
Abstract

This work extends the spatial voting model to include variable voter turnout. I con-
sider two alternative assumptions. First, I look at voter indifference, when the probability
of a voter turning out depends on the difference in utility from the election of her most
preferred and second most preferred candidate. The second assumption is voter alien-
ation, when the probability of turning out depends on the utility from the election of her
most preferred candidate. For a deterministic model, I show that in an equilibrium, the
positions of the candidates do not necessarily converge to the median voter. I then study
how the positions of the candidates, their relative shares of winning, and turnout depend
on the distribution on voter preferences and on nonspatial candidate characteristics. In a
probabilistic voting model, indifference is shown to reduce the stability of the convergent
equilibrium.

1 Introduction

A spatial model of elections involves candidates who propose policy platforms and voters who
choose which candidate to support based on the proximity of the candidate’s platform to the
voter’s most preferred policy. The early and best-known result (Downs, 1957) was that if
there are two vote-maximizing candidates, the policy space is one-dimensional, and the voter
preferences are single-peaked, then both candidates should choose the same policy platform,
identical to the median most preferred policy of the voters. If the policy space was more than
one-dimensional, there was no stable outcome (Plott, 1967, McKelvey, 1976).

This contradicts the empirical evidence, as the observed policy positions of candidates and
parties are relatively stable, and they do not usually converge. This observed disparity was the
motivation behind a large body of theoretical work, analyzing such concepts as probabilistic
voting (Hinich, Ledyard, and Ordeshook, 1972a, Enelow and Hinich, 1982), office-motivated
candidates (Wittman, 1977), or valence (Groseclose, 2001).

One possible explanation for policy divergence is that the political platforms of candidates
or parties affect the decisions of individual voters whether or not to vote. Turnout consequences
are almost certainly taken into account when political platforms are announced. Losing the
support of the base voters is one the main reasons that keeps politicians from trying to “steal
the political clothes” of their opponents and converge to the median voter1.

Explaining positive turnout in the framework of the rational choice theory is a major the-
oretical challenge. There is a large and growing body of literature on the topic2, but there is
no consensus on what kind of behavior makes individuals participate in large elections.

The “paradox of the rational voter” is a consequence of the fact that each single vote is
unlikely to be decisive if the overall number of voters is large (Riker and Ordeshook, 1968,
Davis, Hinich, and Ordeshook, 1970, Chamberlain and Rotschild, 1982, Myerson, 2000). Thus,
if there are positive costs of participating in the elections (like travel expenses, time, gathering
information, etc.), then the voter is better off not voting.

This paradox was first remarked upon by Anthony Downs (1957) in his well-known work.
He did not address the issue directly, attributing widespread voting to extra-theoretic (and
irrational) factors.

The game-theoretic models with strategic voters did not produce conclusive results (Led-
yard, 1984, Palfrey and Rosenthal, 1983, 1985). The basic argument of such models can be

1Turnout is one of several mechanisms that can result in policy divergence. For a review of literature on this
topic see Zakharov (2006).

2Other literature reviews include, among others, Aldrich (1993), Lijphart (1997), and Feddersen (2004).
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formulated as follows. If no one is voting, then the outcome of the elections will depend on the
choice of any single voter who decides to vote. Other voters will become active as long as the
benefit of voting exceeds the cost. Thus it is possible to have an equilibrium where all voters
are rational and some level of voting activity is present. In such an equilibrium, every active
voter’s expected benefit of voting will be no less than the cost. Nevertheless, this argument is
insufficient, since the participation rate in large electorates will be very small.

Different models of voter behavior were suggested. Ferejohn and Fiorina (1974) looked at
voters as regret minimizers. A more recent strand of literature views abstention as a result of
rational behavior of voters who are not perfectly informed about their benefit from the election
of a particular candidate. It was argued that if voters are not perfectly informed about their
preferences, some voters might abstain even if the cost of voting is zero. It was argued that
the less informed voters may abstain in order to allow the more informed voters to decide the
outcome (Feddersen and Pesendorfer, 1996, Feddersen, 2004).

The evidential decision model of Grafstein (1991) treats every voter as thinking that her
action will influence the actions of all other voters. In this setting both the perceived probability
of being pivotal and turnout are higher. In a model by Kanazawa (1998), backward-looking
voters similarly associate their past voting behavior with the outcome of the previous elections.

Eldin, Gelman, and Kaplan (2005) considered voters who care not only for her own utility,
but also for the utility of every other individual in the society. Similar approach is followed by
Harsanyi (1980), Feddersen and Sandroni (2002), and Coate and Conlin (2005).

Other theoretical arguments involve a third type of agent — the group leader, who may
reward individual voters for their participation and support of a particular candidate (Morton,
1991, Uhlaner, 1989).

There are several hypotheses relevant to the spatial theory that can be tested empirically.
The best-studied prediction is that turnout depends on the closeness of the election, as in a
closer election the probability of casting the decisive vote is higher (Geys, 2006, contains a
review of relevant literature). Most tests support the hypothesis, although the evidence is
sometimes contradictory, such as in Kirchgässner and Zu Himmern (1997) study of German
General Elections for 1983–1994.

The so-called “mobilization hypothesis” provides an alternative explanation to the (possible)
positive relationship between turnout and election closeness. It can be argued that if the
elections are more closely contested, then the competing candidates are mobilized to procure
additional turnout (see, for example, a study by Cox and Munger, 1989, linking campaign
spending and election closeness).

2 Spatial voting models under indifference and alien-

ation hypotheses.

The results of spatial models with variable turnout and strategic voters are mixed and incon-
clusive, especially when one is interested in the effect that turnout has on the positions of the
candidates. One proposed solution is to simplify the model by assuming that the voters decide
whether to vote or to abstain according to some fised rule.

The two well-known conjectures linking the likelihood of turnout and the policy positions
of the candidates are known as indifference and alienation hypotheses. Under the indifference
hypothesis, a voter casts her ballot if and only if there is sufficient difference between payoffs
that the candidates offer to the voter. Hence, a voter who is indifferent between the candidates
will abstain. Under the alienation hypothesis, a voter will abstain if she is sufficiently dissatisfied
with the policies promised by either of the candidates.
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Until recently, there were relatively few works investigating indifference and alienation hy-
pothesis. The in the earliest work on the subject (Brody and Page, 1973) the authors analyzed
survey data collected after 1968 U.S. Presidential elections. It was found that the likelihood of
the respondent having voted was greater if her evaluation of her most preferred candidate was
more favorable. A similar relationship supporting the indifference hypothesis was also found.
Later works by Zipp (1985) and Plane and Gershtenson (2004) also found support for both
indifference and alienation hypotheses using survey-level data.

In a recent paper, Adams, Dow, and Merrill (2006) used a conditional logit model to estimate
the alienation and indifference components of abstention. The authors found that for the 1980-
1992 Presidential elections both factors contributed to depressed turnout, with no substantial
partisan differences in their effects.

A plausible way to introduce indifference and alienation in a spatial model is to assume that
the probability of voting is a function of the positions of the candidates and the policy preference
of the voter. Under the indifference hypothesis, one would assume that the probability of voting
declines with the policy distance between the candidates; under the alienation hypothesis,
the probability of voting would decline with the distance between the voter and the nearest
candidate.

In the original work by Downs (1957) it was noted that voter alienation may result in the
divergence of candidate platforms from the median voter If we assume that alienated voters
abstain, then a candidate who decides to move her platform closer to the median voter’ bliss
point faces a tradeoff: on one hand, she gains some votes closer to the center of the political
spectrum (the “moderate” voters), but on the other hand she may be bound to lose some votes
on the far left (those of the “extreme” voters).

More formal analysis, starting with Davis, Hinich, and Ordeshook (1970), Hinich, Ledyard,
and Ordeshook (1972a,b), and McKelvey (1975), suggested that voter indifference by itself
should not be sufficient to dislodge a median voter equilibrium. Voter alienation is more likely
to lead to the divergence of policy positions, as a candidate who decides to move her platform
closer to the median voter’ bliss point faces a tradeoff: on one hand, she gains some votes closer
to the center of the political spectrum (the “moderate” voters), but on the other hand she may
be bound to lose some votes on the far left (those of the “extreme” voters). If the distribution
is unimodal, and the voter density at the peak of the distribution is sufficiently high, then both
candidates converging to the mode is a local equilibrium. If the distribution is symmetric and
the median and the mean coincide with the mode, then the equilibrium is a global one.3

The effect of voter indifference and alienation on candidate behavior in a Downsian frame-
work was studied by Kirchgässner (2003). He assumed that the probability that a voter turning
out is a function of voter’s position, as well as of the positions of the candidates. It was assumed
to be a decreasing function of the “relative distance” — the ratio between the difference and
the sum of the distances from the voter’s position to the positions of either candidate (thus,
the relative distance is large if the voter is either in the middle between the candidates or far
away from either candidate, and is zero if the voter’s position coincides with the position of
one of the candidates).

If the relationship between relative distance and the probability of turnout is linear, the de-
gree to which candidate policy platforms diverge depends on whether the candidates maximize
absolute or relative voteshare, with no convergence in the first case, and convergence to the
median voter in the second. If the relationship is between relative distance and the probability
of turnout is threshold, then there is no convergence.

3If the distribution of voter preferences is asymmetric, a local equilibrium in which candidates select different
policy platforms may not be a global equilibrium (Comanor, 1976).
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The model presented in this work is similar in spirit to that of Kirchgässer (2003). However,
there are two important differences. First, the authors consider the voters with policy prefer-
ences distributed over a single-dimensional policy space according to a general-form continuous
distribution (it was taken to be uniform in the latter work).

The second feature of the model studied in this work is that we use the concept of candi-
date valence (notion of candidate valence is attributed to Stokes, 1963). This term refers to
candidate characteristics such as popularity, name recognition, experience4, and other factors
that contribute to a voter’s satisfaction with the candidate regardless of that candidate’s policy
position.

Different candidate valence has several implications for spatial models of voting. First, there
is no equilibrium in the standard voter5. Any position of the low valence candidate can be
matched by her rival, who will obtain all the votes as a result. Second, changes in the political
platforms of the candidates have asymmetric effects on the position of the indifferent voter if
the voters are risk-averse. A change in the policy position of the candidate with the greater
valence will have a greater impact on the indifferent voter’s position than an equal change in
the position of her rival.

3 Model assumptions.

There is a continuum of voters with policy ideal policies distributed on a convex compact set
X ⊂ Rn with a continuous density f(·).

There are K ≥ 2 candidates with policy positions y1, · · · , yK .
If candidate j is elected, a voter with the ideal policy v ∈ [0, 1] receives a utility of

uj(v) = ǫj − φ(‖yj − v‖). (3.1)

Here, yj is the policy position of Candidate j, ej is the valence of Candidate j, and φ(·) is a
twice-differentiable function with φ′(·) > 0, φ′(·) > 0, φ′(0) = 0, and φ(d) = φ(−d) for all d > 0.
This function reflects the voter’s disutility from the difference between the realized policy and
the voter’s preferred policy v.

The voters are assumed to be sincere. The choice of a voter with the ideal policy v depends
on the utilities uj(v) for j = 1, · · · , K and is described by the function t : RK → ∆K+1, where
tK+1 denotes the probability of abstention.

Under the regular sincere voting hypothesis, a voter supports a candidate who delivers the
highest utility, or fairly randomizes if there are several such voters.

Sincere voting (SV)

tj(u1(v), · · · , uK(v)) =

{

1
#{i|ui(v)=maxk uk(v)} , uj(v) = maxk uk(v)

0 , uj(v) 6= maxk uk(v).
(3.2)

For K = 2, the sincere voting hypothesis is consistent with the behavior of a rational voter
whose voting costs are zero.

Under the indifference hypothesis, a voter supports a candidate only if the utility that the
candidate delivers to the voter is significantly bigger than the next highest utility.

4The implications of endogenous valence were analyzed by Zakharov (2005).
5One can either analyze the mixed equilibrium, as Aragones and Palfrey (2002), assume that the candidates

are policy-motivated, as was done by Groseclose (2001), or look at the conditions for the existence of an
equilibrium in several dimensions, as in Ansolabehere and Snyder (2000).
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Indifference (IH).

tj(u1(v), · · · , uK(v)) =

{

1, uj(v) − c ≥ maxk 6=j uk(v)
0, uj(v) − c < maxk 6=j uk(v).

(3.3)

The indifference assumption is consistent with the behavior of a rational voter who has
voting costs of C, believes that her vote will be pivotal with the exogenous probability p = C

c
,

and believes that when her vote is pivotal, the alternative is the election of the next-best
candidate.

Alienation (AH).

tj(u1(v), · · · , uK(v)) =

{

1, uj(v) ≥ max{d,maxk 6=j uk(v)}
0, uj(v) < max{d,maxk 6=j uk(v)}.

(3.4)

The alienation hypothesis is consistent with the behavior of a rational voter who has voting
costs C, believes that her vote will be pivotal with the exogenous probability p = C

d
, and

believes that when her vote is pivotal, the alternative is the implementation of a status quo
policy which delivers zero utility to the voter.

A more conventional interpretation of the alienation hypothesis is that a voter is simply
reluctant to support a candidate who delivers a low level of utility, with the psychological
benefit of abstaining exceeding the possible value of being pivotal against the candidates who
are even less acceptable to the voter.

Next we must define the payoffs of the candidates. The voteshare of candidate j is equal to

Vj =
∫

tjdF (v). (3.5)

There are potentially two sources of candidate motivation. The classical Downsian view
is that candidates are motivated solely by winning the elections. The probability of winning
office is an increasing function of either the share of vote obtained by the candidate, or of the
difference between the candidate’s voteshare and the largest voteshare among the opposing
candidates (the candidate’s plurality). This distinction is irrelevant for a two-candidate model
with perfect turnout, but may become important if the voteshares of the candidates do not add
up to one6.

Office-motivated candidates (OMC). The utility of Candidate j is

Uj = (1 − λ)Vj + λ(Vj − max
k 6=j

Vk). (3.6)

The parameter 0 ≤ λ ≤ 1 is the weight of plurality versus voteshare in determining the
candidate’s chances of winning.

6In a work by Hinich, Ledyard, and Ordeshook (1972), the probability P1(y1, y2, v) of a voter with policy
preference v supporting candidate 1 was a continuously differentiable functions with the following properties:
P1 = 0 if φ(|v−y1|) > φ(|v−y2|), P1 is decreasing in φ(|v−y1|)−φ(|v−y2|) and in φ(|v−y1|) if φ(|v−y1|) < φ(|v−
y2|), and P1(y1, y2, v) = P2(y2, y1, v). A one-shot game between two plurality-maximizing candidates produced
policy convergence. Crucially, their result depended on the candidate objective functions being symmetric in
y1 and y2. This is not the case if the candidates have different valence.
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An alternative hypothesis is that a candidate is interested in having a certain policy objective
realized after the elections.7

Policy-motivated candidates (PMC). The utility of Candidate i is

Ui = −ψ(|y − ȳi|). (3.7)

The value ȳi is the ideal policy of Candidate i, while ψ(·) is the disutility function of the
candidate.8 The value y is the policy that the candidate expects will be realized after the
elections.

4 Indifference and alienation in the deterministic model.

In this section I look at a one-dimensional, two-candidate deterministic voting model. The
advantage of using a deterministic model is the the possibility of doing a comparative statics
analysis at the equilibrium. One can derive the conditions that describe the positions of the
candidates in an equilibrium, and see how the positions change with the changes in the model
parameters — cost of voting, valence of the candidates, and the distribution of voters.

The voter with policy preference ỹ is the indifferent voter if

ǫ− φ(y1 − ỹ) = −φ(y2 − ỹ), (4.8)

where ǫ = ǫ1 − ǫ2. Provided that y1 < y2, all voters with y < ỹ receive higher utility under
Candidate 1, while the rest of the voters receive higher utility under Candidate 2.

Under IH, the indifferent voter will abstain, as well as the voters in his neighborhood.
Denote by ȳ1, ȳ2 the leftmost and rightmost abstaining voter. We have

ǫ− φ(ȳ1 − y1) − c+ φ(y2 − ȳ1) = 0 (4.9)

and
ǫ− φ(ȳ2 − y1) + c+ φ(y2 − ȳ2) = 0. (4.10)

The following result is straightforward.

Proposition 4.1 Let n = 1, K = 2. Under IH and OMC,

1. No pure-strategy equilibria exists if ǫ1 6= ǫ2.

2. If ǫ1 = ǫ2, an equilibrium exists, with y2 − y1 = φ−1(c) and f(ȳ1) = f(ȳ2).

If one of the candidates shifts her policy position toward that of her opponent, her voteshare
may change for two reasons. First, the position of the indifferent voter will change; second, the
turnout will be affected. Since we assumed that voter disutility is concave in policy distance,
the turnout will decrease by a greater amount if the positions of the two candidates are closer.
At some point, the marginal voteshare effect of a change in a candidate’s position will be zero.

7This idea was first exploited in the works of Donald Wittman (1983) and Randall Calvert (1985).
8A work of Timothy Groseclose (2001) explores a two-candidate game with the candidates maximizing a

weighted average of (3) for λ = 0 and (3). His work did include candidates with different valence, but did not
consider the possibility of voters abstaining. For tractability’s sake we restrict our attention to one of the two
cases.
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If the two candidates have equal valence, then the changes in the positions of the candidates
will have symmetric effects on their voteshare, so an equilibrium is possible. If the valence is
asymmetric, so is the effect of a candidate’s position on her voteshare. Thus if y1 is candidate
1’s best response y2, then y2 is not a best response to y1.

Example. Let φ(x) = x2 and ǫ1 − ǫ2 = ǫ ≥ 0. Then from (6.73) and (6.74) we have

ȳ1 =
y1 + y2

2
+

ǫ− c

2(y2 − y1)
(4.11)

and

ȳ2 =
y1 + y2

2
+

ǫ+ c

2(y2 − y1)
. (4.12)

The utilities of the candidates (6.73), (6.74) will be given by

U1 = (1 + λ)
y1 + y2

2
+

1

2(y2 − y1)
((1 + λ)ǫ− (1 − λ)c) (4.13)

and

U2 = 1 − (1 + λ)
y1 + y2

2
− 1

2(y2 − y1)
((1 + λ)ǫ+ (1 − λ)c). (4.14)

The best responses of the two candidates are given by

y1(y2) =

{

y2 +
√

2 (1−λ)c−(1+λ)ǫ
1+λ

, (1 − λ)c > (1 + λ)ǫ

y2, (1 − λ)c < (1 + λ)ǫ.
(4.15)

and

y2(y1) = y1 +

√

2
(1 − λ)c+ (1 + λ)ǫ

1 + λ
. (4.16)

I now consider the effects of the alienation hypothesis. The alienation hypothesis claims
that a voter will abstains if the positions of both candidates are sufficiently different from her
own ideal position. Thus a candidate who decides to move her position closer to her opponent’s
faces a dilemma. On one hand, the candidate will capture additional votes from her opponent.
On the other hand, the candidate will lose votes on the far end of the political spectrum. The
effects of voter density and candidate valence on policy positions in such an equilibrium are
nontrivial and demand investigation.

Under an alienation hypothesis, a voter votes only if her distance from the nearest candidate
is sufficiently small. Denote by

di = φ−1

(

ǫi −
c′

p

)

(4.17)

the distance between the the position of candidate i and the position of the voter who prefers
candidate i to the other candidate and is on the verge of abstaining because of alienation.

We call the voters who are on the threshold of abstaining ambivalent voters.
There are potentially two cases (see Fig. 1). In the first case, with

y2 − y2 > d1 + d2, (4.18)

there are alienated voters with positions between y1 and y2. In the opposite case, with

y2 − y1 ≤ d1 + d, (4.19)

all voters with positions between y2 and y1 participate.
The equilibrium conditions and comparative statics are different in for case. For the first

case, the following result holds:
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y1 − d1 y1 y1 + d2 y2 − d2 y2 y2 + d2

(a) Case 1: y2 − y1 > d1 + d2

y1 − d1 y1 ỹ y2 y2 + d2

(b) Case 2: y2 − y1 ≤ d1 + d2

Figure 1: Voter choice depending on candidate location

Proposition 4.2 Let y1, y2 be a LNE under OMC and AH, such that y2 − y1 ≥ 2d. Then
we have:

f(y1 + d1) = f(y1 − d1), f ′(y1 + d1) − f ′(y1 − d1) < 0
f(y2 + d2) = f(y2 − d2), f ′(y2 + d2) − f ′(y2 − d2) < 0.

(4.20)

If the candidates are so far apart that there are alienated voters with intermediate positions,
then changes in the position of one candidate have no effect on the voteshare of the other
candidate.

The comparative statics in this equilibrium are straightforward:

Corollary 4.1 Let y1, y2 be a LNE under OMC and AH, such that y2 − y1 ≥ 2d. Then we
have

∂y1

∂d1

≥ 0 (4.21)

if and only if f ′(y1 − d1) + f ′(y1 + d1) ≥ 0.

The effect of both a reduction of the voting cost and the increase in candidate valence is
identical, as both the distance between the ambivalent voters 2d1 and the candidate’s share of
vote increases.

The second case is more interesting. The equilibrium is described as follows:

Proposition 4.3 Let y1, y2 be a LNE under OMC and AH, such that y2 − y1 > d1 + d2. Let
f ′(ỹ) 6= 0 and f ′(y1 − d1) = f ′(y2 + d2) = 0. Then, the following holds:

f(ỹ)
φ′(ỹ − y1)

φ′(ỹ − y1) + φ′(y2 − ỹ)
= (1 − λ)f(y1 − d1), (4.22)

f(ỹ)
φ′(y2 − ỹ)

φ′(ỹ − y1) + φ′(y2 − ỹ)
= (1 − λ)f(y2 + d2), (4.23)

ǫ− φ(ỹ − y1) = −φ(y2 − ỹ), (4.24)

and

f ′(ỹ)

f(ỹ)
<

1

φ′(ỹ − y1) + φ′(y2 − ỹ)
min

{

φ′(ỹ − y1)φ
′′(y2 − ỹ)

φ′(y2 − ỹ)
,
φ′(y2 − ỹ)φ′′(ỹ − y1)

φ′(ỹ − y1)

}

. (4.25)

In an equilibrium, each candidate loses and gains an equal amount of votes by moving her
position. Since the candidate with the valence advantage gains more votes than her opponent
if she moves her position toward the indifferent voter, it follows that the density of voters is
greater in the neighborhood of the voter who is ambivalent between voting for the advantaged
candidate and abstaining, than in the neighborhood of the other ambivalent voter.

The first corollary is an immediate consequence of the fact that the voters are risk-averse:

Corollary 4.2 Let ǫ1 > ǫ2. Then f(y1 − d1) > f(y2 + d2).
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Since a voter with a higher valence gains more voteshare if she moves toward the indifferent
voter, in an equilibrium she must also be bound to lose more voter due to alienation.

We want to know how the equilibrium positions of the candidates and the position of the
indifferent voter are affected by changes in the valence advantage of the first candidate, by
changes in voter densities in the neighborhood of the indifferent voter and the ambivalent
voters, and by cost of voting c′.

We have to make several assumptions. First, we assume that the third derivative of the
disutility function φ(·) is negative. This assumption has the following interpretation. Suppose
that a voter with the ideal policy v has to choose between two options: policy y > v and
a lottery where policies y − a and y + a are realized with probability 1

2
each. If the third

derivative of the disutility function is negative, then the difference in utility from these two
potions declines with the policy distance y − v.

The third derivative assumption is inherently consistent with the alienation hypothesis. As
the distance between the candidates and the voter increases, the voter is willing to pay less in
order to insure herself against a lottery on the candidate’s positions, and thus is less likely to
vote.

The second assumption that we make is that the voter density is constant in the neighbor-
hood of the ambivalent voters.

Corollary 4.3 Let y1 < y2 be equilibrium positions of the candidates, and let ỹ be the position
of the indifferent voter. Let f ′(y1 − d1) = f ′(y2 + d2) = 0 and f ′(ỹ) 6= 0. Then, the following
holds:

∂y1

∂d
= 0,

∂y2

∂d
= 0,

∂ỹ

∂d
= 0,

∂(y2 − y1)

∂f(ỹ)
= 0,

∂(y2 − y1)

∂λ
= 0,

∂ỹ

∂ǫ
= 0. (4.26)

Each of the following holds if and only if f ′(ỹ) > 0:

∂(y2 − y1)

∂f(y1 − d1)
< 09,

∂(y2 − y1)

∂f(y2 + d2)
< 0,

∂ỹ

∂f(y1 − d1)
> 0,

∂ỹ

∂f(y2 + d2)
< 0, (4.27)

∂y1

∂f(ỹ)
< 0,

∂y2

∂f(ỹ)
< 0,

∂ỹ

∂f(ỹ)
< 0,

∂y1

∂λ
< 0,

∂y2

∂λ
< 0,

∂ỹ

∂λ
< 0.

Suppose that, in addition, we have φ′′′(·) < 0. Then each of the following holds if and only if
ǫ1 > ǫ2:

∂y1

∂ǫ
< 0,

∂y2

∂ǫ
> 0,

∂(y2 − y1)

∂ǫ
> 0. (4.28)

Let φ′′′(·) < 0 and ǫ1 > ǫ2. Then the following is true if f ′(ỹ) > 0:

∂y1

∂f(y1 − d1)
< 0,

∂y2

∂f(y2 + d2)
> 0. (4.29)

Let φ′′′(·) < 0 and ǫ1 > ǫ2. Then the following is true if f ′(ỹ) < 0:

∂y1

∂f(y2 + d2)
< 0,

∂y2

∂f(y1 − d1)
> 0. (4.30)

We find that the cost of voting C and the perceived probability of being decisive p do not
affect the equilibrium positions of the candidates and of the indifferent voter. This is because

9We assume that f(y) uniformly increases in some neighborhood of y.
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of our assumption of uniform voter density in the neighborhood of the ambivalent voters. An
increase in d = C

p
will reduce the voteshare of both candidates, but the marginal effect of a

change in a candidate’s position on the voteshare of the candidate will remain unaffected. For
the same reason, an equal change in the valence of both candidates will not affect their policy
positions, although it will change their absolute and, likely, their relative voteshares.

An increase in the valence advantage of one of the candidates will lead to a divergence of
candidate positions, with the positions of both candidates moving away from the indifferent
voter. This, in turn, should lead to a higher turnout.

The effect of an increase in the voter density in the neighborhood of the indifferent voter
depends on an additional factor. If f ′(ỹ) > 0, that is, the indifferent voter lies to the left
of a local maximum in the density of voters, then an increase in f(ỹ) will lead to a leftward
shift in the positions of both candidates and of the indifferent voter. In the new equilibrium,
f(ỹ), ỹ − y1 and y2 − ỹ will remain the same, as we have assumed constant density around the
ambivalent voters. An increase of the role of plurality in a candidate’s objective function has
the same effect as an increase in the voter density near the indifferent voter. When the weight
of plurality increases, so does the value of capturing the indifferent voter, as the candidate not
only gains votes, but also decreases the voteshare of her opponent.

Note that the policy distance y2 − y1 is unaffected by both the changes in f(ỹ) and λ. Thus
increases of these parameters should result in an increase in turnout if and only if the left
candidate has higher valence.

Finally, I consider the case when the voter of each type votes with a certain probability
(perhaps due to different costs of voting). The probability of voting is taken to depend on the
policy difference between the candidates10.

Uniform effect of policy distance on turnout (UEH). A voter votes with probability
ψ(|y2 − y1|), where ψ(·) is a twice differentiable function.

The payoffs to the candidates are

U1 = ψ(y2 − y1)F (ỹ) (4.31)

and
U2 = ψ(y2 − y1)(1 − F (ỹ)). (4.32)

The following equilibrium result has been obtained:

Proposition 4.4 Under UEH, y1, y2 are a LNE if

f(ỹ)ψ(y2 − y1) − ψ′(y2 − y1) = 0, (4.33)

10This approach is similar to that of Kirchgässer (2003), where the probability of voting function is defined
directly and does not follow from any rational behavior. The function proposed there is consistent with both
alienation and indifference hypotheses:

P (v, y1, y2) =



















y2−y1
y1+y2−2v , v < y1
y1+y2−2v
y2−y1

, y1 ≤ v ≤ y1+y2
2

2v−y1−y2
y2−y1

, y1+y2
2 ≤ v ≤ y2

y2−y1
2v−y1+y2

, y2 ≤ v.

Here participation is a continuous function of v with limv→−∞ P = 0, limv→∞ P = 0, P (y1+y22 , y1, y2) = 0, and
P (y1, y1, y2) = P (y2, y1, y2) = 1. However, this function is not used here for two reasons. First, it is appropriate
only if both candidates have identical valence. Second, in order to calculate candidate voteshares one has to
integrate voting probabilities over all voters to the left and to the right of the indifferent voter y1+y2

2 . Hence,
voter preferences must be distributed uniformly in order for the results to be tractable.

10



F (ỹ) =
φ′(ỹ − y1)

φ′(ỹ − y1) + φ′(y2 − ỹ)
, (4.34)

and
ǫ− φ(y1 − ỹ) = −φ(y2 − ỹ).

First, her voteshare relative to her opponent will increase. Second, the overall voteshare
may decrease since turnout may increase with smaller policy distance. In an equilibrium, the
turnout increases with the policy distance. Otherwise, each candidate (or at least the candidate
with the valence advantage) will benefit from moving in the direction of her opponent. Thus
the conditions of the indifference hypothesis are satisfied in automatically.

One of our goals is to examine the comparative statics of the model. We want to know
how will the positions and the voteshares of the candidates shift if the valence of one of the
candidates or the voter density in the neighborhood of the indifferent voter changes. There is
the following result:

Corollary 4.4 Let y1, y2 be a local Nash equilibrium in the election game with payoffs (4.31),
(4.32), and let ψ′′(ỹ) > 0 and f ′(ỹ) > 0. Then, we have

∂ỹ

∂ǫ
> 0, (4.35)

∂(y2 − y1)

∂ǫ
< 0, (4.36)

and
∂(y2 − ỹ)

∂ǫ
< 0. (4.37)

An increase in the valence advantage the first candidate has several competing effects on
the position of the indifferent voter and on the policy distance. The candidate who has the
valence advantage can now obtain greater voteshare by moving her position toward that of her
opponent, and will be better off given the position of her opponent. At the same time, the
opponent will be better off moving away from the candidate. Thus the overall effect on the
positions of the candidates is not clear. However, the effects on the position of the indifferent
voter and on the policy distance are more certain.

5 Indifference and alienation in the probabilistic model.

In the second part of the work, I study the implications that the indifference and alienation
assumptions will have on the probabilistic voting model.

The principal assumption of a spatial probabilistic voting model is that the candidates are
not fully aware of the effect of their policies on the utility of a voter. Thus, from a candidate’s
perspective, a voter’s action is a random variable conditional on the ideal policy of the voter,
the platforms of all candidates, and other observable factors.

This uncertainty can arise for several reasons. Voters with identical attitudes toward policy
may have different perception of candidates’ personal qualities, such as her competence or

11



honesty11. Uncertainty can also be a result of idiosyncratic random events affecting an
individual’s voting decision.

The equilibrium in a probabilistic voting model is common, as the expected voteshares
of the candidates depend continuously on their policy positions. However, virtually all works
investigate the existence of an equilibrium where all candidates select identical policy platforms.

Hinich, Ledyard, and Ordeshook (1972) proved that an equilibrium in a two-candidate
positioning game exists as long as the probability that a voter supports a candidate is concave
in the voter’s utility from the election of that candidate, and convex in the utility the voter
receives if the opponent is elected. The equilibrium is a convergent one if the probability of a
voter supporting a candidate is a function of the difference in utilities that the voter derives
from the election of each candidate. The well-known result is that both candidates choose the
mean voter’s ideal policy if the voter utility is the negative squared Eucledian distance between
the policies of the candidates. Lin, Enelow, and Dorussen (1999) obtained the conditions for a
convergent equilibrium for a multi-candidate game for some other distance metrics.

A sufficient condition for the existence of an equilibrium is the concavity of probabilities
of voting in candidate locations. This assumption is a very strong one and has been criticized
in several works, most recently by Kirchgässer (2000). If the domain of candidate positions is
unrestricted, then the probability that a voter supports a candidate cannot be concave in the
candidate’s position. Thus the existence of the equilibrium cannot be guaranteed.

The analysis of a probabilistic voting model typically addresses this question in one of the
three ways.

First, one may try to answer whether the concavity conditions for a convergent equilibrium
are satisfied locally. The most recent work here is Schofield (2006), who derived the local
equilibrium conditions for several candidates with different valence. The second question (and
a more difficult one to answer) is whether the local convergent equilibrium is also a global one.
This issue was addressed in many works, starting with Hinich (1978) and Enelow and Hinich
(1982). The general result have been that the convergent equilibrium will unravel if voting
is close to being deterministic, or if the variance of the voter ideal policies is large. Finally,
one may try to find nonconvergent equilibria. This is the most difficult problem of all, and
it has not been solved analytically. Numeric solutions were proposed in several works, such
as Schofield, Sened, and Nixon (1998), Lin, Enelow, and Dorussen (1999), or Schofield (2006).
The nonconvergent equilibria were found to be local. Moreover, the degree of in local Nash
equilibria, simulated with the use of real survey data to estimate voter ideal points, was greater
than the degree of convergence of estimated candidate positions in the same elections.

In this work, I will address the first two questions and obtain local and global conditions for
a convergent equilibrium for voters with squared Eucledian disutility, under the assumption of
voter indifference.

5.1 The probabilistic voting model

I consider N voters of equal mass with the ideal policies vi ∈ Rn, and K candidates.
The utility of voter i if candidate j wins is given by

uij = ej − β‖vi − yj‖2 + ǫij , (5.38)

there vi is the ideal policy of voter i, yj and ej are the policy position and valence of candidate
j, and ǫij is zero-mean random variable, IID with the distribution F (·). We take β = 1 for

11A candidate is said to have a higher valence if she has, on average, a higher perceived ability (Stokes,
1963). Deterministic models incorporating valence include Groseclose (2001) that assumes the candidates to be
partially motivated by policy, and Aragones and Palfrey (2002) that looks at a mixed-strategy equilibrium.

12



a general functional form of F (·) and e1 ≤ · · · ≤ eK . Without the loss of generality we let
∑

i vi = 0.
This specification follows Hinich (1977) and the majority of other works. Under an alter-

native specification, such as in Coughlin and Nitzan (1981), the value ǫij has a multiplicative
effect on voter utility.

The indifference and alienation assumptions for a multi-candidate model probabilistic model
can be formulated as follows:

Indifference (IH). Voter i votes for candidate j if and only if uij − c ≥ maxk 6=j uik for some
c ≥ 0.

Alienation (AH). Voter i votes for candidate j if and only if uij ≥ maxk 6=j uik uij ≥ d for
some d.

If the random variable ǫij is continuous with unrestricted domain, then the probability that
uij = uik is equal to zero for k 6= j.

Denote by Pij the probability that voter i supports candidate j. Then the expected voteshare
of candidate j is

Vj =
N
∑

i=1

Pij . (5.39)

5.2 Local conditions for K = 2, n = 1, and the general form of F (·).
We first look at the probabilistic voting model under the indifference hypothesis. Without loss
of generality, assume that ei1 − ei2 are identically distributed with the distribution function
G(·).

The probabilities that voter i abstains or votes for one of the candidates are given by

Pi1 = 1 −G((vi − y1)
2 − (vi − y2)

2 + c), (5.40)

Pi2 = G((vi − y1)
2 − (vi − y2)

2 − c), (5.41)

and

P (Voter i abstains) = 1−Pi1−Pi2 = G((vi−y1)
2−(vi−y2)

2 +c)−G((vi−y1)
2−(vi−y2)

2−c).
(5.42)

The expected voteshares of the candidates are

V1 =
N
∑

i=1

(1 −G((vi − y1)
2 − (vi − y2)

2 + c)) (5.43)

V2 =
N
∑

i=1

G((vi − y1)
2 − (vi − y2)

2 − c). (5.44)

I assume that the candidates maximize a weighted sum of plurality and voteshare:

Ui = λVi + (1 − λ)(Vi − V−i) = Vi − λV−i. (5.45)

The conditions for a convergent local Nash equilibrium in a game with are similar to those
for the case of perfect turnout.
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Proposition 5.1 Let the utility of the candidates be given by (5.43), (5.44), and (5.45). Sup-
pose that G(·) has a differentiable density g(·). Denote by v̄ and σ2

v the mean and variance of
vi. Then, y1 = y2 = v̄ is a local Nash equilibrium if and only if

g(−c) + λg(c) − 2σ2
v(g

′(−c) + λg′(c)) > 0,

g(c) + λg(−c) + 2σ2
v(g

′(c) + λg′(−c)) > 0 (5.46)

The expected utility of the two candidates in the convergent equilibrium would be

U∗
1 = 1 −G(c) − λG(−c), (5.47)

U∗
2 = G(−c) − λ(1 −G(c)). (5.48)

The intuition of behind this result is as follows. Since the voter’s disutility from policy
distance is concave, the marginal effect a candidate’s position on the voter’s utility is increasing
in policy distance. But so is the effect of a change in a candidate’s position on the voter’s
probability of supporting that candidate — so the policy choice of each candidate is weighted
in favor of more distant voters. If the disutility is linear, then these weights are linear in policy
distance.

It is worth comparing the second-order conditions for this model and the case with perfect
turnout. For c = 0, the condition (5.46) becomes

σ2
v <

f(0)

2|f ′(0)| . (5.49)

Thus the electoral mean is a local equilibrium if a change in a candidate’s position has a
significant impact on her probability of winning (high f(0), low σ2

v). The concavity condition
is also satisfied if the density of ǫ is sufficiently close to constant. Conditions similar to (5.46)
were obtained by Hinich (1978), Enelow (1989), Lin, Enelow, and Dorussen (1999), Schofield
(2006), and by a number of other works.

If there is a possibility of voter abstention due to indifference, a slightly different condition
is required.

Corollary 5.1 Suppose that g(·) is symmetric around zero mean. Then the following is true.

1. If g′(c) ≥ 0, then y1 = y2 = v̄ is a local equilibrium.

2. If g′(c) < 0 and

λ >
g(c) − 2σ2

vg
′(c)

g(c) + 2σ2
vg

′(c)
, (5.50)

or

σ2
v <

g(c)(1 + λ)

−2g′(c)(1 − λ)
, (5.51)

then y1 = y2 = v̄ is a local equilibrium.

The equilibrium is more likely to exists if the density of ǫ is multimodal, with the voters with
the realizations of ǫ at the modes of the distribution not abstaining. Thus a local equilibrium
becomes less likely if c is large. Finally, the local convergent equilibrium exists if the variance
of voter ideal policies is small or the candidates are plurality maximizers.
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Example. Let ǫi be uniformly distributed on [−e + a, e + a]. The value a is the expected
valence advantage of Candidate 1 over Candidate 2. The voter ideal policies are distributed
with mean v̄ = 0 and variance σ2

v . We further assume that e − a > c. This is a sufficient
condition for every voter to have a positive probability of voting for every candidate if both
candidates select identical policy platforms. First we investigate whether y1 = y2 = v̄ = 0 is a
local Nash equilibrium.

The probability that voter i will support Candidate 1 is

Pi1 =











1, (y1 − vi)
2 − (y2 − vi)

2 < a− e− c,

1 − (y1−vi)2−(y2−vi)2+c−a+e

2e
, a− e− c ≤ (y1 − vi)

2 − (y2 − vi)
2 < a+ e− c,

0, (y1 − vi)
2 − (y2 − vi)

2 ≥ a + e− c.

(5.52)

The probability that voter i will support Candidate 2 is

Pi2 =











0, (y1 − vi)
2 − (y2 − vi)

2 < a− e+ c,
(y1−vi)2−(y2−vi)2−c−a+e

2e
, a− e+ c ≤ (y1 − vi)

2 − (y2 − vi)
2 < a+ e+ c,

1, (y1 − vi)
2 − (y2 − vi)

2 ≥ a+ e+ c.

(5.53)

Letting y2 = 0, we then calculate the marginal probabilities with respect to y1:

∂Pi1

∂y1

=

{

−1
e
(y1 − vi), y2

1 − 2viy1 ∈ [a− e− c, a+ e− c],
0, y2

1 − 2viy1 /∈ [a− e− c, a+ e+ c],
(5.54)

∂Pi2

∂y1

=

{

1
e
(y1 − vi), y2

1 − 2viy1 ∈ [a− e+ c, a− e+ c],
0, y2

1 − 2viy1 /∈ [a− e+ c, a+ e+ c],
(5.55)

It follows that if Candidate 1 maximizes a utility function (??), then y1 = v̄ = 0 is Candidate
1’s locally best response to y2 = 0. Similarly, it can be shown that y2 = 0 is a locally best
response to y1 = v̄ = 0. Thus, y1 = y2 = v̄ = 0 is a local Nash equilibrium.

The probabilities of voting for Candidates 1 and 2 in this equilibrium are

P ∗
i1 =

1

2
− c− a

2e
, P ∗

i2 =
1

2
− c+ a

2e
. (5.56)

The expected utilities for both candidates will be

U∗
1 = N(P ∗

i1 − λPi2) =
N

2

(

1 − λ− (1 + λ)c− (1 − λ)a

e

)

, (5.57)

and

U∗
2 = N(P ∗

i2 − λPi1) =
N

2

(

1 − λ− (1 + λ)c+ (1 − λ)a

e

)

(5.58)

5.3 Global conditions for K = 2, n = 1, and the general form of F (·).
The conditions for a global equilibrium are more difficult to obtain. Here I present an existence
result for the case when there are 2 groups of voters.

Proposition 5.2 Suppose that the following assumptions are satisfied:

1. There are 2 voters with weights w and 1 − w and ideal policies v1 = − w
1−w

, v2 = 1. Let

λ = 0 and w ≥ 1
2
.
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2. The value ǫi be distributed on [a−e, a+e], e−a > c, according to a nonzero differentiable
density f(·).

3. For i = 1, 2, we have

2g′((vi − y1)
2 + c)(vi − y1)

2 > −g((vi − y1)
2 + c) (5.59)

for all y1 such that |vi − y1| ≤
√
a+ e− c and

2g′((vi − y2)
2 − c)(vi − y2)

2 > −g((vi − y2)
2 − c) (5.60)

for all y2 such that |vi − y2| ≤
√
a+ e+ c.

Then, y1 = 0 is Candidate 1’s globally best response to y2 = 0 if one of the following three
conditions is satisfied:

1. c > a− e+ w2

(1−w)2
and 1 −G(c) ≥ w(1 −G(c− w2

(1−w)2
)),

2. c ∈ [a− e+ 1, a− e+ w2

(1−w)2
], G(c) ≤ min{1 − w, 1 − (1 − w)(1 −G(c− 1))},

3. c < a− e+ 1, G(c) ≤ 1 − w.

Similarly, y2 = 0 is a globally best response to y1 = 0 if one of the following three conditions is
satisfied:

1. c > w2

(1−w)2
− a− e and G(−c) ≥ wG( w2

(1−w)2
− c),

2. c ∈ [1 − a− e, w2

(1−w)2
− a− e] and G(−c) ≥ max{w, (1 − w)G(1 − c)},

3. c < 1 − e− a and G(−c) ≥ w.

We assume λ = 0 for simplicity’s sake. The condition e − a > c is sufficient for both
groups of voters to have a positive probability of voting for each candidate at the convergent
equilibrium. Equation (5.59) is sufficient to ensure that if the maximum of V1 for y2 = 0 is
attained at y1 6= 0, then it is reached at the maximum of either P11 or P12. Equation (5.60) is
the similar condition for the maximum of V2.

The first inequality corresponds to the case when maxy P12(y, 0) < 1 and maxy P11(y, 0) < 1,
second — when maxy P12(y, 0) < 1 and maxy P22(y, 0) = 1, third — when maxy P12(y, 0) =
maxy P11(y, 0) = 1.

The first special case to consider is the one with a symmetric distribution of ǫ1. In that
case, y1 = 0 is the best response for y2 = 0 if and only if y2 = 0 is the best response for y2 = 0.

Suppose that the third inequality is satisfied. In this case, Candidate 1 can deviate from
y1 = 0 to ensure that Voter 1 supports him with probability 1. Since the utility of Candidate 1
at y1 = y2 = 0 is decreasing in c, the equilibrium is more likely to be a global one if c is smaller.
Moreover, if e < 1, then for every w there exists a c small enough such that y1 = y2 = 0 is a
global equilibrium.

Next consider conditions 2 and 3. It follows that for every c there exists w large enough so
that the voter mean is not a global equilibrium.

Example. Suppose that ǫi are distributed as in the example above, and that there are
three voters with positions v1 = −2b, v2 = v3 = b for some b > 0. Let λ = 0. Denote
P̄12 = maxy>0 P12. Denote by ỹ1 the largest y1 > 0 such that P11(y1, 0) = 0. Since the
second-order condition is satisfied for y ≤ ỹ1, V1(0, 0) ≥ V1(y, 0) for all y > 0 if and only if
2P̄12 ≤ V1(0, 0). There are two cases.
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1. P̄12 < 1 or b2 < e− a + c. Then the condition 2P̄12 ≤ V1(0, 0) is b2 < e−c+a
2

.

2. P̄12 = 1 or b2 ≥ e− a+ c. Then the condition is V1(0, 0) ≥ 2 is e+ 3c− 3a < 0.

Similar conditions for the second candidate are

1. P̄21 < 1 or b2 < e+ a+ c. Then the condition 2P̄21 ≤ V2(0, 0) is b2 < e−c+5a
2

.

2. P̄12 = 1 or b2 ≥ e+ a+ c. Then the condition V2(0, 0) ≥ 2 is e+ 3c+ 3a ≤ 0 that is never
satisfied.

For a = 0, the sole condition for the global equilibrium is b2 < e−c
2

.

5.4 Alienation

Under the alienation hypothesis the analysis becomes much less tractable, since for every i, the
voting decision is affected by the realizations of ǫi1, ǫi2, and ǫi1−ǫi2. The probabilities of voting
and abstaining are given by

P (Voter i supports candidate 1) = (1 − F ((vi − y1)
2 + d))F ((vi − y2)

2 + d) +

+
∫ ∞

(vi−y1)2+d

∫ e1

(vi−y2)2+d
f(e1)f(e2)de2de1, (5.61)

P (Voter i supports candidate 2) = F ((vi − y1)
2 + d)(1 − F ((vi − y2)

2 + d)) +

+
∫ ∞

(vi−y1)2+d

∫ ∞

e1

f(e1)f(e2)de2de1, (5.62)

and
P (Voter i abstains) = F ((vi − y1)

2 + d)F ((vi − y2)
2 + d), (5.63)

where d < 0. The choice of the voter is illustrated on Figure 2.

Figure 2: Voter choice depending on the realization of ǫi1 and ǫi2.

The first-order conditions for voteshare maximization are

∂V1

∂y1
= −2

N
∑

i=1

(vi − y1)
(

f((vi − y1)
2 + d)F ((vi − y2)

2 + d) +

+
∫ ∞

0
f((vi − y1)

2 + d+ h)f((vi − y2)
2 + d+ h)dh

)

= 0 (5.64)

and

∂V2

∂y2

= −2
N
∑

i=1

(vi − y2)
(

f((vi − y2)
2 + d)F ((vi − y1)

2 + d) +

+
∫ ∞

0
f((vi − y1)

2 + d+ h)f((vi − y2)
2 + d+ h)dh

)

= 0. (5.65)
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If the density f(·) is constant, a variant of the electoral mean is a convergent equilibrium.
Let ǫi be uniformly distributed on [−a, a]. The conditions (5.64), (5.65) become

∂V1

∂y1
= −1

a

∑

i:(vi−y1)2+d<a

(vi − y1) (5.66)

and
∂V2

∂y2
= −1

a

∑

i:(vi−y2)2+d<a

(vi − y2). (5.67)

It follows that in a convergent equilibrium, we have12

y∗ =
∑

|vi−y∗|<
√

a−d

vi. (5.68)

At least one such y∗ exists, but there can be multiple equilibria. At each such equilibrium,
both candidates select the mean ideal policy of the voters who do not abstain with probability
one.

Example. There are 6 voters with positions v1 = 0,v2 = 1, v3 = 2, v4 = 8, v5 = 9, and
v6 = 10. If 5 ≤

√
a− d ≤ 6, there are 3 local equilibria satisfying (5.68): y∗ = 1, y∗ = 5, and

y∗ = 9.

5.5 Local conditions for K ≥ 2, n ≥ 1, and a specific form of F (·).
In order to obtain tractable second-order conditions for a model with more than two candidates
and a multi-dimensional policy space, one must assume some specific functional form for F (·).
Here I modify the model of Schofield (2006) to account for voter indifference. I take

F (x) = e−e−x

. (5.69)

Under this assumption, the probabilities of voting are given by

Pij =
exp(ei − c− β‖yj − vi‖2)
∑K

k=1 exp(ek − β‖yk − vi‖2)
. (5.70)

For y1 = · · · = yK = 0, we must have

Pij = Pj =
1

1 +
∑

k 6=j exp(ek − ej + c)
. (5.71)

The candidates are assumed to maximize their expected voteshare. Denote ∇ by the n × n
covariance matrix of vi. The main existence result is identical to that of Schofield (2006):

Proposition 5.3 In a game with candidate payoffs Vj, the joint origin y1 = · · · yK is a local
Nash equilibrium only if every eigenvalue of the characteristic matrix

Ci = 2β(1 − 2P1)∇− I (5.72)

is negative.

It follows that a convergent equilibrium is less likely given a higher c.
A more interesting issue is the effect that voter indifference and alienation may have on the

existence and location of nonconvergent equilibria. Empirical literature suggests that there is
an inconsistency between measured candidate positions in multi-party elections and simulated
Nash equilibria for the same elections. The observed candidate positions are significantly less
convergent than the predicted positions. It may be that voter indifference and alienation can
account for at least some part of this difference.

12The second-order condition is always satisfied.
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6 Conclusion

This work formalizes a two-candidate Downsian election game where voters may choose to
abstain. There are two hypotheses regarding voter’s behavior. First, a voter may abstain if
the difference between the candidates (from that voter’s point of view) is insignificant. This
assumption is known as the indifference hypothesis. Under the second, alienation hypothesis a
voter abstains if the utility from the election of either candidates is below a certain threshold
value. The candidates are assumed to maximize a weighted sum of absolute voteshare and
plurality.

The first observation is that the equilibrium fails to exist under the first assumption, as
the candidates continue to converge to the median voter. Under the second assumption, an
equilibrium is likely to exist. The key observation is that the equilibrium is unaffected by small
changes in the threshold utility.

Separately, the author considers the case when the probability of voting for each voter
is defined as a function of the policy distance between candidates. It was shown that in an
equilibrium, the probability of voting declines with policy distance.

The hypotheses are analyzed under both deterministic and probabilistic voting. If the voting
is probabilistic and the disutility of the voters is quadratic in policy distance, then the positions
of the candidates can converge to the mean of the distribution of voter preferences only under
the indifference assumption.

There are potentially several ways to expand this paper’s analysis. It would be interesting
to explore the implications of the candidates being motivated by policy instead of office.

19



Appendix

Proof of Proposition 4.1
We have

U1 = (1 − λ)F (ȳ1) + λ(F (ȳ1) − 1 + F (ȳ2) = F (ȳ1) − λ(1 − F (ȳ2)) (6.73)

and
U2 = (1 − λ)(1 − F (ȳ2)) + λ(1 − F (ȳ2) − F (ȳ1)) = 1 − F (ȳ2) − λF (ȳ1), (6.74)

where ȳi is the voter who supports Candidate i and is on the threshold of abstaining. Thus

∂U1

∂y1
= f(ȳ1)

φ′(ȳ1 − y1)

φ′(ȳ1 − y1) + φ′(y2 − ȳ1)
(6.75)

and
∂U2

∂y2
= f(ȳ2)

φ′(y2 − ȳ2)

φ′(y2 − ȳ2) + φ′(ȳ2 − ȳ1)
. (6.76)

If ǫ1 > ǫ2, five cases are possible:

1. y1 > ȳ1 > ȳ2 > y2:
∂U1

∂y1
> 0, ∂U2

∂y2
< 0.

2. y1 > ȳ1 > ȳ2 = y2:
∂U1

∂y1
> 0, ∂U2

∂y2
= 0.

3. y1 > ȳ1 > y2 > ȳ2:
∂U1

∂y1
> 0, ∂U2

∂y2
> 0.

4. y1 = ȳ1 > y2 > ȳ2:
∂U1

∂y1
= 0, ∂U2

∂y2
> 0.

5. ȳ1 > y1 > y2 > ȳ2:
∂U1

∂y1
< 0, ∂U2

∂y2
> 0.

None of these five cases can be an equilibrium.

1. y1 > ȳ1 > ȳ2 > y2:
∂U1

∂y1
> 0, ∂U2

∂y2
< 0.

2. y1 = ȳ1 > ȳ2 = y2:
∂U1

∂y1
= 0, ∂U2

∂y2
= 0.

3. ȳ1 > y1 > y2 > ȳ2:
∂U1

∂y1
< 0, ∂U2

∂y2
> 0.

In the second case we have y2 − y1 = φ−1(c). The second-order condition for Candidate 1 is

∂2U1

∂y2
1

= −φ
′′(0)φ′(y2 − y1)

(2φ′(y2 − y1))2
< 0.Likewise, thesecond− orderconditionissatisfiedforCandidate2. (6.77)

Proof of Proposition 4.2
The utilities of the candidates are

U1 = F (y1 + d1) − F (y1 − d1) + (1 − λ)(F (y2 + d2) − F (y2 − d2)) (6.78)

and
U2 = F (y2 + d2) − F (y2 − d2) + (1 − λ)(F (y1 + d1) − F (y1 − d1)). (6.79)

The proposition’s statement contains first- and second-order conditions for the maximization of (6.78) and

(6.79).

Proof of Proposition 4.3
The utilities of the candidates for this case are

U1 = F (ỹ) − (1 − λ)F (y1 − d1) − λF (y2 + d2) (6.80)

and
U2 = −F (ỹ) + (1 − λ)F (y2 + d2) + λF (y1 − d1) (6.81)

Differentiating (6.80) and (6.81) with respect to y1 and y2 we obtain the proposition’s statement.
We then check second-order conditions. Denote x1 = ỹ − y1, x2 = y2 − ỹ.

∂2U1

∂y1
=

∂

∂y2
1

(F (ỹ) − (1 − λ)F (y1 − d1)) = −f(ỹ)
φ

′′

1φ
′

2

(φ
′

1 + φ
′

1)
2

+ f
′

(ỹ)
φ

′

1

φ
′

1 + φ
′

2

− (1 − λ)f
′

(y1 − d1) (6.82)
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and

∂2U2

∂y2
=

∂

∂y2
2

((1 − λ)F (y2 + d2) − F (ỹ)) = −f(ỹ)
φ

′′

2φ
′

1

(φ
′

1 + φ
′

2)
2

+ f
′

(ỹ)
φ

′

2

φ
′

1 + φ
′

2

+ (1 − λ)f
′

(y2 + d2). (6.83)

If the second set of equilibrium conditions are satisfied, then the second derivatives are negative.

Proof of Corollary 4.3
Let

G =







f(ỹ) φ′(ỹ−y1)
φ′(ỹ−y1)+φ′(y2−ỹ)

− f(y1 − d)

f(ỹ) φ′(y2−ỹ)
φ′(ỹ−y1)+φ′(y2−ỹ)

− f(y2 + d)

ǫ− φ(ỹ − y1) + φ(y2 − ỹ)






. (6.84)

Denote f̃ = f(ỹ), f̃ ′ = f ′(ỹ), f1 = f(y1), f2 = f(y2), φ1 = φ(ỹ − y1), φ2 = φ(y2 − ỹ),

V = ( y1 y2 ỹ ) (6.85)

and
P = ( f1 f2 f̃ ǫ d λ ) . (6.86)

If the equilibrium conditions (4.22), (4.23), and (4.24) are satisfied, then we have

G(V, P ) =





0
0
0



 . (6.87)

According to the implicit function theorem, we must have

∂V

∂P
= −

(

∂G

∂V

)−1
∂G

∂P
. (6.88)

We have:

∂G

∂V
=











− f̃φ
′′

1
φ
′

2

(φ
′

1
+φ

′

2
)2

− f̃φ
′

1
φ
′′

2

(φ
′

1
+φ

′

2
)2

f̃
′

φ
′

1

φ
′

1
+φ

′

2

+
f̃(φ′

1
φ′′

2
+φ′

2
φ′′

1
)

(φ
′

1
+φ

′

2
)2

f̃φ
′′

1
φ
′

2

(φ
′

1
+φ

′

2
)2

f̃φ
′

1
φ
′′

2

(φ
′

1
+φ

′

2
)2

f̃
′

φ
′

2

φ
′

1
+φ

′

2

− f̃(φ′

1
φ′′

2
+φ′

2
φ′′

1
)

(φ
′

1
+φ

′

2
)2

φ
′

1 φ
′

2 −(φ
′

1 + φ
′

2)











, (6.89)

∂G

∂P
=









−(1 − λ) 0
φ
′

1

φ
′

1
+φ

′

2

0 0 f1

0 −(1 − λ)
φ
′

2

φ
′

1
+φ

′

2

0 0 f2

0 0 0 1 0 0









, (6.90)

(

∂G

∂V

)−1

=









f̃L−f̃ ′φ′2

2
(φ′

1
+φ′

2
)

f̃ f̃ ′L

f̃L−f̃ ′φ′

1
φ′

2
(φ′

1
+φ′

2
)

f̃ f̃ ′L
−φ′

1
φ′

2

L

f̃L+f̃ ′φ′

1
φ′

2
(φ′

1
+φ′

2
)

f̃ f̃ ′L

f̃L−f̃ ′φ′2

2
(φ′

1
+φ′

2
)

f̃ f̃ ′L

φ′

1
φ′

2

L

1
f̃ ′

1
f̃ ′

0









, (6.91)

where
L = φ′′1φ

′2
2 − φ′′2φ

′2
1 . (6.92)

According to the implicit function theorem, we must have

∂V

∂P
= −

(

∂G

∂V

)

∂G

∂P
(6.93)

at V that is the solution to the equilibrium conditions (4.22), (4.23), (4.24). This gives us

∂y1

∂f1
= −1 − λ

f̃ ′
+

(1 − λ)φ′22 (φ′1 + φ′2)

f̃L
, (6.94)

∂y2

∂f1
= −1 − λ

f̃ ′
− (1 − λ)φ′1φ

′
2(φ

′
1 + φ′2)

f̃L
, (6.95)

∂(y2 − y1)

∂f1
=

−(1 − λ)φ′2(φ
′
1 + φ′2)

2

f̃L
, (6.96)
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∂ỹ

∂f1
= −1 − λ

f̃ ′
, (6.97)

∂y1

∂f2
=

1 − λ

f̃ ′
+

(1 − λ)φ′1φ
′
2(φ

′
1 + φ′2)

f̃L
, (6.98)

∂y2

∂f2
= +

1 − λ

f̃ ′
− (1 − λ)φ′21 (φ′1 + φ′2)

f̃L
, (6.99)

∂(y2 − y1)

∂f2
= − (1 − λ)φ′1(φ

′
1 + φ′2)

2

f̃L
, (6.100)

∂ỹ

∂f2
=

1 − λ

f̃ ′
, (6.101)

∂y1

∂f̃
= − 1

f̃ ′
, (6.102)

∂y2

∂f̃
= − 1

f̃ ′
, (6.103)

∂(y2 − y1)

∂f̃
= 0, (6.104)

∂ỹ

∂f̃
= − 1

f̃ ′
, (6.105)

∂y1

∂ǫ
=
φ′1φ

′
2

L
, (6.106)

∂y2

∂ǫ
= −φ

′
1φ

′
2

L
, (6.107)

∂(y2 − y1)

∂ǫ
= −2

φ′1φ
′
2

L
, (6.108)

∂ỹ

∂ǫ
= 0, (6.109)

∂y1

∂d
= 0, (6.110)

∂y2

∂d
= 0, (6.111)

∂(y2 − y1)

∂d
= 0, (6.112)

∂ỹ

∂d
= 0, (6.113)

∂y1

∂λ
= − f̃1 + f̃2

f̃ ′
, (6.114)

∂y2

∂λ
= − f̃1 + f̃2

f̃ ′
, (6.115)

∂(y2 − y1)

∂λ
= 0, (6.116)

∂ỹ

∂λ
= − f̃1 + f̃2

f̃ ′
. (6.117)

Proof of Proposition 4.4
If the local Nash equilibrium we must have

∂U1

∂y1
= f(ỹ)

∂ỹ

∂y1
ψ(y2 − y1) − F (ỹ)ψ′(y2 − y1) = 0 (6.118)
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and
∂U2

∂y2
= −f(ỹ)

∂ỹ

∂y2
ψ(y2 − y1) + (1 − F (ỹ))ψ′(y2 − y1) = 0. (6.119)

Subtracting the two equations we obtain

f(ỹ)ψ(y2 − y1)

(

∂ỹ

∂y1
+

∂ỹ

∂y2

)

− ψ′(y2 − y1) = 0. (6.120)

We have
∂ỹ

∂y1
=

φ′(ỹ − y1)

φ′(ỹ − y1) + φ′(y2 − ỹ)
(6.121)

and
∂ỹ

∂y2
=

φ′(y2 − ỹ)

φ′(ỹ − y1) + φ′(y2 − ỹ)
, (6.122)

so ∂ỹ
∂y1

+ ∂ỹ
∂y2

= 1 and

f(ỹ)ψ(y2 − y1) − ψ′(y2 − y1) = 0. (6.123)

Equation (4.33) is obtained by substituting (6.123) into (6.118). The proof is complete.

Proof of Corollary 4.4
Denote x1 = ỹ − y1, x2 = y2 − ỹ. Denote

G =





f(ỹ)ψ(x1 + x2) − ψ′(x1 + x2)

F (ỹ) − φ′(x1)
φ′(x1)+φ′(x2)

ǫ+ φ(x2) − φ(x1)



 (6.124)

The equilibrium conditions can be expressed as G(ỹ, x1, x2, ǫ) = 0. Put

H = (ỹ, x1, x2). (6.125)

The following holds:

∂G

∂h
=





f ′(ỹ)ψ(x1 + x2) f(ỹ)ψ′(x1 + x2) − ψ′′(x1 + x2) f(ỹ)ψ′(x1 + x2) − ψ′′(x1 + x2)

f(ỹ) − φ′′(x1)φ
′(x2)

(φ′(x1)+φ′(x2))2
φ′′(x2)

(φ′(x1)+φ′(x2))2

0 −φ′(x1) φ′(x2)



 (6.126)

and

det

(

∂G

∂h

)

= −f(ỹ)(f(ỹ)ψ′(x1 + x2) − ψ′′(x1 + x2))(φ
′(x1) + φ′(x2))−

−f
′(ỹ)ψ(x1 + x2)(φ

′2(x2)φ
′′(x1) + φ′(x1)φ

′′(x2))

(φ′(x1) + φ′(x2))2
. (6.127)

Applying the implicit function theorem we obtain

∂H

∂ǫ
= −

(

∂G

∂h

)−1
∂G

∂ǫ
= (6.128)

= − 1

det(∂G
∂h

)









(f(ỹ)ψ′(x1+x2)−ψ
′′(x1+x2))(φ

′(x2)φ
′′(x1)+φ

′′(x2))
(φ′(x1)+φ′(x2))2

f(ỹ)(f(ỹ)ψ′(x1 + x2) − ψ′′(x1 + x2)) − f ′(ỹ)ψ(x1+x2)φ
′′(x2)

(φ′(x1)+φ′(x2))2

−f(ỹ)(f(ỹ)ψ′(x1 + x2) − ψ′′(x1 + x2)) − f ′(ỹ)ψ(x1+x2)φ
′(x2)φ

′′(x1)
(φ′(x1)+φ′(x2))2









.

If ψ′′(ỹ) < 0 and f ′(ỹ) > 0, then we obtain the corollary’s statement.

Proof of Proposition 5.1
The first-order conditions for the maximization of the objective function are

∂U1

∂y1
= −2

N
∑

i=1

(y1 − vi)
[

g((vi − y1)
2 − (vi − y2)

2 + c) + λg((vi − y1)
2 − (vi − y2)

2 − c)
]

(6.129)

and

∂U2

∂y2
= −2

N
∑

i=1

(y2 − vi)
[

g((vi − y1)
2 − (vi − y2)

2 − c) + λg((vi − y1)
2 − (vi − y2)

2 + c)
]

. (6.130)
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They are satisfied at y1 = y2 = v̄. The second-order conditions at this point are

∂2U1

∂y2
1

= −2

N
∑

i=1

[

g(c) + λg(−c) + 2(y1 − vi)
2(g′(c) + λg′(−c))

]

< 0 (6.131)

and

∂2U2

∂y2
2

= −2

N
∑

i=1

[

g(−c) + λg(c) − 2(y2 − vi)
2(g′(−c) + λg′(c))

]

< 0. (6.132)

Condition (5.46) follows immediately.

Proof of Proposition ??
The proof is nearly identical to the proof of the main theorem in Schofield (2006). Putting

hkj = λk + c− λj + β‖vi − yj‖ − β‖vi − yk‖ (6.133)

and
u∗ij = λj − β‖vi − yj‖ (6.134)

we obtain

Pij =
exp(u∗ij − c)

∑K
k 6=j exp(u∗ik) + exp(u∗ij − c)

=
1

1 +
∑

k 6=j exp(hkj)
(6.135)

We have
∂Pij

yjl
= (6.136)

where yjl is the lth component of yl.
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[27] Kirchgässner, Gebhard. 2000. “Probabilistic Voting and Equilibrium: An Impossibility
Result.” Public Choice 103: 35–48
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