ,
2

a a

a a

a a

a a

s tu s P ds

t
P a P a

P ds

s tu s P ds

t
P a P a

P ds























    



   









. (3.2.3) 

This theorem allows us to determine from the initial data all the points of continuity of 

the generalized solution, and, consequently, the places of origination of the singularities. And 

thus build a generalized solution. 

3.2.2 The case of two spatial variables 

 

The case of many, and even two, spatial variables is much less studied. For the case of 

two spatial variables, in parallel in the book [LZY] and in the work of the thesis’s author [R2] 

(for a more detailed description of this paper, see [4]), Rankine-Hugoniot type relations in 

differential form were obtained for the first time at the mathematical level of rigor for the case of 
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strong singularities on surfaces in space  ,t x,y . Solutions of the two-dimensional Riemann 

problem, which contain such singularities, are also studied in [LZY], this is done as part of the 

study of solutions to the two-dimensional Riemann problem for a system of equations of 

traditional gas dynamics. The obtained Rankine-Hugoniot relations in the case of pressureless 

media represent an evolutionary system of partial differential equations, which includes, in 

addition to the dynamics of the singularities surface, the dynamics of the density of the 

concentration of matter. Therefore, generally speaking, they are more complex than the Rankine-

Hugoniot relations for ordinary gas dynamics and represent a new type of shock waves. In the 

paper [4] by the author of thesis, the Rankine-Hugoniot relations were obtained in an original 

way based on the theory of new generalized functions [Co], in addition, a description of these 

relations in integral form was also obtained there. The integral description of the Rankine-

Hugoniot relations actually suggests the possibility of the emergence of evolving singularities on 

manifolds of different dimensions and the emergence of a hierarchy of shock waves. This fact is 

new, not noted by other authors. It was concretized in the related works [R3], [AR1] by thesis’s 

author and co-authors and justified in [5], [6]. It turns out that the form of the Rankine-Hugoniot 

relations varies depending on the codimension of the surface of the strong singularity. In the 

foreign literature, the results of [LZY] were generalized towards considering the complete 

system of equations (1.5), (1.6), see, for example, [Pa]. When considering discrete solutions of 

the system (1.5) in the two-dimensional case, in contrast to the one-dimensional setting, a 

situation of crossing particle trajectories arises. It turns out that this will be the case for most 

trajectories for at least a complete set of initial particle distributions, see [BD]. If there is an 

infinite initial set of particles in a bounded set on the plane, then situations of non-existence and 

non-uniqueness of the generalized solution are possible, see [BrN]. Nevertheless, the thesis’s 

author with co-authors in [7] were the first to propose a numerical method for finding 

generalized solutions to a system of equations of two-dimensional pressureless gas dynamics 

based on adhesion principle, and estimates for the corresponding system of interacting particles 

were obtained. A numerical study of the phenomenon of the emergence of a hierarchy of shock 

waves based on this methodology is contained in [KRy]. Due to the difficulties of constructing 

solutions using a system of interacting particles, the thesis proposed an approach for variational 

description of generalized solutions in the two-dimensional case [5] based on the integral 

representation of works [4] and [R3], which qualitatively differs from the one-dimensional 

version (3.2.3). Additionally, we note that the remarks made in [4] about the non-hyperbolic 

nature of the Rankine-Hugoniot system of equations in the two-dimensional case were continued 

in recent work [BCH]. 
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The concentration of matter in the multidimensional case on surfaces of codimension one 

was studied, for example, in [LY], [Sh1], [ARS]. In addition, the subtle issues of the propagation 

of the velocity vector field to points  ,t x,y  located inside singularities of different dimensions 

are considered in [KS1], [KS2] in the case when the system (1.5) can be represented as the 

Hamilton-Jacobi equation; generalization to an arbitrary convex Hamiltonian is also acceptable. 

In this case, a variational interpretation of the "viscous solutions" of this equation is used. The 

results obtained are useful, including in astrophysical applications, see, for example, [GSS]. 

Let's consider the Cauchy problem for the system (1.5). Introduce the notations 

 ,x yx ,   2, , / , /t x y      x  ,

        , , , , , ,d dx dy t u t v t x u x x x ,       , , ,t t td I dx dy J dx dyI x . Similarly 

to the case of a single spatial variable, the generalized solution of the Cauchy problem for (1.5) is 

understood in the sense of a family of measures    0,t tP d dx I x , where the index t  means 

a time variable. The initial data    0 00,P d dx I x  are also, generally speaking, measures, in 

the case of their absolute continuity relative to the standard Lebesgue measure, the 

corresponding densities are denoted as      0 0 0,0 x x u x .  

Definition 3.2.2. Let       ,t t td P d dx x I x  be a family of Radon measures 

defined on Borel subsets of 
2

, weakly continuous in t  and, moreover, 0tP   and the measure 

tI  is absolutely continuous with respect to tP  for almost all positive t . Let’s define the vector 

function  ,tu x  as a Radon-Nikodym derivative  , /t tt d dPu x I . Then we call t  the 

generalized solution of the Cauchy problem for the system (1.5) if  

1) for any vector function  2 3 1 2

0: , C    and any 1 20 t t     the 

following integral identity is fulfilled 

           
2

2 1
2 2 2

1

=

t
T

t t

t

d d d d     x x x x u x      , (3.2.4) 

where   denotes the tensor product,  denotes the component-by-component product 

(Hadamard product), and the index Т  is the transposition operation; 

2) in a weak sense as 0 00 ,t tt P P  I I .  

For the subsequent formulation of the theorems, consider the following geometric 

construction. Let within this paragraph the index i  takes a finite set of integer values 1,..., .i Q  
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Consider in space  ,t x  in a time interval  1 2,t t t  Q  surfaces  , 0i t x , 

  1 2

1 2,i C t t   . Suppose that all surfaces intersect along some curve L , at this i  and 

L  are set parametrically as       1

1 2, , , ,i t l C t t     x X X  and 

      1

1 2, , ,x yt C t t s s  x S S . Let’s also assume that equality 

      1 2, , ,i it l t t t t t X S  holds for some continuously differentiable  il t . We will 

consider the surfaces i  not for all values l , namely, for i  the parameter  il l t . For the 

resulting parts of the surfaces we will keep the designation i . We orient i  in accordance with 

the orientation  ,t x  and in the direction of the positive normal we define positive «+» and 

negative «-» sides of i , which are set using inequalities  , 0i t x  ,   <, 0i t x . 

Accordingly, the values related to the two sides of the surfaces will be provided with the same 

indices. For each value t  we define the areas   2

iG t   between the introduced surfaces: 

      1: , 0 , <, 0i i iG t t t   x x x , 1,...,i Q . At this 
1 1Q   . We will also 

assume that the characteristics of the system (1.5), namely the straight lines 

  0t x a u a , (3.2.5) 

lying on both the positive and negative sides of i  cross it at some point in time. Here 

 ,a ba  is the point on the initial plane from which the characteristic originates. 

Let's define a family of measures  

 

            

            

1 1

1

1

1

1

,

,

Q Q

i i i i i

i i

Q Q

i i

t

i i i

i

t

i

P P P P H P t l M t t

H t l t t

 

 

 







 

 

       

       

 

 

x S

I I I I I x S

, (3.2.6) 

where H  is the Heaviside function,   is the Dirac measure on curves and at a point, ,i iP 
I  

are measures that are absolutely continuous with respect to the Lebesgue measure with densities 

,i i i   
u  respectively. In this case, the measures ,i iP 

I  are defined only in domains iG , and 

for any value f  it is assumed that 1i if f 

  and the number 1Q   is replaced by 1 . Functions 

,i i i   
u , , , ,i iP MI   are assumed to be piecewise continuously differentiable on their 

domains of definition. 
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Theorem 3.2.3. Let the family of measures defined by expression (3.2.6) be a 

generalized solution of system (1.5) in the sense of Definition 3.2.2. Then the following system 

of equations holds for any surface i  (index i  is omitted for brevity)  

 

         

         

 
 ,

P
V v U u

t l l

V v U u
t l l

U V
t

 
   

 
   



  
      


  

   
  


 



I
u u u u

U

, (3.2.7) 

where for any value f  it is denoted  f f f   . 

The relations (3.2.7) are Rankine-Hugoniot relations for (1.5) in the case when the 

support of the singularity is concentrated on the surface, and differ significantly from the 

traditional Rankine-Hugoniot relations in gas dynamics. The original inference of these relations 

is presented in [4] based on the work of the author of the thesis [R2].   

Theorem 3.2.4. Let the family of measures defined by expression (3.2.6) be a 

generalized solution of the system (1.5) in the sense of Definition 3.2.2. Then 1) there is a 

Lagrangian mapping t a xA :  that shows which points on the initial plane a  will come to a 

point x  at a time t ; the functions 1,...,, ,i i i Q  u   satisfy (1.5) in the classical sense; 3) 

along the surfaces i  for each i  the relations (3.2.7) are fulfilled; 4) along the curve L  the 

following equations hold  

    
d

M t t
dt


S

 , (3.2.8) 

where         1

0,M t t t S  A . 

Until the moment of occurrence of the singularities, the Lagrangian mapping tA  is given 

by the formulas (3.2.5). The relations (3.2.8) are Rankine-Hugoniot relations for (1.5) in the case 

when the support of the singularity is concentrated on the curve, these relations have no gas-

dynamic analogues. The formulas (3.2.8) were first obtained by the thesis’s author in [R3] and 

further co-authored in [AR2], the final proof was published in [6]. Combination of formulas 

(3.2.7), (3.2.8) describes the situation of the formation of a hierarchy of shock waves, which was 

discovered by the author of the thesis and was not noted by other authors. 

The real case of a hierarchy of singularities is shown for solutions to the Riemann 

problem for (1.5). 
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Definition 3.2.3. The Riemann problem for system (1.5) is called the Cauchy problem, in 

which the initial data is constant in each quadrant of 
2

, i.e. 

    00 const , tconskk    x u x u , (3.2.9) 

where 1,2,3,4k   is the natural numbering of quadrants in 
2

. 

Let’s consider the specific data (3.2.9). Namely, let 0, 0,0u v R     and let  

 
1 4 2 3 1 2 3 4

4

, , , ,

, 4 ,k

u u u u u u v v v v v v

Rk  

         

  
, (3.2.10) 

Theorem 3.2.5. For the generalized solution of the problem (1.5), (3.2.10) there is such a 

straight line  * *,t X Yx  that for any t  the measure tP  has at point  * *,t X Y  a delta 

singularity. In this case, the point  * *,X Y  is the intersection point of shock waves described 

by the self-similar version of the system (3.2.7) 

 

 

 

 

      

      

2

2

2

/

/

/ /

/

/

X X U l

Y Y V l

m m l d d l

U U u d U u d ml

V V v d V v d ml

 

 

 

   

     

     


  


  


   


    


     


, (3.2.11) 

where /l tl , «stroke» denotes the differentiation by l ,     ,, lt X Y    ,  ,U V  

are considered as dependent only on l ,  P t m l   ,  ,P U V I ,  

 
X U U u

d
Y V V v







 


 
.  

The proof of this theorem is contained in [5], [6]. The main difficulty lies in the fact that 

waves of the type (3.2.11) do not necessarily intersect, this difficulty can be overcome using 

symmetry considerations. 

 Now let the initial measure  0 dx  be discrete, that is, at the initial moments of time 

in 
2

 there are N  particles with masses im  and velocities  ,i iu v , 1,...,i N , and these 

particles are placed in a uniform auxiliary grid  1/2 1/2 1/2 1/2, ,j j k kx x y y   
    , 
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,j kx j x y k y    ,    
2 2

x y      is sufficiently small. Let us also assume that as 

N   the system of particles under consideration converges in a weak sense to a measure 

that is absolutely continuous with respect to the Lebesgue measure. Next, consider the following 

approximate adhesion dynamics. Each particle with a certain number 
1i  moves in a straight line 

with the speed prescribed for it until it approaches another particle with a number 
2i  at a distance 

k  , where 1k   is some constant. Let's call the fact of such an approaching a type E  event. 

When an event E  occurs, the particles 
1i  and 

2i  stick together into one, the mass and motion of 

which are determined by the laws of conservation of mass and momentum, the new particle is 

located in the center of mass of the particles 
1i  and 

2i . A similar procedure is applied if not two, 

but a larger number of particles stick together. It is easy to see that the resulting particle system 

will, in a weak sense, satisfy (1.5) not exactly, but with some error R . 

Theorem 3.2.6. For the adhesion dynamics described above, there is an estimate  

 

 
 1

i l i l i l

i l
i i i

E il

l

m m u u v v

R C m u v
m

 

   
 

   
 
 
 


 


,  

where C  is some positive constant, the outer summation goes for all events of the type E , and 

the rest of the summation goes for all particles involved in this event E . 

The presented estimate was obtained in [7], algorithms for numerical calculation of 

generalized solutions (1.5) were obtained there, additionally see [KRy]. Generally speaking, it 

turned out that in order to find out the convergence of the constructed particle system to any 

evolving measure, additional assumptions about the structure of the generalized solution are 

necessary. For example, suppose that the generalized solution contains a finite set of evolving 

curves with the corresponding delta mass function. Then the masses of the particles making up 

this curve  , while the mass of non-interacting particles 
2 , but the number the particles 

that undergo interaction 1/  . Further l

l

m  , 
3

i l

i l

m m 


 , the velocities are bounded, 

that is 
3

ER N  , where 
EN  is the number of type E  events. However 

2/EN C  , since 

the initial mass is finite in any bounded region, hence R  . 

Thus, the insufficiency of the estimates given, as well as the results of [BrN], [BD], force 

us to look for other approaches to describing generalized solutions of the system (1.5). An 

example of such approach is the search for variational descriptions of generalized solutions. 
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In the case of a single spatial variable, the variational principle (3.2.3) describes from a 

single point of view both the smooth and non-smooth parts of the generalized solution. In the 

two-dimensional case, the expression of type (3.2.3) cannot be used due to the fact that the 

trajectories of the particles in the general position, generally speaking, are crossing. However, it 

is possible to formulate a variational description. To do this, we will need additional 

constructions. 

Let’s fix 0t  . Let 1A  be a finite set of mutually disjoint domains in 
2

, and 2A  is a 

set of domains obtained as follows. Let’s also take the finite set of mutually disjoint domains 

2

1\G A   of the form   1 2 1 2, , , , ,G s l s s s l l l     
        a , the functions a  are 

assumed to be continuously differentiable on their domain of definition. Then some domain G  

will belong to 2A  if and only if there exists such   and 
1 2,G Gl l , that 

  1 2 1 2, , , , ,G GG s l s s s l l l  
        a , 

2 1 2 10 G Gl l l l     . Let now 3A  represent the 

set of all domains lying in  2

1 2\ A A , and 1 2 3B A A A   . Denote 

      0 0, ;
G

t G d , G B
t


 

   
 


x a

F x u a a a . (3.2.12) 

Definition 3.2.4. Let the entry minG   means that the area G  tends to a minimum 

under the condition G B . Let’s call the derivative of F  with respect to the area containing 

the point a , the value 

 
 

min

, ;
lim

G

t G
, G B

G



 
  

F xF
a

a
. (3.2.13) 

Theorem 3.2.7. Let  0 dx  be absolutely continuous with respect to the Lebesgue 

measure. Let there be a generalized solution of system (1.5) under the conditions of Theorems 

3.2.3, 3.2.4. Then for almost all 0t   and almost all 
2a  there exist such x  that 

/ =0 F a . 

This theorem was obtained in [5], [6], see also [R3]. 

Theorem 3.2.8. Let  0 dx  be absolutely continuous with respect to the Lebesgue 

measure and let there be a generalized solution of the system (1.5) in the sense of Definition 

3.2.2. Let there also be such a parametrization  ,s la  and a value 
*l  that the vector function 
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     
 

  
 
  *

*

* *

0

*

0

0

, ,
, , ,

,
l l

l l
l l l

l
d

t

  
    




  
  

  


x a a
u a a  (3.2.14) 

has component wise more than one joint global minimum with respect to  , then at the point 

 ,t x  the generalized solution of the system (1.5) has a singularity in the form of a 

concentration of a mass measure. 

The function (3.2.14) is derived from the function (3.2.12) by parameterizing the domain 

G , and the behavior of the function (3.2.14) actually means that the derivative (3.2.13) vanishes. 

This theorem is obtained in [AR3], see also [AR1]. As a further illustration, [KRy] shows that 

the condition for the existence of two global minima (3.2.14) leads to formulas for the evolution 

of the surface of singularities, without relying on the system (3.2.7). 

3.3 Existence of strong solutions of a quasi-gas-dynamic system of equations in the case of 

two spatial variables 
 

In this section, we consider the initial boundary value problem for the system (1.7), 

rewritten in a slightly different form,  

  
2

2
i 0,, d vP

t
t

t
g 

 
    


 


 

U U
U U U U   (3.3.1) 

in a bounded smooth domain   2,x y  x  

    0 10
0

, , 0
t

tt 



  



U
U U x U x U . (3.3.2) 

Recall that here 0   is a small parameter, P  is a pressure,   is Laplace operator, g  is 

external force. 

The problem of the form (3.3.1), (3.3.2) was studied, for example, in [BNP], [PaR], see 

also [RS 1], [RC2], however, either for the case of periodic boundary conditions, or in the entire 

space 
2

 (note that the case 
3
 was also considered). Unlike other works, the results presented 

in the thesis, see [8], are obtained for a bounded domain. In this setting, the technique of the 

above-mentioned works is not applicable, and it is necessary to use only energy-type estimates. 

Accordingly, the results are obtained only for small 0  , and in the case of one spatial 

variable, an example of a situation is given that demonstrates the "explosion" of a solution in 

finite time for finite 0  . Note also that for the linear version of the quasi-gas dynamic 

equations, additional results were obtained in [IR]. 
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We will study the strong solutions of the problem (3.3.1), (3.3.2) 

      ,t t t / t  U UA  in the phase space 
1

  with the corresponding norm 1


A : 

 

        
     1 1 2 2

2 2
1 2 1 1

0 0

2 2 22

,, , 0 0

H L H

H H H

t / t t / t t







               

    









U V U V

U U U

 

A

. (3.3.3) 

Let   
2

1

0 , 0H      U UV ,   
2

2 , 0, 0L


      U U U nH , 

     
2

2 1

0 0H H       UD . 

Definition 3.3.1. Let’s call the function  ,tU x  a strong solution to the problem (3.3.1), 

(3.3.2) on the interval  0,T  if: 1)     0,, ,C Tt U x D ,   / 0, ,t C T  U V , 

  22 / 0, ,t C T   U H ; 2) U  satisfies (3.3.1) in H  after applying the orthogonal Leray-

Helmholtz projection to the solenoidal vector fields; 3) U  satisfies the initial data (3.3.2). 

Theorem 3.3.1. Let gH . Then for any 0R   there exists such  0 0 R   that for 

any 
0   and any initial data     1

0 , 0 R

A A  the problem (3.3.1), (3.3.2) has a unique 

global strong solution and the following estimate is correct for 0t   

       21 1
0 t

L
t Q e Q g

 



 
 A A , (3.3.4) 

where the positive constant   and the monotone function Q  do not depend on , , 0R t   and 

on initial data  0A . 

Let us now consider a one-dimensional version of equation (3.3.1) for the function 

 ,u t x  

  
2 2 2

2 2
,, 0,

u u u u
x L

t t x x
g t 

   
   

  
 


, (3.3.5) 

with Dirichlet boundary conditions and initial data     0 1,u x u x . 

Theorem 3.3.2. Let 0g  , and 1  . Then there are smooth initial data with a compact 

support such that the corresponding solutions (3.3.5) cease to exist in a finite time. 

Theorem 3.3.2 shows that, with a finite   the requirement of boundedness of the initial 

data with respect to the energy norm in Theorem 3.3.1 is essential. 
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3.4 Degenerate parabolic systems of equations describing the processes of compressible two-

phase multicomponent filtration from the point of view of the theory of conservation laws 
 

In the system of equations (1.8), (1.9) the variables 
1 1,..., ; ,...,G NG L NLx x x x , taking into 

account thermodynamic relations (the specific type of which is not important in this context), are 

subjected to the normalization condition 1iG iL

i i

x x    and are connected by N  functional 

relations expressing the equality of chemical potentials of phases. We will assume that these 

nonlinear dependencies are expressed using doubly continuously differentiable functions. Thus, 

of the above variables, there are exactly 2N   independent ones, which will be denoted by 

, 1,..., 2ky k N  . Then, by introducing the notations, 1,...,i N , 

 

      

   
   

1 2

1 2

, , ,..., , 1

1
, , ,..., ,

i N iG G iL L

G L

i N iG G iL L

G L

X x s y y P x x s x s

k s k s
F x s y y P K x x x

P
Q

x

  

 
 





  

 
  

 


 



,  

the system (1.8), (1.9) can be written in the form of a degenerate system of conservation laws 

with the right-hand side 

   0 , , 1,...,i i

P
X FQ Q i N

t x x

  
    

  
. (3.4.1) 

System (3.4.1) is a system of 1N   partial differential equations of the first order from a vector 

of unknown functions  1 2, ,..., , ,Ns y y P QU . 

The mathematical theory of filtration processes is most developed in the case of a single-

component medium, where the main model is a single degenerate parabolic equation for 

pressure, see, for example, [Vaz] and also [Ka]. The case of two immiscible phases has also been 

considered for a long time (the corresponding phase densities are constant), see the fundamental 

work [AKM]. From a mathematical point of view, this case boils down to solving a set of a 

degenerate parabolic equation for saturation and a uniformly elliptical equation for pressure. In 

this case, the parabolicity of the saturation equation arises from the use of the capillary pressure 

concept. The presence of parabolic/elliptic terms allows us to obtain various a priori estimates, 

which is still the basis for the mathematical study of filtration phenomena. So we can give the 

following examples of work in this direction. The non-isothermal case, in which an equation for 

temperature is added, is considered in [Amz]. In the case of the dependence of porosity on 

pressure [DEH], two degenerate parabolic equations of saturation and pressure arise. The same 
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situation is in the case of compressible immiscible phases [AJK]. The case of many components 

that can mix, in particular to describe the processes of mutual solubility, is contained in [ASh], 

where a degenerate parabolic system of equations for concentrations and pressures arises. The 

introduction to the consideration of phase transitions leads in the incompressible case to the 

consideration of a hyperbolic system of equations, see, for example, [Orr]. Accordingly, in 

mathematical research, difficulties arise here related to the development of the theory of quasi-

linear systems of conservation laws. The compressible case was considered mainly from a 

physical and computational point of view, for example, [Bed], [AbP], since the nature of even 

the simplest system of equations (1.8), (1.9), which describes the process of phase transitions, 

remains unclear. The results obtained in the thesis, [9], fill this gap. The system of equations 

(3.4.1) is defined as almost hyperbolic, having the properties of both hyperbolic and parabolic 

systems of equations. 

The system of equations (3.4.1) can already be written as a system of first-order 

equations in a non-divergent form and eigenvalues and eigenvectors can be calculated in a 

standard way. It turns out that there can be no more than 1N   eigenvalues 
j  for which left 

jl  

and right 
jr  eigenvectors can be searched. Next, along with some vector  1 1,..., Nq q q , we 

will consider its projection  1 1,..., Nq q  q , consisting of the first 1N   coordinates of the 

vector q . 

Definition 3.4.1. Let’s call a certain set of vectors 
jq  linearly independent by projection, 

if the vectors 
j
q  are linearly independent. 

Definition 3.4.2. A system of equations of type (3.4.1) is called almost hyperbolic if it 

has exactly 1N   real and different eigenvalues, and there are corresponding sets of left and 

right eigenvectors, each of which contains exactly 1N   linearly independent by projection 

vectors. 

For almost hyperbolic systems (3.4.1) consider the strip  

       , : , 0,T t x t x T      

and we will set the initial data 

               0 0 0 0

1 1 2 20, , 0, ,..., 0, , 0,N Ns x s x y x y x y x y x P x P x     . (3.4.2) 

Definition 3.4.3. Let the initial functions (3.4.2) be bounded measurable functions on . 

Then we call bounded measurable in T  functions      1 2, , , ,..., ,Ns t x y t x y t x  and 

continuous in 
T  function  ,P t x  a generalized solution of the problem (3.4.1), (3.4.2), if for 
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any function   0,C T   ,    0,t C    at a fixed  0,t T , 0   as 

1 1,T t T T T   , the following integral identities are fulfilled 

 

   0 0, 0 , 1,...,

0

T

T

i i iX FQ dxdt X x x dx i N
t x

P Q dxdt
x

 









  
    

  

 
  

 

 



, (3.4.3) 

where denoted           0 0 0 0 0

1 2, ,..., ,i i NX x X s x y x y x P x . 

Definition 3.4.4. We will say that the generalized solution of the problem (3.4.1), (3.4.2) 

has a strong singularity if the functions      1 2, , , ,..., ,Ns t x y t x y t x  undergo a discontinuity 

along some curve in the strip 
T . We will say that the generalized solution of the problem 

(3.4.1), (3.4.2) has a weak singularity if the functions      1 2, , , ,..., ,Ns t x y t x y t x  are 

continuous, while their partial derivatives in t  and x  suffer a discontinuity along some curve in 

the strip 
T , and the function  ,P t x  is continuously differentiable in the vicinity of this 

curve. 

Proposition 3.4.1. The propagation velocity of weak singularities coincides with one of 

the eigenvalues of the system (3.4.1). 

For strong singularities propagating along a certain curve  x z t  the Rankine-

Hugoniot relations now follow from (3.4.3) in a standard way 

   , 1,..., ,i i i i

dz
X X Q F Q F i N P P

dt

            , (3.4.4) 

where the entry of the form y
 denotes the values of some function y  to the right and left of 

the discontinuity, respectively, i.e.   , 0y y t z t   . Let us further agree within this section 

that the index s  or Q  of the quantities denotes the partial derivative with respect to the 

corresponding variables. Let's introduce the notation 

 
       

;
kk

N j j N yN j j N yss

N N

F X F XF X F X
A

F F

 
 
 
 

,  

where A  is a matrix of size    1 1N N   , 1,..., 1j N  , 1,..., 2k N  , the entry of 

the form  
k

j y
X  denotes the Jacobi matrix for functions 

jX  depending on variables 
ky . That 



 
 

36 
 

is, the first element of the entry for A  is a column of length 1N  , and the second element is a 

matrix of dimension    2 1N N   . 

Theorem 3.4.1. Let the conditions 0, det 0NF A   be fulfilled. Then in the phase 

space  1 2, ,..., , ,Ns y y P QU  the set of values 


U , determined by the relations (3.4.4), is 

locally a set consisting of 1N   curves    , 0 , 1,..., 1j j j N   U U U , 
0   is 

some small parameter. At the same time, there are 1N   discontinuity speeds  j   

corresponding to the curves  j U . In addition,  0 /j jd dU r , and a local discontinuity 

speed satisfies the relation    0 0j j  . 

Now consider the case of two components, i.e. 2N  . Then there are no variables 
ky , 

the values ,iG iLx x  depend only on pressure P , thus the system of equations (3.4.1) consists of 

three equations with unknown functions , ,s P Q . Let also the quantities ,G L   be constant, 

and 1K   . Let's study the properties of solutions to the Riemann problem in the case 

2N   taking into account the simplifications just mentioned, i.e. consider the following initial 

data for (3.4.1) 

    0 00 0

0 0

, 0 , 0

, 0 , 0

s x P x
s x P x

s x P x

 

 

   
  

   

. (3.4.5) 

Theorem 3.4.2. If 
0 0P P   then the self-similar solutions of the problem (3.4.1) for 

2,N   (3.4.5) have an infinite velocity of propagation of perturbations. 

This property is typical for parabolic equations and is absent in hyperbolic equations with 

smooth nonlinearities. 

Theorem 3.4.3. In the self-similar solution of the problem (3.4.1) for 2N  , (3.4.5) 

there is always a saturation s  singularity: either a shock, or at least a point with an infinite 

derivative with respect to self-similar variable.   

For hyperbolic systems of equations, there are continuous solutions to the Riemann 

problem consisting of rarefaction waves. As Theorem 3.4.3 shows, this is not the case in the case 

of filtration, and the saturation in solving the Riemann problem is discontinuous in the case of a 

general position. 

In the theory of systems of conservation laws, the concept of entropy plays an important 

role in solving issues related to the uniqueness of a generalized solution. Therefore, we will 

discuss this concept for the system (3.4.1). We define vectors of length 1N  : 
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0

i iX QF
= , , i = 1,...,N

P

   
   

   
X F .  

Definition 3.4.5. Let there be such a vector function  E U  and such functions 

   ,U UE F  that 

 
1, 0ND = D , D D E Q   E X E FE F ,  

where the sign D  denotes the differential of the corresponding functions, and 
1NE 
 is the last 

coordinate of the vector E . Then we will call the function E  entropy for the system (3.4.1).  

Theorem 3.4.4. Let in the system (3.4.1) for 2N   in addition to the above limitations 

the functions iX  and iF , 1,2i  , are independent of the pressure variable P . Let 

  1 2 2 1/ / 0G L G G L L G L G Lk k x x x x       and      2 1 1 2s s
s F X F X   , while 

  be some doubly continuously differentiable function of two variables satisfying the condition 

  , 0Q Q s P   . Let also  , , 1,2me s Q m  , be some continuously differentiable 

functions satisfying the following relations: 

                

       

2 2 1 1 2 2 2 1 1 1

2 2 1 1

0 ; ;

0

s Q s Q s s s Q

s s s s

X e X e X F e F e Q s e

X e X e

      

 
.  

Then the convex entropy E  of such a system depends only on saturation s  and is expressed 

using a formula 

    1 1 2 2s s s
e X e X E ,  

and the corresponding flux F  is defined ambiguously according to the following formula 

     ,,Q s P QdP A s  F ,  

where the sign  denotes the operation of indefinite integration and the function  ,A s Q

satisfies the relation 

    1 1 2 2 1 1 2 2,s Qs s
A Q e F e F A e F e F      .  

Theorem 3.4.4 implies, in particular, that the set of entropy-flux pairs includes the 

corresponding pairs by S.N. Kruzhkov for one scalar conservation law, but the set of fluxes turns 

out to be much richer than in the scalar case. 
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3.5 Equation with a saturated (bounded) dissipation flux 
 

Equations of type (1.10) have been studied quite a lot in the context of the theory of 

parabolic equations. As a rule, equations of the form  

      , ,/ / /u t u u x x x t            (3.5.1) 

were considered, where the function   tends to be constant when gradient modulus of u  goes 

to infinity. If   becomes constant, then (3.5.1) passes into a quasi-linear hyperbolic equation, 

which causes the occurrence of discontinuities. Apparently, this effect was studied for the first 

time in [BdP], [dP], but only with growing initial data. In the future, the need to select fairly 

narrow classes of initial data remained, see, for example, [LTa]. In contrast to (3.5.1), equation 

(1.10) is more related to an extension of the theory of conservation laws, and in the literature is 

often called a Burgers-type equation with saturated dissipation. This type of equations was 

studied mainly from the point of view of particular properties of solutions, for example, [KuR], 

[GKR], and nonmonotonic functions Q , [KLR] were also considered. In addition, the 

computational aspect was also studied, for example, [CKR]. In the work of thesis’s author [10], 

steps were taken to build a theory of the existence and uniqueness of solutions. Similar to the 

works of [BdP], [dP], the corresponding results are obtained under sufficiently strong restrictions 

on the class of initial data and the set of generalized solutions under consideration.  

For equation (1.10) consider the initial data    00,u x u x , satisfying the following 

conditions: 1)    2,1

0u W L  ; 2) there is a finite set of points  ix K  , where 

K  is a compact, such that   2

0 \ iu C K x , and the points  ix  are discontinuity points of 

the first kind  for 0u ; 3)  0 0 0iu x   . 

Definition 3.5.1. We will say that a bounded measurable function  ,u t x  is a 

generalized solution to the Cauchy problem for (1.10) with an initial function 0u  if the following 

conditions are met: 

а) there exist such a set  0,TE , mes 0E , that for  0, \t T E  a continuous 

function  lim ,Q t x  is defined 

  
 

   
lim

0
0, \

, ,
, lim

2h
h

u t x h u t x h
Q t x Q

h
 




   
  

 
,  

where the value   and the set  , mes 0  , generally speaking, depend on x ; 
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б) for an arbitrary function  0 TC   ,  0,T T    the integral identity is 

fulfilled 

       lim, , , 0

T

u tft x u t x Q x dt
t

d
x x

x
  



  
 

 

 
 

  
 ;  

в) for any segment  ,a b   it is completed 

 

 

   0
0
0, \

lim , 0

b

t
at T

u t x u x dx



 
E

.  

Theorem 3.5.1. For initial data satisfying conditions 1) – 3), there is a generalized 

solution  ,u t x  of the Cauchy problem for (1.10), moreover,    loc,u t x BV , 

   clim lo,Q BVt x   for almost all  0,t T . 

Definition 3.5.2. Let 

      
   f u f u

l u f u u u
u u

 

 

 


  


.  

We will say that a generalized solution  ,u t x  in the sense of Definition 3.5.1 satisfies the 

condition E  (terminology of O.A. Oleinik), if for each point of discontinuity  ,u t x  there exist 

 , 0u u t x    and    l u f u  for ,u u u    , u u  ;    l u f u  for 

,u u u    , u u  . 

The uniqueness theorem given below is largely conditional in nature, since it is 

formulated for a rather narrow class of functions, although reflecting all the features of the 

problem. 

Definition 3.5.3. We will say that a function  ,u t x  belongs to a class K  if the 

following conditions are met: 

а)    2, Tu t x C   for all  , Tt x   except a finite set of curves 

   1 0,ix t C T ; in addition, 
 

 
0,

sup , 0
T

u t R   при R  ; 

б) for any point of discontinuity, except for a finite number of them, there are unilateral 

limits   , 0 ,iu t x t u u u     ; 

в) 
 

 lim
0,

sup , 0
T

Q t R   при R  . 
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Theorem 3.5.2. For initial data satisfying conditions 1) – 3), the generalized solution 

 ,u t x  of the Cauchy problem for (1.10), which lies in the class K  and satisfies the condition 

E , is unique. 

 

 

 

 



 
 

41 
 

LIST OF PUBLICATIONS PRESENTED FOR THE DEFENCE 

1. E Weinan, Rykov Yu. G., Sinai Ya. G. Generalized variational principles, global weak 

solutions and behavior with random initial data for systems of conservation laws arising in 

adhesion particle dynamics // Comm. Math. Phys. – 1996. – V. 177. – Issue 2. – P. 349–380. 

2. Rykov Yu. G. On the variational approach to systems of quasilinear conservation laws // 

Proceedings Steklov Inst. Math. – 2018. – V. 301. – Issue 1. – P. 213–227. 

3. Rykov Yu. G. Variational formulation of the problem of finding generalized solutions for 

quasilinear hyperbolic systems of conservation laws // Math. Notes. – 2021. – V. 110. – 

Issue 6. – P. 972 – 975. 

4. Rykov Yu. G. On the nonhamiltonian character of shocks in 2-D pressureless gas // 

Bolletino dell’ U.M.I. Sezione B (8). – 2002. – V. 5-B. – P. 55 – 78. 

5. Rykov Yu. G. On the interaction of shock waves in two-dimensional isobaric media // 

Russian Math. Surveys. – 2023. – V. 78, Issue 4. – P. 779 – 781. 

6. Rykov Yu. G. On the evolution of the hierarchy of shock waves in a two-dimensional 

isobaric medium // Izvestiya: Mathematics. – 2024. – V. 88. – Issue 2. – P. 284 – 312. 

7. Chertock A., Kurganov A. & Rykov Yu. A new sticky particle method for pressureless gas 

dynamics // SIAM J. Numer. Anal. – 2007. – V. 45. – No.6. – P. 2408 – 2441. 

8. Ilyin A., Rykov Yu., Zelik S. Hyperbolic relaxation of the 2D Navier-Stokes equations in a 

bounded domain // Physica D. – 2018. – V. 376-377. – P. 171–179. 

9. Rykov Yu. G. On the generalization of conservation law theory to certain degenerate 

parabolic systems of equations describing processes of compressible two-phase 

multicomponent filtration // Math. Notes. – 2011. – V. 89, Issue 2. – P. 291 – 303. 

10. Rykov Yu. G. Discontinuous solutions of some strongly degenerate parabolic equations // 

Russian J. Math. Phys. – 2000. – V. 7. – No. 3. – P. 341 – 356. 

 

  



 
 

42 
 

REFERENCES 

[Vo] Vol’pert A.I. The spaces BV and quasilinear equations // Math USSR-Sbornik. — 

1967. — V. 2. — Issue 2. — P. 225 – 267. 

[Kr] Kruzkov S.N. First order quasilinear equations in several independent variables // 

Math USSR-Sbornik. — 1970. — V. 10. — Issue 2. — С. 217 – 243. 

[L1] Lax P.D. Hyperbolic systems of conservation laws II // Comm. Pure Appl. Math. — 

1957. — V. 10. — No. 4. — P. 537 – 566. 

[G] Godunov S.K. Raznostnyi metod chislennogo rascheta razryvnyh reshenij uravnenij 

gidrodinamiki // Matem. Sb. — 1959. — V. 47. — Issue 3. — P. 271 – 306 [in 

Russian]. 

[Gl] Glimm J. Solutions in the large for nonlinear hyperbolic systems of equations // 

Comm. Pure Appl. Math. — 1965. — V. 18. — No. 4. — P. 697 – 715. 

[B] Bressan A. Hyperbolic systems of conservation laws: the one-dimensional Cauchy 

problem. Oxford Univ. Press, 2000. 

[S1] Serre D. Systems of conservation laws. Vol. 1. Hyperbolicity, entropies, shock waves. 

Cambridge : Cambridge University Press, 1999. 

[S2] Serre D. Systems of conservation laws. Vol.2. Geometric structures, oscillations and 

initial-boundary value problems. Cambridge : Cambridge University Press, 2000. 

[BGS] Benzoni-Gavage S., Serre D. Multidimensional Hyperbolic Partial Differential 

Equations: First-order Systems and Applications. Oxford Mathematical monographs. 

Oxford : Clarendon Press, 2007. 

[Da] Dafermos C.M. Conservation Laws in Continuum Physics, Volume 325 of 

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of 

Mathematical Sciences]. Springer-Verlag. Berlin, fourth edition 2016. 

[He] Hesthaven J.S. Numerical Methods for Conservation Laws: From Analysis to 

Algorithms. SIAM. Philadelphia, 2018. 

[LTP] Liu Tai-Ping. Shock waves. American Math. Soc. Providence. Rhode Island, 2021. 

[DP] DiPerna R.J. Measure-valued solutions to hyperbolic conservation laws // Arch. 

Rational Mech. Anal. — 1985. — V. 88. — No.3. — P. 223 – 270. 

[FST] Fjordholm U.S., Siddhartha M., Tadmor E. On the computation of measure-valued 

solutions // Acta Numer. — 2016. — V. 25. — P. 567 – 679. 

[S3] Serre D. Divergence-free positive symmetric tensors and fluid dynamics // Annales de 

l’Institut Henri Poincare. — 2018. — V. 35. — P. 1209 – 1234. 

[KK] Keyfitz B. L., Kranzer H. C. A viscous approximation to a system of conservation 



 
 

43 
 

laws with no classical Riemann solution // in C. Carasso et all., (eds), Nonlinear 

Hyperbolic problems. Lecture Notes in Math. — 1989. —  V. 1402. — P. 185 – 197. 

[K] Keyfitz B. L. Singular shocks, retrospective and prospective // Confl. Math. — 2011. 

— V. 3. — No. 3. — P. 445 – 470. 

[Se] Sever M. Distribution solutions of nonlinear systems of conservation laws // Mem. 

Amer. Math. Soc. — 2007. — V. 190. — P. 1 – 163. 

[DS] Danilov V. and Shelkovich V. Delta-shock wave type solution of hyperbolic systems 

of conservation laws // Quart. Appl. Math. — 2005. — V. 63. — No. 3. — P. 401 – 

427. 

[PSh] Panov E. Yu., Shelkovich V. M. δ′-shock waves as a new type of solutions to systems 

of conservation laws // J. Differential Equations. — 2006. — V. 228. — No. 1. — P. 

49 – 86. 

[Sh1] Shelkovich V. M. δ- и δ′- shock wave types of singular solutions of systems of 

conservation laws and transport and concentration processes // Russian Math. 

Surveys. — 2008. — V. 63. — Issue 3. — P. 473 – 546. 

[MY1] Miroshnikov A., Young R. Weak* solutions I: A new perspective on solutions to 

systems of conservation laws // Methods and Appl. of Anal. — 2017. — V. 24. — 

No. 3. — P. 351 – 382. 

[MY2] A. Miroshnikov and R. Young, Weak* solutions II: The vacuum in Lagrangian gas 

dynamics // SIAM J. Math. Anal. — 2017. — V. 49. — Issue 3. — P. 1810 – 1843. 

[L2] Lax P. D. Hyperbolic partial differential equations. Courant Lecture Notes in Math., 

V. 14. American Math. Soc., 2006 

[Co] Colombeau J. F. Elementary introduction to new generalized functions. North-

Holland Math. Studies., V. 113. Amsterdam. North-Holland, 1985. 

[LF] Le Floch P.G. Hyperbolic systems of conservation laws. The theory of classical and 

nonclassical shock waves. Lectures in Mathematics. ETH Zurich. Birkhauser. Basel, 

2002. 

[Che] Chernyi G.G. Techeniya gaza s bol’shoi sverhzvukovoi skorost’ju. Fizmatgiz. M., 

1959 [in Russian]. 

[Se] Sedov L.I. Similarity and dimensional methods in mechanics. Academic Press, 1959. 

[St] Stan’ukovich K.P. Neustanovivshiesya dvizeniya sploshnoi sredy. Nauka. M., 1971 

[in Russian]. 

[El1] Elizarova T.G., Chetverushkin B.N. Kinetic algorithms for calculating gas dynamic 

flows // USSR Comput. Math. Math. Phys. — 1985. —Т. 25. — Issue 5. — С. 164 – 



 
 

44 
 

169. 

[El2] Elizarova T.G. Kvazigazodinamicheskie uravneniya i metody rascheta vyazkih 

techenij. Nauchnyi mir. M., 2007 [in Russian]. 

[BNP] Brenier Y., Natalini R., Puel M. On a relaxation approximation of the incompressible 

Navier–Stokes equations // Proc. Amer. Math. Soc. — 2004. — V. 132. — No. 4. — 

P. 1021 – 1028. 

[CK] Constantin P., Kliegl M. Note on global regularity for two-dimensional oldroyd-B 

fluids with diffusive stress // Arch. Ration. Mech. Anal. —  2012. — V. 206. — No. 

3. — P. 725 – 740. 

[BER] Barenblatt G.I., Entov V.M., Ryzik V.M. Dvizhenie zhidkostej i gazov v prirodnyh 

plastah. Nedra. M., 1984 [in Russian]. 

[Ka] Kalashnikov A.S. Some problems of the qualitative theory of non-linear degenerate 

second-order parabolic equations // Russian Math. Surveys. — 1987. — V. 42. — 

Issue 2. — P. 169 – 222. 

[Or] Orr (Jr.) F. M. Theory of gas injection processes. Tie-Line Publications. Holte, 

Denmark, 2007. 

[KM] Keyfitz B. L., Mora C. A. Prototypes for nonstrict hyperbolicity in conservation laws 

// Contemporary Math. — 2000. — V. 255. — P. 125 – 137. 

[Ro] Rosenau Ph. Extending hydrodynamics via the regularization of the Chapman–

Enskog expansion // Phys. Rev. A. — 1989. — V. 40. — No. 12. — P. 7193 – 7196. 

[BBP] Barenblatt G.I., Bertsch M., Dal Passo R., Ughi M. A degenerate parabolic 

regularization of a nonlinear forward-backward heat equation arising in the theory of 

heat and mass exchange in stable stratified turbulent shear flow // SIAM J. Math. 

Anal. — 1993. — V. 24. — Issue 6. — P. 1414 – 1439. 

[H] Hopf E. The partial differential equation t x xxu uu u  // Comm. Pure Appl. Math. 

— 1950. — V. 3. — Issue 3. — P. 201 – 230. 

[L3] Lax P. D. Weak solutions of nonlinear hyperbolic equations and their numerical 

computation // Comm. Pure Appl. Math. — 1954. — V. 7. — Issue 1. — P. 159 – 

193. 

[O] Oleinik O.A. Zadacha Koshi dlya nelineinyh differencial’nyh uravnenij pervogo 

poryadka s razryvnymi nachal’nymi usloviyami // Trudy Mosk. Matem. Ob-va. — 

1956. — V. 5. — P. 433 – 454 [in Russian]. 

[ERS] I Veinan, Rykov Yu. G., Sinai Yakov G. The Lax-Oleinik variational principle for 

some one-dimensional systems of quasilinear equations // Russian Math. Surveys. – 



 
 

45 
 

1995. – V. 50. – Issue 1. – P. 220 – 222. 

[Ta] Tadmor E. Variational formulation of entropy solutions for nonlinear conservation 

laws // Joint Math. Meeting, Baltimore, MD, January 2014, 

http://www.cscamm.umd.edu/tadmor/Lectures/2014%2001%20Variational_formulati

on_JMM_address%20printout.pdf. 

[R1] Rykov Yu. G. Extremal properties of the functionals connected with the systems of 

conservation laws // Mathematica Montisnigri. — 2019. — V. 46. — P. 21 – 30. 

[Ze1] Zel'dovich Ya. B. Gravitational instability: An approximate theory for large density 

perturbations // Astron. Astrophys. — 1970. — V. 5. — P. 84 – 89. 

[Ze2] Zel’dovich Ya.B., Myshkis A.D. Elementy matematicheskoj fiziki. Nauka. M., 

1973 [in Russian]. 

[Kra] Kraiko A.N. On discontinuity surfaces in a medium devoid of “proper” pressure // J. 

Appl. Math. Mech. — 1979. — V. 43. — Issue 3. — P. 539 – 549. 

[Bou] Bouchut F. On zero-pressure gas dynamics // B. Perthame (Ed.), Advances in Kinetic 

Theory and Computing, series on Advances in Mathematics and Applied Sciences, V. 

22, P. 171 – 190. World Scientific. Singapore, 1994. 

[Ov] Ovsyannikov L.V. Isobaric gas flows // Diff. Eq. — 1994. — V. 30. — Issue 10. — 

P. 1656 – 1662. 

[Chu] Chupakhin A.P. On barochronous motions of gas // Phys.-Doklady. — 1997. — V. 

42. — Issue 2. — P. 101 – 104. 

[Gr] Grenier E. Existence globale pour la systeme des gaz sans pression // C. R. Acad. 

Sci. Serie 1. Math. — 1995. — V. 321. — Issue 2. — P. 171 – 174. 

[HW] Huang F., Wang Z. Well posedness for pressureless flow // Comm. Math. Phys. —  

2001. — V. 222. — Issue 1. — P. 117 – 146. 

[LiW] Li J., Warnecke G. Generalized characteristics and the uniqueness of entropy 

solutions to zero-pressure gas dynamics // Adv. Differential Equations. — 2003. — 

V. 8. — No. 8. — P. 961 – 1004. 

[Hy1] Hynd R. Sticky particle dynamics on the real line // Notices Amer. Math. Soc. — 

2019. — V. 66. — Issue 2. — P. 162 – 168. 

[Hy2] Hynd R. A trajectory map for the pressureless Euler equations // Transactions Amer. 

Math. Soc. — 2020. — V. 373. — No. 10. — P. 6777 – 6815. 

[KlR] Klyushnev N. V., Rykov Yu. G. Non-conventional and conventional solutions for 

one-dimensional pressureless gas // Lobachevskii journal of mathematics. — 2021. — 

V. 42. — Issue 11. — P. 2615 – 2625. 

http://www.cscamm.umd.edu/tadmor/Lectures/2014%2001%20Variational_formulation_JMM_address%20printout.pdf
http://www.cscamm.umd.edu/tadmor/Lectures/2014%2001%20Variational_formulation_JMM_address%20printout.pdf


 
 

46 
 

[LZY] Li J., Zhang T., Yang S.L. The Two-Dimensional Riemann Problem in Gas 

Dynamics. Longman. London, 1998. 

[R2] Rykov Yu. G. The singularities of type of shock waves in pressureless medium, the 

solutions in the sense of measures and Kolombo’s sense. KIAM Preprints, № 30. M., 

1998. 

[R3] Rykov Yu.G. 2D pressureless gas dynamics and variational principle. KIAM 

Preprints, № 94. M., 2016. 

[AR1] Aptekarev A.I., Rykov Yu.G. Detailed description of the evolution mechanism for 

singularities in the system of pressureless gas dynamics // Doklady Mathematics. — 

2019. — V. 99. — Issue 1. — P. 79 – 82. 

[Pa] Pang Y. The Riemann problem for the two-dimensional zero-pressure Euler equations 

// J. Math. Anal. Appl. — 2019. — V. 472. — Issue 2. — P. 2034 – 2074. 

[BD] Bianchini S., Daneri S. On the sticky particle solutions to the multi-dimensional 

pressureless Euler equations // J. Differential Equations. — 2023. — V. 368. — P. 

173 – 202. 

[BrN] Bressan A., Nguyen T. Non-existence and non-uniqueness for multidimensional 

sticky particle systems // Kinetic and Related Models. — 2014. — V. 7. — No. 2. — 

P. 205 – 218. 

[KRy] Klyushnev N.V., Rykov Yu.G. On model two-dimensional pressureless gas flows: 

variational description and numerical algorithm based on adhesion dynamics // 

Comput. Math. Math. Phys. — 2023. — V. 63. — Issue 4. — P. 606 – 622. 

[BCH] Bressan A., Chen G., Huang S. Generic Singularities for 2D Pressureless Flow,  

https://arxiv.org/abs/2307.11602, 2023. 

[LY] Li J., Yang H. Delta-shock waves as limits of vanishing viscosity for 

multidimensional zero-pressure gas dynamics // Quart. Appl. Math. — 2001. — V. 

LIX. — P. 315 – 342. 

[ARS] Albeverio S., Rozanova O. S., Shelkovich V. M. Transport and concentration 

processes in the multidimensional zero-pressure gas dynamics model with energy 

conservation law, https://arxiv.org /abs/1101.5815, 2011. 

[KS1] Khanin K., Sobolevski A. Particle dynamics inside shocks in Hamilton-Jacobi 

equations // Phil. Trans. Roy. Soc. A. — 2010. — V. 368. — P. 1579 – 1593. 

[KS2] Khanin K., Sobolevski A. On Dynamics of Lagrangian Trajectories for Hamilton-

Jacobi Equations // Arch. Ration. Mech. Anal. — 2016. — V. 219. — Issue 2. — P. 

861 – 885. 



 
 

47 
 

[GSS] Gurbatov S.N., Saichev A.I., Shandarin S.F. Large-scale structure of the Universe. 

The Zeldovich approximation and the adhesion model // Physics-Uspekhi. — 2012. 

— V. 55. — № 3. — P. 223 – 251. 

[AR2] Aptekarev A.I., Rykov Yu.G. Emergence of a hierarchy of singularities in zer0-

pressure media. Two-dimwnsional case // Math. Notes. —  2022. — V. 112. — Issue 

4. — P. 495 – 504. 

[AR3] Aptekarev A. I., Rykov Yu. G. Variational principle for multidimensional 

conservation laws and pressureless media // Russian Math. Surveys. – 2019. – V. 74. 

– Issue 6. – P. 1117 – 1119. 

[BNP] Brenier Y., Natalini R., Puel M. On a relaxation approximation of the incompressible 

Navier–Stokes equations // Proc. Amer. Math. Soc. — 2004. — V. 132. — No. 4. — 

P. 1021 – 1028. 

[PaR] Paicu M., Raugel G. Une perturbation hyperbolique des équations de Navier– Stokes 

[A hyperbolic perturbation of the Navier–Stokes equations] // ESAIM: 

PROCEEDINGS. —  2007. — V. 21. — P. 65 – 87. 

[RS1] Racke R., Saal J. Hyperbolic Navier–Stokes equations I: local well-posedness // Evol. 

Equ. Control Theory. — 2012. — V. 1. — No. 1. — P. 195 – 215. 

[RS2] Racke R., Saal J. Hyperbolic Navier–Stokes equations II: global existence of small 

solutions // Evol. Equ. Control Theory. — 2012. — V. 1. — No. 1. — P. 217 – 234. 

[IR] Ilyin A.A., Rykov Yu.G. On the closeness of trajectories for model quasi-gasdynamic 

equations // Doklady Mathematics. — 2016. — V. 94. — Issue 2. — P. 543 – 546. 

[Vaz] Vázquez J.L. The Porous Medium Equation. Mathematical Theory. Oxford 

University Press. Oxford, 2007. 

[AKM] Antontsev S.N., Kazhihov A.V., Monakhov V.N. Kraevye zadachi mehaniki 

neodnorodnyh zhidkostej. Nauka. Novosibirsk, 1983 [in Russian]. 

[Amz] Amaziane B, Jurak M, Pankratov L, Piatnitski A. An existence result for 

nonisothermal immiscible incompressible 2-phase flow in heterogeneous porous 

media // Math. Meth. Appl. Sci. — 2017. — V. 40. — Issue 18. — P. 7510 – 7539. 

[DEH] Daim F.Z., Eymard R., Hilhorst D. Existence of a solution for two phase flow in 

porous media: The case that the porosity depends on the pressure // J. Math. Anal. 

Appl. — 2007. — V. 326. — P. 332 – 351. 

[AJK] Amaziane B., Jurak M., Keko A.Z. An existence result for a coupled system modeling 

a fully equivalent global pressure formulation for immiscible compressible two-phase 

flow in porous media // J. Diff. Eq. — 2011. — V. 250. — Issue 3. — P. 1685 – 



 
 

48 
 

1718. 

[ASh] Amirat Y. and Shelukhin V. Global weak solutions to equations of compressible 

miscible flows in porous media // SIAM J. Math. Anal. — 2007. — V. 38. — No. 6. 

— P. 1825 – 1846. 

[Orr] Orr, jr. F. M. Theory of Gas Injection Processes. Tie-Line Publ. Copenhagen, 2007. 

[Bed] Bedrikovetskij P.G., Kanevskaya R.D., Lur’e M.V. Avtomodel’nye resheniya zadach 

dvuhfaznoj fil’tracii s uchetom szhimaemosti odnoj iz faz // Mechanika zhidkosti I 

gaza. —1990. — No 1. — P. 71 – 80 [in Russian]. 

[AbP] Abadpour A., Panfilov M. Asymptotic decomposed model of two-phase 

compositional flow in porous media: analytical front tracking method for Riemann 

problem // Transp. Porous Med. — 2010. — V. 82. — Issue 3. — P. 547 – 565. 

[BdP] Bertch M. and Dal Passo R. Hyperbolic Phenomena in a Strongly Degenerate 

Parabolic Equation // Arch. Rat. Mech. Anal. — 1992. — V. 117. — Issue 4. — P. 

349 – 387. 

[dP] Dal Passo R. Uniqueness of the entropy solution of a strongly degenerate parabolic 

equation // Commun. Part. Diff. Eq. — 1993. — V. 18. — Issue 1-2. — P. 265 – 279. 

[LTa] Lavrentiev M. M., Tani A. Solvability to some strongly degenerate parabolic 

problems // J. Math. Anal. Appl. — 2019. — V. 475. — Issue 1. — P. 576 – 594. 

[KuR] Kurganov A. and Rosenau P. Effects of a saturating dissipation in Burgers-type 

equations // Comm. Pure Appl. Math. — 1997. — V. 50. — No. 8. — P. 753 – 771. 

[KLR] Kurganov A., Levy D. and Rosenau P. On Burgers-Type Equations with Non-

Monotonic Dissipative Fluxes // Comm. Pure Appl. Math. — 1998. — V. 51. — No. 

5. — P. 443 – 473. 

[GKR] Goodman J., Kurganov A. and Rosenau Ph. Breakdown in Burgers-type equations 

with saturating dissipation fluxes // Nonlinearity. — 1999. — V. 12. — No. 2. — P. 

247 – 268. 

[CKR] Chertock A., Kurganov A., Rosenau Ph. On degenerate saturated-diffusion equations 

with convection // Nonlinearity. — 2005. — V. 18. — No.2. — P. 609 – 630. 

 

      

 

 

 

 


