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ABSTRACT.  We consider a committee, board or jury that faces a binary
collective decision under uncertainty. Each member holds some relevant pri-
vate information, and all members agree about what decision should be taken
in each state of nature, had this been known. However, the state is unknown
and members may attach different values to the two types of mistake that may
occur. It is well-known that standard voting rules have a plethora of uninfor-
mative equilibria, and that informative voting may even be incompatible with
equilibrium. We generalize existing results with respect to preference hetero-
genity and analyze a randomized majority rule that has a unique equilibrium.
We show that this equilibrium is strict, all votes are informative, and that the
equilibrium implements the collectively optimal decision with a probability that
approaches 1 as the committee size tends to infinity.

Keywords: Voting, Condorcet, committee, heterogeneity, judgement ag-
gregation.
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1. INTRODUCTION
Many important decisions are not taken by individuals but by groups, committees,
boards or electorates. We here analyze a class of such situations. The decision is
binary and there are only two states of nature. All group members agree which
decision is optimal in each state. However, the true state of nature is unknown.
Group members have a common prior probability over these states, a prior that may
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be based on ex ante public information, such as evidence or expert reports presented
to the whole group, committee, board or electorate. In addition, each committee
member also has some private information, a private “signal” about the true state
of nature. Group members may also differ in their valuations of the costs associates
with the two types of mistake that may occur.! What decision rule should the group
use in order to aggregate their private information and valuations? How should each
member act under such a group decision rule? These are the questions that we here
address, within a simple and abstract game-theoretic framework.

The topic is not new. Condorcet’s (1785) so-called jury theorem essentially estab-
lishes that if (a) each member’s information is positively correlated with the true state
of nature, (b) distinct members’ information is conditionally independent (given the
state of nature), and (c) all jury members base their votes on their own private infor-
mation and the public information, with no regard to other jury members’ potential
information and votes, then aggregation by way of the majority rule is asymptotically
efficient in the sense that the probability for a mistaken collective decision tends to
zero as the number of voters tends to infinity. However, as is by now well-known,
Austen-Smith and Banks (1996) pointed out a weakness of this classical result. While
Condorcet’s hypothesis (c) may seem innocuous, a careful game-theoretic analysis
shows that such voting behavior may not be consistent with Nash equilibrium play,
even when all members have (ex ante) identical preferences (valuations of the two
types of mistake). More exactly, if the number of voters is large, informative vot-
ing is generically not a Nash equilibrium of a Bayesian game that formally represents
Condorcet’s setting. The game-theoretic reasoning runs as follows: an individual vote
affects the collective decision only if the vote is pivotal.? Hence, a rational voter under
majority rule should reason as if the other votes were in a tie. But if all the others
vote informatively, the fact that they are tied is very informative, perhaps “drench-
ing” the individual voter’s own private information. Hence, it may be rational not to
vote according to one’s own information. If the number of voters is large enough, this
argument against informative voting becomes overwhelming. Consequently, informa-
tive voting is then not a Nash equilibrium and Condorcet’s judgement-aggregation
argument fails. However, the conclusion of the Condorcet jury theorem, that the out-

!They may actually also differ in their prior beliefs, see Remark 1 in Section 2.

2The notion of a pivotal event for a player is not restricted to voting games; Al-Najjar and
Smorodinsky (2000) defined, in a general setting, the influence of a player in a mechanism as the
maximum difference this player’s action can make to the expected value of a collective result. They
show that, in a precise sense, the mechanisms that maximise the number of influential players are
closely related to majority rule.
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come is asymptotically efficient, has been shown to be compatible with equilibrium by
McLennan (1998) and Wit (1998), who provide conditions under which there exists a
sequence of mixed-strategy Nash equilibria (hence, containing insincere voting) with
this efficiency property for electorates with (ex ante) identical preferences.

Another seminal paper on incentives for informative voting is Feddersen and Pe-
sendorfer (1996), in which the so-called swing voter’s curse is analyzed. It refers to
the following phenomenon. If voters, among whom there are partisans for each al-
ternative as well as non-partisans, are allowed to abstain from voting, then poorly
informed non-partisans may use the following mixed strategy. They probabilistically
balance their votes in such a way that they collectively compensate for the presence
of partisan voters (who support a given candidate in any case) and leave room for the
better informed non-partisan voters. This mixed strategy of poorly informed non-
partisan voters involves abstention with positive probability. Subsequent theoretical
research on committee behavior has mainly concern the relative merits of different
voting rules, see Feddersen and Pesendorfer (1998), and the role of straw-votes or
debates before voting, see Coughlan (2000) and Austen-Smith and Feddersen (2005).
When voters are identical, the picture is very different with and without debate or
straw vote. If voters with identical preferences share their private information in the
debate or straw vote, which they are in certain equilibria, then votes are unanimous
in the decisive vote, and all majoritarian voting rules (including unanimity) are equiv-
alent, see Gerardi and Yariv (2007). However, in general there is a plethora of other,
uninformative equilibria. Moreover, truthful reporting in the straw vote is incompat-
ible with equilibrium if committee members differ sufficiently in terms of preferences
(their valuations of the costs associates with the two types of mistake).

We here generalize Austen-Smith’s and Bank’s (1996) model to allow for pref-
erence heterogeneity within the group or committee in question. More exactly, we
consider a group, committee or board consisting of n members who have to take a
binary collective decision: either = 0 or = 1. There are two possible states of
nature, w = 0 and w = 1, and all committee members agree that decision r = w is
the right one. However, the state of nature is unknown when the decision is to be
made. All committee members have some relevant private information, that takes
the form of conditionally independent binary signals s;, where ¢, is the conditional
probability that a signal is correct (s; = w), for w = 0,1 and all members i. The
signal precision is thus the same for all committee members. However, they may
disagree about the cost or disutility associated with the two types of mistake that
may be made. We assume that the signal is sufficiently informative for each member
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to optimally follow his or her private signal if making the decision single-handedly
(the signal-informativeness condition).

In this setting, we characterize (utilitarian) optimality of deterministic collective
decision rules and show that there, for any number n of committee members, exits
some k-majority rule that is optimal, where a k-majority rule is one that takes the
collective decision z = 1 if and only if at least k of the private signals favor this
alternative. We also characterize those k-majority rules under which sincere voting
is a Nash equilibrium, and we show that sincere voting is a Nash equilibrium under
a k-majority rule if and only if the rule is optimal and the committee members
have sufficiently similar (but not necessarily identical) preferences. The similarity
condition is identical to that in Coughlan (2000), and generically differs from the
signal-informativeness condition. This result generalizes Theorem 1 in Austen-Smith
and Banks (1996) from the case when both signals are equally precise and all voters
have identical and symmetric preferences. For committees that violate the similarity
conditions — to be called heterogeneous committees — sincere voting is not a Nash
equilibrium under any k-majority rule. Moreover, in general there is also a plethora
of non-informative equilibria even when sincere voting is a Nash equilibrium. We here
define a class of randomized majority rules under which sincere voting is the unique
Nash equilibrium, irrespective of whether the committee is heterogeneous or not, and
we show that, for suitably chosen sequences of such rules, the asymptotic efficiency
claim in Condorcet’s theorem holds for the associated sequence of equilibria. The
unique equilibrium is strict, and hence meets all refinements. Our efficiency result
complements McLennan’s (1998) result that, for committees with ex ante identical
members, there exists a sequence of strategically stable sets of equilibria that is
asymptotically stable.

The rest of the paper is organized as follows. In section 2 we set up the model.
Section 3 analyzes optimality of deterministic collective decision rules, and Section
4 is analyzes equilibrium voting under majoritarian voting rules. Section 5 makes a
comparison between the signal-informativeness and preference similarity assumptions.
Section 6 develops the mentioned randomized majority rule. In section 7 we analyze
the robustness of the above results with respect to the rationality of the committee
members. Section 8 concludes. Mathematical proofs are provided in an appendix at
the end of the paper.
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2. THE MODEL

2.1. Notation and basic setup. There are n committee members, where n is a
positive integer, n € N. The committee has to make a binary decision, x € {0,1} =
X. All committee members agree what is the right decision in each state of nature.
However, they do not know the state of nature w € {0,1} = Q. Each committee
member i receives a private “signal” s; € {0, 1}, a random variable that is positively
correlated with the true state of nature w:

PI’[SZ':O|O.):0]:Q0
Pris;=1|lw=1]=¢

for qo,q1 > 1/2. Hence, all committee members are “equally competent” in the sense
of having the same conditional probability of receiving the “correct” signal. Signals
received by different committee members are, however, conditionally independent,
given the state of nature. The committee members share a prior belief about the
actual state of nature (prior to the receipt of their private signals). This common
prior may be their shared posterior after they have received a common signal (and
held a common prior before that). Such a common signal may in practice take the
form of document shared, hearings, a public debate etc. Let y = Prfw = 1] be the
common prior, and assume that 0 < p < 1.

All committee members agree that the right decision in state w is * = w. However,
they may differ in the von Neumann-Morgenstern utilities that they assign to the four
possible decision-state pairs. For each committee member ¢, these utilities are given
by the following table:

w=0]|w=1
r=0] ug Uiy (1)
r=1 Ul ujy

where u};, = u}; — o; and u}, = uh, — 3, for a;, 3; > 0. For each committee member
1, these two parameters are the disutilities or “costs” that the committee member
attaches to the two types of mistake, namely, of taking the wrong decision in each
of the two states. A committee member’s von Neumann-Morgenstern utilities may
represent his or her personal values or those of some constituency that the member
represents. We will sometimes refer to the first mistake (decision x = 0 in state
w = 1) as a mistake of type I (accepting the false hypothesis that the state is 0)
and the second mistake (decision x = 1 in state w = 0) as a mistake of type II
(rejecting the true hypothesis that the state is 0). For many purposes, the relevant
data about each committee member’s values, as given in (1), can be summarized in
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a single number, namely

_ Ha;
T (1—p) B, @

where v, > 0 follows from our assumptions. Note that v, = 1 if and only if committee
member ¢ attaches the same ex ante expected “cost” to both types of mistake. Before
receiving his or her signal, the probability that a committee member attaches to state
1 is p and the “cost” of a mistake in that state (a mistake of type I) is «;. Hence,
the ex-ante expected cost of a mistake of type I, according to committee member i’s
values, is po;. Likewise, the probability attached to state 0 is 1 — 1 and the “cost” of
a mistake then, that is, of type 11, is, in ¢’s view, 3,. Hence, the ez-ante expected cost
of a mistake of type II, according to committee member i, is (1 — p) §,. The summary
parameter vy, is the ratio between these two ex-ante expected costs, as evaluated by
committee member .

In the base-line setting, each committee member i casts a vote v; € {0,1}, a
vote which may, but need not, be guided by ¢’s private signal, and the collective
decision x is determined by way of some pre-specified rule f that maps each vote
profile v = (v, ...,v,) to a probability f (v) € [0,1] that the decision will be z = 1.
The probability for decision z =0is 1 — f (v).

Formally, a voting rule, for a committee of arbitrary given size n € N; is a function
f:{0,1}" — [0,1]. In particular, majority rule is defined by f(v) = 1if > " v; >
n/2, f(v) =0if >  v; <n/2and f(v) = 1/2 otherwise. For any k € NN[0,n + 1],
let f*:{0,1}" — {0,1} be the k-majority rule, defined by f* (v) = 1 if and only if
S v > k. In particular, f© is the rule to take decision 1 irrespective of the votes,
f! is the unanimity rule to take decision 0 only if all votes are for that alternative,
f™ is the opposite unanimity rule, to take decision 1 only if all votes are for that
alternative, and f"*1, finally, is the rule to take decision 0 irrespective of the votes.

A woting strategy for committee member ¢ in the base-line setting is a function
o; : {0,1} — [0,1] that maps i’s signal s; to a probability o; (s;) for a vote v; on
alternative 1: Pr[v; = 1| s;] = 0, (s;).> In others words, a voting strategy prescribes
with what probability the committee member will vote for decision alternative 1. We
assume that abstention is not an alternative, so the probability that ¢ will vote on
alternative 0 is 1 — o (s;).* By a pure voting strategy we mean a strategy o; such
that o; (s;) € {0,1} for both signals s;. In this case, v; = 0;(s;). In the voting
literature, the pure strategy to always vote according to one’s signal, o; (s;) = s;, is

3We will later analyze behavioral voting strategies under two-stage voting rules.
4In some committees abstention is indeed not permitted while in others it is. We exclude the
latter case for analysitical convenience and brevity.
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usually called informative voting, while voting for the alternative that maximizes the
voter’s expected utility, conditional on his or her own signal, and only on that piece
of information, is called sincere voting.

Remark 1. The subsequent analysis is also valid for the following more general
setting (see Dixit and Weibull (2007)). Let each committee member i initially hold
some prior v; = Pr(w = 1) concerning the state of nature, and let all committee
members receive a common signal sq (say, a public hearing or shared documentation).
For each committee member, let i; be the postierior obtained by Bayes’ law from the
prior v;:

v; Pr(sg | w=1)
viPr(sp|w=1)4+(1—v;)Pr(sp|w=1)

py =Pr(w=1]s)=

and assume that y; € (0,1). For each committee member i, define v, as in (2), with p
replaced by p,. Let the private signals s; be defined as in the main text. The results
in this paper apply if one sets = 1/2 and everywhere replaces «; by p,a; and 3; by
(1 — ;) B;.

2.2. Condorcet’s jury theorem. Condorcet’s Jury Theorem asserts that if all
committee members vote informatively, then the probability of a mistaken collective
decision under majority rule tends to zero as the committee size tends to infinity. The
result hinges on the assumption that the signals are positively correlated with the
true state and that they are conditionally independent. The result does not explicitly
depend on committee members’ values, since their voting behavior is assumed:

Theorem 1 [Condorcet]. Suppose that all committee members vote informatively.
Let X, (w) € {0,1} be the collective decision under majority rule when there are n
committee members and the true state is w. Then
nh_)rglo Pr (X, (w) #w] =0

2.3. Signal informativeness. A hypothesis in Condorcet’s theorem is thus that
all committee members vote informatively. Clearly, this is not always a reasonable
assumption, not even for n = 1, the case of a single decision-maker. To clarify this
aspect, suppose, that one committee member has been selected to make the decision
single-handedly, based only on his or her private signal. If the signal is noisy and her
prior and valuation of mistake costs favor one alternative over the other, the right
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decision may well be to disregard the signal. An application of Bayes’ rule gives the
following posterior probability for state 0 after signal 0 has been received:

Pr[w:0|si:O]:(1_’M>Pr[sizolw:0]: (1—p)q

Pr[s; = 0] (I=p)qo+p(l—aq)

and likewise for the signal s; = 1. Consequently, the strategy to vote informatively —
when the decision is in i’s hands — is optimal if and only if (1 — p) go3; > (1 — ¢1)

and pqroy; > (1 —p) (1 —qo) B, or, equivalently, if and only if (1 —qo) /¢1 < 7; <
qo/ (1 — q1). We assume henceforth that both inequalities hold strictly for all com-
mittee members:
1 —qo 4o
<, <
0 l—q

a condition we will refer to as the signal-informativeness condition. It follows from our

Vi, (3)

assumption o, q; > 1/2 that the lower (upper) bound in (3) is below (above) unity.
Moreover, these bounds tend to zero and plus infinity as go and ¢, respectively,
tend to one. The signal-informativeness condition thus holds when some or all three
parameters v,, go and ¢; are close to unity. Figure 1 below shows those combinations
of signal precisions o and ¢; that satisfy condition (3). If the minimal and maximal
7v;-values in the committee are 1/2 and 2, respectively, then this is the area north-east
of the two solid straight lines. The dashed straight lines are drawn for the case when
the minimal v;-value in the committee is 1/4 and the maximal value is 4.

1.0

g1 '] \
09T \
T\ ~ \
08T I
g \ S~~~
07T \
T \
06+ \
T \

Figure 1: The signal-informativeness condition for v, € (1/2,1).
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3. OPTIMAL COLLECTIVE DECISION RULES

What decision rules would be optimal for a committee if all members’ private in-
formation could be used? This defines an upper bound on what can be achieved
by way of voting rules as defined above. We here analyze this question in terms of
deterministic collective decision rules, defined as functions d : {0,1}" — X that map
signal profiles s = (s1, ..., 8,) to collective decisions = = d (s) € X = {0,1}. For this
consideration to be meaningful, we need to specify a normative criterion by which to
rank collective decisions. Two candidates criteria seem relevant: (a) the probability
that the decision will be correct (z = w), and (b) the sum of the committee mem-
bers’ expected utilities from the decision. While the first criterion is independent of
committee members’ preferences and hence does not discriminate between mistakes
of type I and II, the second depends, in a well-defined way, on committee members’
preferences.’

We here focus on this latter, utilitarian criterion. We thus call a deterministic
collective decision rule d optimal if there exists no other such rule that yields higher

expected welfare. Formally, let D be the set of deterministic collective decision rules
and define W : D — R by

W(d) =) Prl(z,w)|z=d(s)-u,

T,w,0

Let D* be the set of optimal deterministic collective decision rules for a given com-

mittee of size n:6

D*={d"e€D:W(d*)>W(d) VdeD}.

We note that all k-majority rules are deterministic collective decision rules when
applied directly to the vector of private signals: f* € D, for k =0,1,...,n,n+ 1. The
following result follows more or less immediately from our assumptions:

Lemma 1. Suppose that condition (3) is met. Then D* # &, and there exists a
k € {1,...,n} such that f* € D*.

°In the more general case of distinct priors, this welfare criterion is subjectivistic-utilitarian in
that it evaluates each voter’s expected welfare according to that voter’s probabilistic beliefs.

6Using another definition of collective welfare, Chwe (2007) analyzes which deterministic voting
rule maximizes welfare under the constraint that voters should have no incentive to vote insincerely.
The optimal voting rule is then non-monotonic (a large majority in favor of one alternative leads to
the adoption of the opposite decision) and under this rule all voters are indifferent between sincere
and insincere voting.
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Hence, without loss of generality we may restrict the quest for optimal decision
rules to k-majority rules, for 1 < k£ < n. Let

_1y pa
an_ﬁzz—;% Zﬁ and 7"_(1—u)6n'

The parameter pair (@n, Bn) can be though of as the values of a (synthetic) repre-
sentative voter. For arbitrary positive integers n and k, let

pten = [=tRl) ()

and note that the factor in square brackets is less than 1 while the factor in round

brackets exceeds 1. Hence, g (k,n) is decreasing in k and increasing in n. The
following result provides a characterization of the optimal k-majority rule for any
committee meeting the signal-informativeness condition:”

Theorem 2. Suppose that condition (3) is met. For any positive integers n and
k € [1,n], f¥ € D* if and only if

g(k,n) <5, <g(k—1,n). (4)

It is easily verified that since all v, meet condition (3), so does ¥,.> Moreover,
since g (n,n) < (1 —qo) /q1 and g (0,n) > qo/ (1 — ¢1), condition (4) holds for at least
one k € {1,...,n}. Generically, this k-value is unique.

First, consider the case when n is odd, and let m denote “majority:”

=(n+1)/2.
Then d = f™ is majority rule. By Theorem 2, f™ € D* if and only if
1 —qo [%(1—610)1”1 ' <5 o [QO(I_QO)]m_l (5)
@ [A=—a)n n_1—€11 (I-gq)a

In the special case of equally precise signals, ¢y = ¢, the factor in square brackets
is unity, and then (5) follows immediately from the signal informativeness condition
(3). Formally:*

"Condition (4) below generalizes inequality ( 7) in Austen-Smith and Banks (1996) from the case
of symmetric identical preferences, o; = (5, Vi, to all preferences that meet the signal-informativeness
condition (3). Our state 0 corresponds to their state A, our 7 to their 1 — 7 and our & to their
E*+ 1.

By 3): (1—-w)pB;(1—q)/a1 < pa; < (1—pu)B;q0/ (1 —q) for all i. Addition of the n
inequalities yields the claimed inequality.

Essentially the same result was obtained in a different model in Sah and Stiglitz (1988).
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Corollary 1. Suppose that condition (3) is met. Majority rule is an optimal deter-
ministic collective decision rule if n is odd and qy = ¢;.

We note that in that case the optimality of majority rule is independent of commit-
tee members’ preferences, as long as these do not violate the signal-informativeness
condition. The reason is that, with equally precise signals in the two states of nature,
committee members have sufficiently similar preferences to agree that one should
always take the decision with the largest number of signals, if these were known.

Secondly, consider a sequence of committees of ever larger size n = 1,2..., all
with the same signal precisions ¢y and ¢;, and assume that the following wuniform
preference-boundedness condition holds: there exists a compact set © in the interior
of the positive orthant of R?, such that

(i, 8;) €© Vi (6)

This condition is trivially met if all committee members in ever larger committees
are identical, and it is also met under replication of a given finite preference profile,
and under independent sampling from a fixed probability distribution with support
in ©.19

For each positive integer n, let k, be such that k,-majority rule is an optimal
collective decision rule, and write r,, for k,/n. In other words, for each committee
size n, K, € [0, 1] is an optimal cut-off, in terms of the share of 1’s among all n private
signals, for decision x = 1. It is not difficult to verify that such a sequence (k,),,y is
convergent. Perhaps surprisingly, the limit, as n — oo, is independent of preferences
(as long as these meet the signal-informativeness and value-boundedness conditions);
it only depends on the precision of the two signals. In particular, the limit value is
exactly 1/2 if the two signals are equally precise. Let

In (—130(]1>
K" = . (7)
q q
In <1_(;1> +1In (1—1(10)
Corollary 2. If conditions (3) and (6) are met, then lim, .., k, = k* and kK* €
[1 — g0, q1]-

The reason why the asymptotically optimal collective decision rule is independent
of preferences is, roughly, that for large committees the probability of a mistake

19Tn the case of distinct priors, the uniform boundedness condition is (u;cv;, (1 — ;) ;) € ©.
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is vanishingly small, while the “relative cost” ratio 7, = @&,/f3,, between the two
types of mistake, by hypothesis is bounded away from both zero and plus infinity
(uniformly in n). Hence, asymptotically, it does not matter exactly what values the
parameters 7,, take, as long as they all stay above some positive number and below
another positive number; only the asymptotic mistake probability ratio matters (see
appendix for a formal proof). In the knife-edge case when gy = ¢y, this ratio is exactly
one and k, — K* =1/2.

We note that if one of the two signals is more precise than the other, then the as-
ymptotically optimal decision rule requires more of that signal: ¢; > qo = ~* > 1/2.
Mathematically, this follows from the observation that x* is decreasing in ¢y and in-
creasing in ¢;. The intuition is that if the signal is more precise in state 1 than in
state 0, then observation of signal 1 is more likely to be erroneous than observation
of signal 0. Figure 2 below shows the dependence of x* on the signal precisions g
and ¢;. The area north-east of both straight lines are the signal-precision pairs that
satisfy the signal-informativeness condition (3) for all 7,-values between 1/2 and 2,
just as in Figure 1. The two curves are isoquants for x*. The upper curve is where
k* = 2/3, the lower curve where k* = 1/3, and the diagonal is where k* = 1/2.

1.0
gl |
09T
0.8 T

07T

06T

Figure 2: Asymptotically optimal collective decision rules.

4. EQUILIBRIUM VOTING

Suppose that the collective decision is to be taken according to some k-majority voting
rule applied to a committee consisting of n members, where 1 < k < n. Is sincere
voting then a Nash equilibrium? In force of the signal informativeness condition (3),
sincere voting is identical with informative voting, and we will use these two attributes
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interchangeably. In this voting game, each voter ¢ first observes her private signal and
then casts her vote v; € {0,1}, simultaneously with all other voters. The collective
decision x = 1 results if at least k voters cast the vote 1, while the collective decision
x = 0 results in the opposite case.

In Nash equilibrium, each voter maximizes his or her expected utility, given his or
her private signal, and given all other voters’ strategies. Clearly, there is a plethora
of (pure and mixed) uninformative Nash equilibria whenever n > 3. For example,
to always vote 0 (or 1), independently of one’s private signal, constitutes a Nash
equilibrium. For if others vote according to such a strategy, then my vote will never be
pivotal and hence I can just as well use the same uninformative voting strategy as the
others. Under what conditions, if any, will sincere voting constitute an equilibrium?

Theorem 3. Suppose that condition (3) is met. For any positive integers n and
k < n, sincere voting under k-majority rule constitutes a Nash equilibrium if and
only if

g(kn) <y <g(k—1mn) Vi (8)

Two remarks are in place. First, if committee members have identical preferences,
then conditions (8) and (4) are identical. Hence, in this special case, a k-majority rule
is optimal if and only if sincere voting under this rule is a Nash equilibrium. This was
first proved for the case of symmetric preferences («; = 3; Vi) by Austen-Smith and
Banks (1996, Lemma 2). See Costinot and Kartik (2006) for more findings under the
hypothesis of ex ante identical committee members. Secondly, for n odd and equally
informative signals, the theorem implies that sincere voting is a Nash equilibrium
under majority rule, irrespective of individual valuations v,, as long as these meet
the signal-informativeness condition:

Corollary 3. Suppose that condition (3) is met. Sincere voting is a Nash equilibrium
under majority rule if n is odd and gy = q;.

This is not surprising, however, since with equally precise signals, a tie among an
even number of other votes does not affect the odds for one state over the other.!! In
general, the probability for a mistake of type I may well differ from the probability
of a mistake of type II. Suppose, thus, that ¢y # ¢; and consider majority rule in

UThen Priw=0|7 A s;,=0]=Prjw=0]s; =0] and likewise for w = s; = 1.
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a committee with an odd number n of members. Condition (8) then becomes, with
m=(n+1)/2:

L (el oo [mlow)™

If qo and ¢, differ even the slightest, the factor in square brackets is distinct from
unity. Hence, as n tends to infinity, this factor either converges to zero (if gy > ¢1)
or to plus infinity (if go < ¢1). Inevitably, for any given positive v,-value, one of the
two inequalities in (8) is thus violated for all n sufficiently large. We have obtained
the following generalization of Theorem 1 in Austen-Smith and Banks (1996):

Corollary 4. Suppose that qo # qi. For any positive sequence (7;), .y there exists

ieN
an ng € N such that sincere voting is a Nash equilibrium under majority rule for no

n > ng.

This result is intuitively plausible. For suppose that state 0 is more likely to give
rise to signal value 0 than state 1 is likely to give rise to signal value 1, that is, ¢o > ¢;.
In such a case, signal 0 is less informative than signal 1 in the sense that signal 0 is
more likely in state 1 than signal 1 is in state 0. If n is large, a tie among the others
is then quite a strong indication of state 1, even if a voter’s own signal is 0, since in
total there are just about as many signals 0 as signals 1, quite an unlikely event in
state 0. Hence, even if I, as a voter, believed that the others vote sincerely, I should
nevertheless vote on alternative 1, irrespective of my own signal.

Remark 2. The corollary can also be explained in terms of Corollary 2: If qy # qi,
then majority rule is not an asymptotically optimal collective decision rule. Hence,
by Theorem 3 there exists a committee size ny beyond which sincere voting is not a
Nash equilibrium under majority rule.

We finally explore the relations between (i) optimality of a k-majority rule, f*,
as a collective decision rule, and (ii) sincere voting being a Nash equilibrium under a
k-majority rule. It follows immediately from Theorems 2 and 3 that if sincere voting is
a Nash equilibrium under some k-majority rule, then this rule is an optimal collective
decision rule. What about the converse? We already noted that the converse holds if
committee members have identical values/preferences. What if they do not? To this
end, it is useful to first ask which collective decision x € {0,1} individual ¢ would
like to see taken, if ¢ had known the total (random) number, Ny, of signals 1 received
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among all committee members. As shown in the appendix, voter ¢ will deem decision
x =1 to be better than decision = 0 if and only if :

Pr[N, |w=0] <, -Pr[N; |w=1] (10)

After some algebraic manipulation, this condition can be re-written as Ny > 7 (7;),
where, for any z > 0,

In z
 Infgoqs] —In[(1 —qo) (1 — )]

We will call 7 (v;) € R the threshold for i; voter i needs at least 7 (7;) signals 1 in

*

T(2)=n-kK

(11)

order to prefer decision 1. We note that both terms in the denominator are positive
and that 7 (2) decreases continuously with z. Without loss of generality, assume that
71 < vy < ... <7, and hence 7 (v;) > 7 (75) > .. . > 7(7,). For generic parameter
values qy, ¢1 and ~;, the real numbers 7 (7,) are not integers. We here focus on this
generic case. Write

T(z)=|7(2)] +1

for the smallest integer > 7 (z). Committee member ¢ thus prefers decision 1 (over
decision 0) if and only if the number of signals 1 is at least T'(y;). Two committee
members ¢ and j will be said to have similar preferences if T'(v,) = T (’yj). A
committee where all members have similar preferences, that is, where

T(v) =T (v,) for all 4,j € {1,2,..,n} (12)

will be called homogeneous, otherwise heterogeneous. For generic parameter values
we have:

Proposition 1. Suppose that condition (3) is met. For any positive integer k < n,
sincere voting is a Nash equilibrium under f* if and only if f* € D* and the committee
is homogeneous.

This result implies that, under the signal-informativeness condition (3), sincere
voting is incompatible with Nash equilibrium under all £-majority rules in all hetero-
geneous committees. By contrast, in every homogeneous committee, sincere voting is
compatible with Nash equilibrium under some k-majority rule (by Lemma 1).'?

2For electorates with ex ante identical members, McLennan (1998) and Wit (1998) establish
results that connect optimality with equilibrium for mixed-strategy profiles in which all or some
voters vote insincerely.
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We also note that Proposition 1 implies that for committees that are homogeneous,
optimality is invariant under positive affine transformations of individual members’
von Neumann-Morgenstern utilities. That optimality of a collective decision rule
is invariant under addition of any scalar to all of an individual’s von Neumann-
Morgenstern utilities is evident. That optimality also is invariant under multiplication
of an individual’s von Neumann-Morgenstern utilities is perhaps less evident, since
this would amount to giving more weight to that individual’s utility in the welfare
function. To see that optimality is nevertheless invariant, suppose that f* is optimal
for some committee, and, for one of its members, ¢, multiply «; and [, with the
factor ¢ 4+ 1 for some ¢ > 0. Then &, will be replaced by &, + ca;/n and Bn by
B,+cB;/n. By Theorem 2, 3, g (k,n) < a, < 3,9 (k — 1,n) and, since the committee
is homogeneous, (3,9 (k,n) < a; < f,9 (k — 1,n) for all members i, and hence also

[Bn + Cﬁz/n} g (k,n) <@, + cai/n] < [Bn + Cﬁz/n] g(k—1,n)

By Theorem 2, f* is still optimal. By contrast, for heterogeneous committees, op-
timality is not in general invariant under positive multiplication of individuals’ von
Neumann-Morgenstern utilities. Then individuals differ sufficiently in preferences for
the weights placed upon them in the welfare function to matter.

5. HETEROGENEITY AND SIGNAL INFORMATIVENESS
The homogeneity condition (12) and the signal-informativeness condition (3) both
impose bounds on how much committee members can differ from each other in terms
of preferences. Here we compare these two bounds. First, let g0 = ¢ = ¢. Then

B In 2
Ing—1In(1-gq)

1
— n
2

T(2) =

If n is odd, then it is not difficult to verify that the signal-informativeness condition
implies preference homogeneity:'?

Proposition 2. If n is odd and gy = qi, then (3) holds if and only if T (v;) =
(n+1) /2 for all i.

13To see this, note that T (v,;) = (n + 1) /2 if and only if

-1< Iy,

— < 1L
“lng—In(1-gq) <
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We also note that they all agree that half of the signals are needed for either deci-
sion. By contrast, if n is even, then T'(,) > n/2+ 1 for all v, < 1 and T (vy,;) < n/2
for all v, > 1, a discontinuity at v, = 1. See Figure 3 below, showing the graphs of
7 (dashed) and 7" (solid), with z on the horizontal, for n = 6 and ¢ = 0.8. In this
numerical example, the signal-informativeness conditions requires that 0.25 < v, < 4.
Hence, such a committee, with v,-values scattered around 1 in this interval, is het-
erogenous although the signal-informativeness condition is met.

tau(2),T(2) *° T
4.0

35K

30T

-~ -
—_ -
—_—

25T

20— f ' f ' f

Figure 3: Heterogeneity when n is even and the two signals are of identical precision.

Second, consider the case ¢y # ¢1, with n even or odd. As z increases from
the lower to the upper bound in the signal informativeness condition (3), 7 (z) de-

creases continuously from 7% = (n — 1) k* + 1 to 7™ = (n — 1) k*. We note that

ma. min —

X — rmin = 1. and that, for generic signal precisions gy and ¢, 7™* and 7™
are not integers. Hence, generically, the interval of v;-values that meet the signal-
informativeness condition is partitioned into two subintervals with distinct 7" (7,)-
values. This is illustrated in the diagram below, drawn for n = 5, ¢o = 0.7 and
¢1 = 0.8. In this case, the signal-informativeness condition is met for all , in the
open interval (0.375,3.5) . See Figure 4 below, showing the graphs of 7 (dashed) and
T (solid), with z on the horizontal.

Suppose that the five committee members are independently drawn from an infi-
nite population in which the parameter values v, are distributed according to a cumu-
lative distribution function ®. Then the probability that the signal-informativeness
condition will be met in this numerical example is @ (3.5) — ® (0.375) and the proba-
bility that the committee will meet the signal-informativeness condition and also be

T
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homogenous is
[@(0.646) — @ (0.375))° + [® (3.5) — & (0.646)]” .

Hence, while the first probability is independent of the committee size, the second is
decreasing quite fast in the committee size. For instance, if ® would be uniform on
the interval from 0 to 5, then the first probability would be 62.5% while the second
would be only 6%.

tauz), T(2) “° T
40 T

35T

30T

25T = -

2.0 H————————————|

Figure 4: Heterogeneity when the signal precisions differ.

To deal with committees of arbitrary size, it is useful to make the hypothesis that
there exists some 1 < 1 such that

1—
qo <, < N0 Vi
nq: l—aq
The following remark shows how weak this uniform signal-informativeness condi-
tion in comparison with the homogeneity condition.

(13)

Remark 3. Standard techniques for constructing committees of ever larger size pro-
duce committees that are heterogeneous. Suppose that, starting from a given com-
mittee of size n, > 1, one replicates it ad infinitum to obtain committees of sizes
2n4, 3n,, ... Suppose that the initial committee satisfies the uniform signal informa-
tiveness condition (13) for some n < 1. Then also all replica meet this condition.
However, for generic initial committee, and even if this is homogeneous, the sequence
will contain infinitely many heterogeneous committees. 'To see this, note that equa-
tion (11) defines T as an affine function of the committee size n, with a positive
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slope less than one. Moreover, for each n, its range (as -y, varies from the lower to
the upper bound in (13)) is an interval of length close to 1 when n < 1 is close to
1. Hence, for many multiples of n,, this range will contain an integer and thus the
associated committee will be heterogeneous (have some members’ T (7y;)-values below
that integer and others above it). The same reasoning is valid if the sequence is not
obtained by replication of an initial committee, but by independently drawing new
members according to a fixed probability distribution.

6. RANDOMIZED MAJORITY RULE

We have seen that, for homogeneous committees, sincere voting is an equilibrium
under a k-majority rule if and only if it is optimal, while for heterogeneous commit-
tees, sincere voting is not an equilibrium under any k-majority rule, not even under
an optimal such rule. Moreover, for all committees, homogeneous and heterogeneous
alike, there is a plethora of non-informative equilibria. For example, under majority
rule in any committee of size n > 3, it is an equilibrium to always vote 0 (another
equilibrium is to always vote 1, etc.). We here define a class of randomized major-
ity rules under which sincere voting is the unique Nash equilibrium, irrespective of
whether the committee is homogeneous or heterogeneous, and we show that, for suit-
ably chosen sequences of such rules, the asymptotic efficiency claim in Condorcet’s
theorem holds for the associated sequence of equilibria.

Consider first the simple randomized voting rule according to which all n members
of the committee simultaneously cast their votes, whereafter a random sample of
n* < n of these votes is drawn and the collective decision is made by way of some
k-majority rule applied to this random sample of size n*, for k < n*. If each vote has
a fixed positive probability of being sampled (say 1/n) and the sample size n* is small
enough (say n* = 1), then sincere voting will be a Nash equilibrium. More precisely,
consider a committee of n members for which the signal informativeness condition (3)
holds. Let n* < n be such that condition (8) holds for all subsets of the committee
of size n* (that is, with n* in the place of n in (8)). From the signal-informativeness
condition it follows that such an integer n* > 1 exists.!* Let f* be the voting rule
according to which all n committee members vote simultaneously and the collective
decision z is determined by majority rule applied to a random sample of size n* of
these votes, the sample being drawn with equal probability for each subset of size n*,
and this draw being statistically independent of the state of nature and of all private
signals and votes. From Theorem 3 we immediately obtain:

YFor n* =1, (8) follows directly from (3).
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Corollary 5. Sincere voting is a Nash equilibrium under voting rule f*.

The voting rule is clearly anonymous in the sense that it treats all n votes equally,
without respect to the identities of the voters. However, an evident drawback of this
voting rule is that it does not aggregate the private information in an efficient way
when n is large, since the sample size n* generically needs to remain bounded as n
increases, in order to keep up the incentive for sincere voting. Hence, the collective
decision under f*, applied to ever larger committees, may remain bounded away from
full informational efficiency even in the limit as n — oo.

However, there is a straight-forward remedy: combine this randomized majority
rule with the usual majority rule. Instead of always letting a randomly selected subset
of votes determine the collective decision, use a two-stage randomization device to
(a) determine whether the collective decision = be determined by the majority of the
random sample of size n* or by the majority of all n votes, and (b) also to select the
sample when this is called for. For the sake of clarity and definiteness, we henceforth
focus on the special case of majority rule, n odd and n* = 1. For any ¢ € [0,1], let f.
be the voting rule according to which all votes are cast simultaneously, and then, with
probability 1 — €, the collective decision is taken according to majority rule applied
to all n votes, while with the residual probability, ¢, the collective decision is taken
according to a randomly sampled single vote, with equal probability, 1/n, for each
vote to be so drawn. Hence, for an individual voter, the probability is €/n that his or
her vote will be selected to single-handedly determine the collective decision. Similar
randomized mechanisms have been used in the literature on virtual implementation,
see Abreu and Matsushima (1992) and Glazer and Rubinstein (1998).

The question that we will now attack is whether € can be reduced towards zero as
the committee size n grows towards infinity, in such a way that the incentive remains
for sincere voting. At first sight, this may appear impossible, since it is known from
probability theory that the probability for equally many “heads” as “tails” among
n statistically independent throws of a fair coin approaches zero only at the rate
proportional to 1/4/n, a slower rate than 1/n, the probability weight placed on “my”
vote in a random draw of the votes. It thus seems that the incentive effect from the
randomization might be too weak to dominate the disincentive effect against sincere
voting under majority rule.!® However, we will proceed to show that this is not the
case in the present setting.

5 However, we have (so far) not seen any analysis of the randomized voting rule proposed here.
16We are grateful to Sergiu Hart for raising this point.
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Clearly sincere voting is a strict Nash equilibrium under f;, since then ¢’s vote
either determines the outcome, x = v;, and this happens with positive probability 1/n,
or else i’s vote does not affect the outcome at all (and this happens with probability
1 —1/n). By continuity, sincere voting is still a strict Nash equilibrium under f. for
all ¢ < 1 sufficiently close to 1. However, as the following example shows, even if the
probability ¢ for random delegation to a single vote is large enough to render sincere
voting a strict equilibrium, there may still exist other, less informative, equilibria.

This constitutes an additional difficulty to overcome.!”

Example 1. Consider a committee with three members, with a uniform prior, 1 =
1/2, equally precise signals, qo = q1 = q, distinct values, v, = 1/c, 7o =1 and 3 = ¢
for some ¢ > 1, such that the signal-informativeness condition (3) is met for all
committee members. The number n being odd and the signals being equally precise,
majority rule is optimal, sincere voting under majority rule is a Nash equilibrium,
and the committee is homogeneous (Proposition 2). Let ¢ € [0,1] and consider the
associated randomized majority rule f.. Since sincere voting is an equilibrium for
e = 0 and an increase in € enhances all voters’ incentive for sincere voting, sincere
voting is an equilibrium for all ¢ € [0,1]. However, for small € there also exists
a mixed equilibrium in which (a) voter 1 votes sincerely for sure when receiving
signal 0, but only with probability x € (0,1) when receiving signal 1, (b) voter 2
always votes sincerely, and (c) voter 3 votes sincerely for sure when receiving signal
1, but only with probability y € (0,1) when receiving signal 0. In other words,
the two “extreme” voters randomize when they obtain an “unfavorable” signal. The
probability x makes voter 3 indifferent when receiving signal 0, and the probability
y makes voter 1 indifferent when receiving signal 1. It is not difficult to verify that
these indifference conditions amount to the following requirements:
30 —-¢)(c=1q(d-qg) —eflc+1)g—¢

3(1-e)(c+1)(2¢—-1)(1-4q)q
31-¢g)(c—1)qg(1—-q) —eflc+1)g—1]

31=e)(c+1)(2¢—1)(1—q)g
For instance, for ¢ = 2, ¢ = 0.7 and ¢ = 0.2, x ~ 0.80 and y =~ 0.47. We note that
z,y € (0,1) if and only if

y:

3(c=1)q(1—q)
3(c=1)qg(1—q)+(c+1)g—1’

17See also Wit (1998), who establish the existence of mixed Nash equilibria of a similar kind

but under the standard majority rule as applied to voters with identical and symmetric preferences
(a; = B, =1 for all 7).

€<




THE CONCORCET JURY THEOREM AND PREFERENCE HETEROGENEITY 22

where the quantity on the right-hand side is positive but less than 1.

We first investigate when sincere voting is a Nash equilibrium under such a voting
rule f., for a given ¢ and committee size n. Suppose that committee member ¢ has
received the signal s; = 0. Denote by Auf (¢) the difference in expected utility,
for that member, when casting the sincere vote v; = 0 rather than the insincere vote
v; = 1 (under the hypothesis that all others vote sincerely). Committee member i will
become the “ex-post dictator” with probability ¢/n. If instead another committee
member’s vote is sampled, then i’s vote does not matter. It follows from the proof of
Theorem 3 in the appendix that, for n odd and with n = 2t + 1, we have

Aud () =AY (t)-e+BY(t)- (1 —¢) (14)
where
A0 () = 1 (1= p)Bigo — peyi (1 — q1)
241 (M- g+p(l-aq)
and

B (1) = <2t> (=) Bigh™ (1= o)’ — povgh (1= q0)™!
t (1= p)go+p(l—aq)
Here A?(t) is the probability that i’s vote will be randomly sampled, multiplied
with the conditionally expected utility difference (from sincere voting compared with
insincere voting) when this happens. This difference is positive if and only if v, <
qo/ (1 —q1). The corresponding inequality for signal 1, A} (¢) > 0, is met if and
only if 7, > (1 —qo)/q:- Hence, under the signal-informativeness condition (3),
A% (t), AL (t) > 0 for all committee members i and all committee sizes n = 2t + 1.
Moreover, both A? (t) and A} (¢) decrease with committee size n at the rate 1/n. The
second factor, B? (), is the probability that majority rule will be applied to all n
votes, multiplied with the conditional utility difference (again between sincere and
insincere voting) when this happens. Unlike A? (¢), B? (t) may be negative, zero or
positive, depending on parameter values. However, it is not difficult to show that
both BY (t) and B} (t) tend to zero as ¢ tends to infinity. This is not surprising, since
the probability for a tie among 2t voters converges to zero, and the expected utility
difference is bounded. It remains to show that this convergence is faster that 1/n, the
rate at which the first term in (14) diminishes. It follows from the observations made
above, concerning coin tossing, that if both signals would be uninformative (go =
q1 = 1/2), then B? (t) would tend to zero slower than A? (¢) and the randomization
would not help to give incentives for informative voting. However, for the case of
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informative signals (qo,q1 > 1/2), as we here assume, one can show that BY (¢) and
B} () in fact tend to zero at an exponential rate. This implies that € > 0 can be made
arbitrarily small when ¢ is sufficiently large. More precisely, there exists a decreasing
sequence (g4),.y such that Auf (¢),Au; (¢) > 0 for each t € N and yet &, — 0 as
t — oo. The incentive for voting sincerely is then strict for each committee member,
if all others vote sincerely, so sincere voting is a strict equilibrium for each ¢t € N.

The full curve in the diagram below shows how large £ needs to be in order to
keep Au? (g) positive for different values of ¢, in the special case when p = 1/2,
g = 0.8, ¢ = 0.7 and «o; = 8, = 1 for all 7. We see that the maximal e-value needed
is about 0.27 and that this occurs when n is about 17. However, as the committee
size grows beyond that size, the required e-value decreases towards zero. The dashed
curve corresponds to the case when ¢; = 0.75, ceteris paribus. As expected, since ¢q
and ¢, are closer together, less randomization is needed.

. 0
epsilon

10 12 14 16 18 20 22 24t

0.4+ |

Figure 5: The minimal epsilon for sincere voting to be a Nash equilibrium.

As we saw in the Example 1, there may also exist other Nash equilibria, alongside
sincere voting. However, under the uniform signal-informativeness assumption (13)
(but without invoking the preference homogeneity assumption), one can show that if
g is not reduced too fast as t increases, then the strict and informative equilibrium
can in fact be made unique. No other Nash equilibrium — neither pure nor mixed,
neither symmetric nor asymmetric — then exists. Formally:
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Theorem 4. Consider a sequence of committees of sizesn = 2t+1, fort =0,1,2,3....
Suppose that conditions (6) and (13) are met. There exist a sequence of positive
g+ — 0 such that, for each t and any voting rule f. with € > &;:

(i) sincere voting is a strict Nash equilibrium

(ii) there exists no other Nash equilibrium.

It follows from this result that the claim in Condorcet’s jury theorem is valid for
sequences of randomized majority rules of the type described above. More precisely,
let (£;),cy be a sequence as specified in Theorem 4. For each t € N, let &, > &
and ¢, — 0. The associated sequence of randomized voting rules, (fs,),cy, is then
asymptotically efficient:

Corollary 6. Suppose that (6) and (13) hold. Let X; € {0,1} be the committee
decision for a committee of size 2t + 1 under the above described voting rule f.,.
Then
tliriloPr [X: #w] =0

Although sincere voting is a strict and unique Nash equilibrium for all ¢ under
the hypotheses of the theorem, sincere voting is not a dominant strategy for all ¢ and
e > ;. We show this in five steps. First, for any voter type («, 5) € O, let k* (o, 5) be
the minimal £ € N such that the conditional expected utility to a committee member
of type («, 3) from decision x = 1 is higher than from decision x = 0, conditional
upon k signals 1 and 1 signal 0. Let k* = max(,g)co k* (o, 3). Since O is compact
with positive lower bounds, k* € N. Second, fix k > k* and, consider committees of
odd sizes n = 2t + 1, such that ¢ > k. For each n, consider any committee member

k

i and let 6™

= be the following strategy combination for the others: ¢ of them always

vote 0, t —k always vote 1, and the remaining k voters vote sincerely. Third, according
to the voting rule f., a committee member’s vote is randomly selected to be decisive
with probability ¢/n and it is pivotal with probability (1 —¢) - p;, where p; is the
probability for a tie among the other 2t votes. Under GF

—1

, p; is the probability that
the k sincere voters all receive signal 1, a probability that depends on k& but not on
n (as long as t > k). Under ™7

77;;

1 being pivotal is thus a strong indication that
the state of nature is w = 1, so strong that the conditionally expected utility, given

that ¢ is pivotal, is maximized when 7 votes 1 irrespective of his or her own signal.
n,k
771 9

Fourth, by continuity there exists an &, > 0 such that, against 7", always voting 1 is

a better reply for ¢ than voting sincerely, for all € € (0,&;). Moreover, &, is increasing
in ¢t. Fifth, and finally: there exists a t* € N such that &, < &, for all ¢t > t*. For
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each € € (&;,&;), voting on alternative 1 irrespective of i’s signal is a better reply for
7, against 6’1’? , than sincere voting. Hence, for such n and ¢, sincere voting is not a
dominant strategy or voter ¢ under f..

We conclude by noting that claim (i) in Theorem 4 holds, mutatis mutandis,
also under incomplete information. For each committee size n (odd), let “nature”
first draw the preference vector 0 = ((ay, ;) , ..., (an, 53,,)) € O™ according to some
probability measure v,, on ©", such that, for some 7 < 1, inequality (13) holds with
probability one. After this, each committee member i gets to know his or her own
“type” (v, 3;) (only), receives his or her private signal s; € {0,1} and has to give
his or her vote v; € {0,1}. Other committee members’ values are irrelevant for a
committee member’s voting decision when all others vote informatively. In order to
know the expected utility associated with each of i’s four pure local strategies, given
her value pair, ¢ only needs to know everybody’s signal precisions (which are taken
to be commonly known and the same for all committee members).

7. ROBUSTNESS AGAINST IRRATIONALITY

Experimental evidence from laboratory studies suggests that human subjects in com-
mittee decision problems of the kind analyzed here sometimes make mistakes, see
Guarnaschelli et al. (2000). Awareness of a positive error rate in others’ voting
clearly influences the voting incentives of a rational committee member. We here
extend our model to allow for this possibility.'® Consider a committee consisting of
n members. Assume that with probability A € [0, 1] exactly one of these members
suddenly becomes a noise voter, defined as a voter who votes randomly according to
an exogenous probability distribution, irrespective of his or her private signal. As-
sume, moreover that such a noise voter’s vote is statistically independent of the state
of nature and all private signals. A committee member who is not a noise voter is
called a rational voter.

We analyze a special case of this set-up. Let the number n of committee members
be odd, assume that the two signals are equally precise, and assume that the voting
rule is majority rule (the optimal rule in the unperturbed model, see Corollary 1).
Assume also that the prior is uniform and that a noise voter randomizes uniformly.
It is not difficult to then show that the potential presence of a noise voter in the
committee increases each rational committee member’s incentive to vote sincerely, if
this voter expect all other rational committee members vote sincerely. The reason for

18Eliaz (2002) analyses the mechanism-design implementation problem with k faulty players
among n players. Blais et al. (2008) use the 1 faulty player model to analyse experimental data on
voting.
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this is two-fold: a noise voter among the others increases the probability for a given
rational voter of becoming pivotal, and it also increases the conditionally expected
net utility gain from sincere voting (over insincere voting) when the informed voter
is pivotal. Formally:

Proposition 3. Consider majority rule in a committee with n odd, p=1/2,1/2 <
g = ¢1 < 1, and with a probability A € [0,1] for the presence of a noise voter
who randomizes uniformly. The probability that a given committee member’s vote
will be pivotal under sincere voting is increasing in . Moreover, conditional upon
being pivotal, the expected-utility difference between sincere and insincere voting is
increasing in .

8. CONCLUSION
The above analysis is restricted to a committee of equally “competent” members who
receive private information of exogenously fixed precision and face a binary collective
decision problem with no possibility of abstention. Despite these heroic simplifica-
tions, we believe that the qualitative conclusions hold more generally. First, suppose
that the committee members are unequally “competent” in the sense that some mem-
bers receive more precise signals than others. If the competence differences are known
by all members, then weighted majoritarian rules, whereby more competent voters are
given higher weights than less competent ones, may be superior the k-majority rules
studied here. For a survey of results of this sort, see Grofman, Owen and Feld (1983),
Owen, Grofman and Feld (1989) and Ben-Yashar and Milchtaich (2007). Under the
usual majority rule, but with differing competence among the committee members,
what can be said about equilibrium voting? Two main cases appear relevant for such
a consideration. In the first case, each member i has precision parameters gj), ¢; > 1/2
and these are known by all committee members. In the second case, each member i
has precision parameters g, ¢¢ > 1/2 but these are know only by member 4 himself.'?
Let us briefly re-consider the statement and proof of Theorem 3. The quantities
g (k,n) have to be re-defined and will, in general, also depend on i. More precisely,
each such quantity g; (k,n) will no longer be a simple product of two factors raised
to powers k and n, but will be a complex multinomial sum; instead of just count-
ing the number of signals of each type, one has to keep track of which signal was
received by which member, and consider all permutations. With so defined quan-
tities g; (k,n) in condition (3), the claim of Theorem 3 would remain true, and the

YVisser and Swank (2007) assume that committee members do not even know their own compe-
tence.
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quantities g; (k,n) would be continuous in the parameter vector (¢}, ¢1), ..., (g8, q}))-
Hence, Theorem 3 would be approximately correct for approximately equally compe-
tent committee members. Similar considerations apply to other equilibrium results.
The second case, that of incomplete information concerning competence, appears to
be particularly interesting for analyses of the incentive effects of transparency — that
is, ex post revelation of individual votes. For studies of such settings, see Visser
and Swank (2007), Gersbach and Hahn (2008), Swank, Visser and Swank (2008) and
Hahn (2008).

A second direction for generalization, which would be valuable and challenging to
explore, concerns the binary nature of both signals and choices. What can be said
if the choice is binary but there are more than two signal values, perhaps just three,
or a whole continuum? What if there are more than two choice alternatives? New
results have recently been obtained for more general collective decision problems of
this sort, see McLennan (2007).

A third direction would be to analyze equilibrium outcomes if abstention is an
option and/or the number of voters is unknown by the voters. Such aspects may be
less relevant for some committees but may play a major role in other committees and
certainly in general elections. Krishna and Morgan (2007) undertake an investigation
of precisely these two aspects, in a setting where the number of voters is a Poisson
distributed random variable and each voter draws a random cost for casting a vote.
Each voter only observes his or her own signal and voting cost. Krishna and Morgan
assume that the voters are ex-ante identical, that the two states of nature are equally
likely and that the two signals are equally precise. They show that sincere voting
then is the unique Nash equilibrium under super-majority rules when the expected
number of voters is large. Moreover, equilibrium participation rates are such that the
outcome is asymptotically efficient. While their model thus is cast more in the mold
of general elections, it would be interesting to explore whether (strategic) abstention,
allowed for in their framework, can be introduced in our framework for a committee
of fixed and know size, and whether the kind of preference heterogeneity that we
here permit can be introduced into their framework. Here, we only note that sincere
voting under our randomized majority rule will remain a strict Nash equilibrium also
when abstention is allowed. However, our uniqueness claim may then fail.

A fourth avenue for future work would be to endogenize voters’ signal precision.
Before a committee meets, individual members usually make (typically unobserved)
efforts to study the question at hand, so that they will be well informed at the
meeting. However, as is well-known both by practitioners and theorists, this gives rise
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to a free-rider problem, whereby committee members tend to under-invest and arrive
at the meeting less informed than what would be collectively desirable. For recent
analyses of this moral hazard phenomenon in various models, see Mukhopadhaya
(2003), Persico (2004), Gerardi and Yariv (2008) and Koriyama and Szentes (2007).

Finally, it would be useful to test the robustness of the conclusions to perturbations
of committee members’ objectives in empirically plausible directions, such as a (slight)
preference for voting according to one’s conviction (that is, voting sincerely). Of
interest is also to analyze situations in which committee members to some extent
care about others’ esteem of their “competence” (signal precision), partially revealed
by their voting, in case individual votes and the true state becomes publicly known
ex post.

9. APPENDIX

We here provide mathematical proofs of claims not proved in the main text.

9.1. Theorem 1. Suppose that w = 0 and consider any positive integer n. The
probability that voter ¢ votes v; = s; = 1, when voting informatively, is 1 — go. Under
majority rule, the probability of a wrong decision in this state is thus

1 ¢ 1

Conditional upon w = 0, the random variables {s;};_, are independent, with the
same Bernoulli distribution. Hence, according to the Central Limit Theorem (see,
for example, Theorem 27.1 in Billingsley, 1995), their average, = """ | s; (given w =
0), converges in distribution towards the normal distribution with mean 1 — ¢y and

variance qo(1 — go)/n. Since 1 —qo < 3:

1 o 1
lim Pr |— i>=|lw=0l=0
i, [nZ gl ]
The same argument applies to the state w = 1, and the result follows from the identity
PriX, (w)#w=01—-p)Pr[X,=1|w=04+upPr[X,=0|w=1]

9.2. Lemma 1. To see this, first note that existence follows from the finiteness
of the set of alternatives, D. Secondly, suppose that d* € D*. Since all signals
have the same precision, there exists some symmetric function d € D such that
W(d) = W (d*). Then d(si,...,s,) is a function h : {0,1,...,n} — {0,1} of the
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signal sum: d(s) = h(>_s;). Clearly d € D*, which implies that h is increasing.
For if h (k) = 1 then also h(k+ 1) = 1 since by assumption ¢y, ¢ > 1/2. Since h
is increasing, d is a k-majority rule for some k € {0,1,...,n,n+ 1}. If the signal
informativeness condition (3) holds strictly, and «;, 5, > 0, it is never optimal to
disregard all signals, so then k € {1,...,n}.

9.3. Theorem 2. Write W ( fk) in the following way, where the random variable
N is the number of signals 1 received, Uy = (1 — p) >0 ufg and Uy = (1 — p) o0 uly,
two real numbers:

W (f*) [=1]w=0—pa,Prizx=0|w=1]4+Us+ U,
PrNi > k|w=0]—pa,Pr[Ny <k|w=1]4+Uy+ U,

n i

I
|
—
|
=
= ™!
3
g
-

Hence,

W (") =W (") =Q-p)B,Pr[N=k|w=0]—a,Pr[Ny =k |w=1]

and thus
__Pr[NMi=Fk|w=0]
W () <w () PYZPr[NI—Mw 1
(=g "
— = n— _g<k7n)
T
Likewise:
N _ _PriMy=k—-1|w=0]
=1} < k <
W) =W = TS e mE 1o

= 7<

Since g (k,n) is decreasing in k, W (f’“) > W (fh) forall h = k+1,k+2,...,nif
and only if ¥ > g (k,n). Likewise, W (f*) > W (f") forall h =k — 1,k —2,...,1
if and only if ¥ < ¢g(k—1,n). Hence, as k increases from 1 to n, W (fk) reaches
its maximum value either at a unique k or (non-generically) at two adjacent values,
k —1 and k. As noted in footnote 6, k = 0 and k£ = n + 1 are never optimal.

9.4. Corollary 1. Condition (4) is equivalent with

] () = [ (29) ()




THE CONCORCET JURY THEOREM AND PREFERENCE HETEROGENEITY 30

(130(11)” = {(1_;;)9211_%)}’“ : (131%) (13()@11)%1

Taking logarithms and dividing through with n, we obtain
o 1.k l Jo1 }
In < —Iny,+—In
(1—q1) no T =) —a)

1

E WY (LN I
n 1—qo n 1—q
q0

1-q1
tends to zero since, in force of the value-boundedness condition (6). This establishes

or

IN

As n — oo, the upper bound converges to the lower bound, In < ), and %ln N
that lim,, .o K, = K*.

In order to establish the claimed bounds on x* (defined in equation (7)), first
suppose that ¢; < ¢g. Then 13—1(10 < 1%—0(11, from which we deduce that x* > 1/2 and
hence 1 — gg < k*. This establishes the lower bound. To obtain the upper bound,
k* < q1, note that this inequality can be re-written, after some manipulation, as

aIn(l—qg)+(1—qg)ng <glng+(1—q¢)hn(l—q)

The right-hand side is independent of ¢y, while the left-hand side is decreasing in qq.
Thus, the claimed inequality £* < ¢; holds for all ¢y € [g1,1] if and only if it holds
for gy = ¢, Writing the inequality for that special case, one obtains

aIn(l—q)+ (1 —-—qg)ng <glng+ (1 —aq)In(l —q)

or, equivalently,
2 —1)In(l—q) <20 —1)lng
an inequality which clearly holds, since ¢; > 1/2. This establishes the upper bound.
Secondly, suppose that ¢; < ¢o. Then the above reasoning, switching ¢ and g,
gives us 1 — ¢; <1 — k* < qg, which is equivalent with 1 — ¢y < rk* < ¢.

9.5. Theorem 3. For any n,k € N such that 1 < k < n, consider voter ¢ and
denote by T the event of a tie among the others, that is, that exactly k — 1 of the
other voters receive the signal 1 and exactly n — k receive the signal 0.

First, suppose that i has received the signal s; = 0. Should 7 then vote on alterna-
tive 07 The probability for the joint event that s; = 0 and that there is a tie among
the others, conditional on the state w = 0, is

n—1Y\ ,_ _
Pr[T A si:0|w:O]:(k_1)q6L F(1— o)t
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Likewise, conditional on the state w = 1, we have

n—1

PeIT A s =0]w=1= (3 e -0

Therefore, the probability for the joint event that ¢ receives the signal 0 and there is
a tie among the others is

n—1

Peir as=0= (1) [0-mat - e -]

Since the probability of receiving the signal 0 is Pr[s; = 0] = (1 — ) go+1 (1 — q1),
committee member i attaches the following conditional probability of a tie among the
others:

. 1) Q—p)a ™1 —q) " +ugt (1 —q)" ™"
k—1 1=—wag+ul—q)

We are now in position to compute the difference in expected utility for voter ¢

po(k):Pr[T|si:()]:<

between casting the sincere vote v; = 0 instead of the insincere vote v; = 1, when
S; = 0:

Because i’s vote affects the collective decision = only in the event 7", we have
where

Elu, | T AN si=v,=0 = vi—a;Priw=1|T A s;,=0]

Elu | 7T A si;=0Av=1 = v;—3;Prlw=0]|7 A s;=0]
and v; is the conditionally expected utility of taking the right decision, + = w,
conditional on the event 7 A s; = 0.2° By Bayes’ law (factorials cancel):
(1—=pw)Pr[T A s;,=0]w=0]

Pr [T N 8 = 0]

(1 _ M) qg—k+1 (1 o qo)kfl

(1= m)ag™ (1= )" +pug ™ (1 - q)

Prw=0|7 A 5,=0] =

n—k+1

20

ki =uboPriw=0|7T A s;=0]+u’; Priw=1|7T A s;=0]
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Hence:

Au; = <” - 1) (1—mg ™ (1 —g) " Bi—pagt ' (1 —q)" "y
\k-1 (L= qo+n(l—a)

The condition for Au; > 0, that is, for vote v; = 0 to be optimal for ¢, given signal

(15)

s; = 0, is thus

Q=g ™ Q=) ' B> pd (1 —q)" ™

which can be written as

%S(l_qo)“( 0 >nk+1=g(k—1,n) (16)

1—q

Hence, if all others vote sincerely, sincere voting on alternative 0 (that is, to chose
v; = 0 when s; = 0) is a best reply for ¢ if and only if the right inequality in (8) is
met.

Secondly, suppose that i has received the signal s; = 1. By the same logic, if all
others vote sincerely, sincere voting on alternative 1 is a best reply for ¢ if and only if

Vi > (1;1%)’“ (lgoql)nk=g(k7n) (17)

9.6. Proposition 1. We prove the proposition by establishing three claims.

Claim I: If sincere voting is an equilibrium under some f*, then f* € D*.
To establish this claim, suppose that sincere voting is an equilibrium under f*,
where 1 < k < n. By Theorem 3, g (k,n) <+, < g(k—1,n) for all i. Hence

(1= p)Big(k,n) < po < (1 —p) Big(k—1,n) Vi

so, by summation, also 3,9 (k,n) < &, < 8,9 (k —1,n), or, equivalently, g (k,n) <
7, < g(k —1,n). Thus, by Theorem 2, f* € D*.

Claim II: If the committee is homogeneous and f* € D*, then sincere voting is
an equilibrium under f*.

To establish this claim, suppose that the committee is homogeneous and that
f¥ € D*. Then B,g(k,n) < a, < B,9(k—1,n) by Theorem 2. Moreover, by
homogeneity, there exists a positive integer ¢ such that t — 1 < 7(v,) < t for all i.
Hence, by definition (11),

n—t 1— t n—t—1 1 — t—1
S R R R
I—q q1 1—q q1
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Equivalently: g (t,n) <, < g (t—1,n) for all i. For generic parameter values,
this implies that ¢ = k, so sincere voting is an equilibrium under f*, by Theorem 3.

Claim III: If sincere voting is an equilibrium under some f*, then the committee
is homogeneous.

To establish this claim, suppose again that sincere voting is an equilibrium under
f%, where 1 < k < n. By Theorem 3, g(k,n) < ~, < g(k—1,n) for all i. For
generic parameter values, both inequalities are strict for all 7, and hence, by the same
calculation as above, k — 1 < 7(v,) < k for all i, implying that 7" (v,) = k for all 4,
and hence the committee is homogeneous.

9.7. Theorem 4.

Claim (i). Write n = 2t+ 1, that is, for any committee member, ¢ is half of the
rest of the committee. To see that sincere voting under f¢ is a strict Nash equilibrium,
first note that Awu; (¢) > 0 if and only if

5 2t +1 (Qt

1—: B t) gt (1—q)™ =B, (1= agg™ (1 - )] (19)

where the factor B; = 3, (1 — 1) go — a;pe (1 — q1) is positive by (3). By Stirling’s

2t\ (e 4
(7)== oo

so the right-hand side of (19) is approximated by

formula,

(2t + 1)4¢
BiV/rt
< (1+o(t) %ﬁ%ql)[ﬁqu(l —q)'"Vt < (1+o(t)) - % .

where C; = 2a;u (1 — ¢1) /+/7 and a = 4¢;(1 — ¢1) < 1. Hence, (19) is met if

(14 o(t)) - Naipgt (1 — )™ =B, (1= 1) g5t (1 — qo)']

a'Vt

€ >g
1—¢ Bz

(14 o(t))a'Vt
A sufficient condition for this to hold is that

£ > %(1 + o(t))alV/t (20)
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The preference boundedness condition (6) together with condition (13) implies that
C;/B; is uniformly bounded: there exists a D € R such that C;/B; < D for all i.%!
Let ¢ = 0! with a < b < 1. Then ¢ — 0 as t — +o00. Moreover, since

(by Lotoo as
-] —=—+400 as t—
a) Vi

(20) holds for all ¢ large enough, irrespective of how large D is.
The same reasoning applies to the expected utility upon receiving the signal s; = 1.
This proves claim (i) for e = b, for any b such that

max{4qy(1 — q),4(1—q)} < b < 1

where we note that lower bound indeed is less than 1 since qo, ¢1 > 1/2.

Claim (ii). We consider voter strategies o; : {0,1} — [0, 1], for i = 1, ..., n, that
map voter ¢'s signal s; to a probability o; (s;) for ¢ voting on alternative 1 (and voting
on alternative 0 with the complementary probability, 1 —o; (s;)). Sincere voting thus
is the strategy o;(s;) = s;.

Consider first a voter ¢ who has received signal s; = 0. Denote by 7; the event of
a tie among all other votes. Such a tie may arise by chance, even for given signals, if
other voters randomize their votes. However, since signals, and hence also votes, are
statistically independent, conditionally upon the state w, we have, under any strategy
profile (o1, ...,04,):

Pr(7; N si=0|w]=Pr[7;|w]-Pr[s; =0|w]

for each w € {0,1}. In the base-line model (simple majority rule), the difference in
expected utility for voter ¢ between voting 0 and 1, conditional on having received
signal 0, is

AW (0) = BPriTi A w=0]s=0—a;Pr[T; A w=1]s =0

(1— ) q0 3 1l —q) B
5imPr[z|w—0]_aimpr['ﬂ|w—1]

21To see this, note that C;/B; < D iff

and let n =D/ (D +1).
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Thus, sincere voting in this case is optimal if and only if
Bi(l=p)qoPr[Ti |w=0] —aiyp(l —qu) Pr[T [w=1] >0 (21)

and mixing is optimal if and only if this equation is an equality.
Likewise, the difference in expected utility for voter ¢ between voting 1 and 0,
conditional on having received signal 1, is

N I L= L= B

and thus sincere voting in this case is optimal if only if
iy Pr[T; | w = 1] — B, (1= 1) (1= go) Pr [Ty | w = 0] > 0 (22)

and mixing is optimal if and only if this last equation is an equality.
Summing the left hand sides of (21) and (22) yields:

Bi(1=p) 2q0 = D Pr{Ti | w = 0] + cipu (22 = 1) Pr[7; | w = 1]

Because qo, q; > 1/2, this is a strictly positive number as soon as at least one of the
two conditional probabilities Pr[7; | w] is positive. Therefore, at least one of the two
inequalities (21) and (22) is necessarily strict in such cases, which means that each
voter must be voting sincerely on (at least) one signal. In particular no voter can be
strictly mixing on both signals. The same argument hold for all € > 0. Moreover,
the probability for a tie is positive in all Nash equilibria when £ > 0, because if the
probability for a tie were zero, then a voter i could unilaterally deviate by voting
sincerely, and thereby increase his or her conditionally expected utility, since the vote
will matter only when vote ¢ is singled out to determine the collective decision, an
event with positive probability €/n.

In sum: For each € > 0, and in each equilibrium under the associated voting rule
f-, each voter is voting sincerely on at least one signal.

From this it follows that there exists one signal value, say 0, such that at least half
of the population vote sincerely when receiving this signal. Without loss of generality,
we may take the point of view of individual ¢ = 2t + 1 and suppose that individuals
J =1,...,t vote v; = 0 when receiving signal s; = 0.

Let Ny denote the random number of votes 0 among voters 1, ..., 2¢, conditional

upon w = 0. Then:
Pr(7; | w = 0] = Pr[N, = 1]



THE CONCORCET JURY THEOREM AND PREFERENCE HETEROGENEITY 36

One can decompose the random variable Ay as Ny = X, + )y, where

t
Xo= Z 1is,=0jw=0
=1

and

t 2t
Vo= Z 1is,=1n0=0/w=0} + Z 1iy;=0w=0}

j=1 j=t+1
Notice that

t
PriNo =t] = > Pr[Xy=Fk]-Pr[Jy=t—k
k=0
< max Pr[AX, = k]

0<k<t

We do not know the probability distribution of ), because of possible mixing. How-
ever, we know that A} is binomial with parameters ¢y and ¢. Therefore,

max Pr[Xy = k| = Pr[Ay = [qot]]

0<k<t

where |qot| denotes the integer part of got. If got is itself an integer, then

t
PilNG = ] < Pl = aut] = ()1 = g0y

and, using Stirling’s formula:
1
271'th<1 — C]o)

This last property can be shown to actually hold even if gyt is not an integer (we
leave a verification of this to the interested reader). To obtain a majorization of this

PI’[XO = th] ~

probability, we may note, for instance, that it follows that there exists an A (which
only depends on ¢g) such that for all ¢ > A,

Pr[To1 |w=0] < B/Vt

where B = 1/1/qo(1 — qo). Thus, for ¢t > A and any

1

€ > mﬂi(l — )1 = qo)

Sl
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(22) is a strict inequality, which means that sincere voting on signal s; = 1 is strictly
optimal for the considered voter ¢ = 2t + 1. We also note that the lower bound on &
equals
fil—p)(l—-q) B
(1 —q)p+ (1 —p)1—q) vt
It follows that there exists a constant B’ (which depends on all the parameters) such
that for ¢ > A and ¢ > B’/\/t, sincere voting on signal s = 1 is strictly optimal for
all voters. The parameter values (a;, ;) for different voters all belong to a bounded

set ©, so we can take B’ to be a constant, independent of ¢.

If all voters vote sincerely on signal s = 1, then the random number N of votes 1
among voters j = 1, ...2¢, conditionally on w = 1 can be decomposed as N; = X, + ),

where
2t

=) 1{s;=1]|w=1}
=1

and
2t

y1221{5j:()/\vj:1|w:1}
=1

Here X is binomially distributed with parameters 2¢ and ¢;. Again we note that
PI‘[Z | W = 1] = PI‘[./\/’l :t] = Pr[.)(l—l—yl :t]

t
= > PrlXy =k -Pr) =t — k]
k=0
< max Pr[AX] = k]
0<k<t

The mode of the binomial distribution of X} is reached at |2¢;t|, an integer that

exceeds t. It follows that

max Pr[X; = k| = Pr[X; =t] = <2t> a(1 —qo)’

0<k<t t
Using Stirling’s approximation formula, one again finds that this quantity is decreas-
ing (this time exponentially) with ¢.

The same reasoning as above can be applied to equation (21): the negative term,
—a;p(1 — 1) Pr[7; | w = 1], is asymptotically close to zero, and we conclude that
there exist numbers A’ and B” such that if t > A’ and ¢ > B’/\/t, inequalities (21)
and (22) are both strict for all ¢, which means that all voters vote sincerely on both
signals. This establishes claim (ii).
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9.8. Corollary 6. Suppose first that w = 0 and consider sincere voting under a
randomized voting rule f.,, for a committee of fixed size n = 2t + 1. The probability
that committee member ¢ then votes s; = 1 is, by definition 1 — ¢qy. If the collective
decision is taken by majority rule applied to all n votes, the probability of a wrong
decision, X; = 1, is some number Q); € [0, 1]. So the probability of a wrong decision,
given w = 0, is

PriX, =1|w=0]=¢(1—q)+ (1—¢e)Q:

Since €, — 0, this probability tends to 0 if Q; — 0 as t — oo . It thus remains to
prove that ); — 0. We proceed just as in the proof of Condorcet’s jury theorem.
First note that, since n = 2t + 1 is odd:

2t+1
Qi = Pr [Zsi>t|w:0]
i=1

Conditional upon w = 0, the signals s; are independent, with the same Bernoulli
distribution. Hence, according to the Central Limit Theorem, % > s, given w = 0,
converges in distribution to the normal distribution with mean 1 — ¢y and variance
qo(1 — qo)/n. Since gy > 1/2:

12t+1 1
A [;Z&ﬁ'“:o] =0

i=1
The same argument applies to the case w = 1.

9.9. Proposition 3. Let n=2t+1, pn=1/2 and gy = ¢ = ¢. In order to prove
the first claim in the proposition, let p (A) be the conditional probability for any given
committee member ’s vote to be pivotal, conditional upon the event that ¢ is not a
noise voter. For A = 0 we have, from the calculations in our baseline model,

p(0) = ( " >'[Q(1—Q)]t

For A > 0:
A (I-=X)n

p(A) = mp(l) + mp

(0)
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so it remains to identify p (1). We obtain

2t—1 — _
< t ) [ (1= +¢ (1= 9)]
2

tt—1>.[q(12—q)]t,(1iq+é) _

t—1\ [¢(@—q)]"
t >#

p(l) =

[\

Hence, for any t > 1:

p(H) 1

p(0)  4q(1—q)
and thus p (A) /p(0) > 1 for all ¢ € [1/2, 1] with strict inequality when ¢ > 1/2. This
proves the first claim in the proposition.

In order to prove the second claim, suppose that voter ¢ is an informed voter
with signal s; = 0. Conditional upon being pivotal under majority rule, what is the
conditional probability for each state? Assume first that A = 0. We are then back
in the standard model and the conditional probability for state w = 0, conditional
upon ¢’s signal s; = 0 and being pivotal under sincere voting, is ¢ (the ¢ other signals
0 cancel the ¢ other signals 1, because p = 1/2 and go = ¢1). Secondly, assume that
A = 1. Being pivotal, ¢ knows that there are either ¢ signals 0 and ¢ — 1 signals 1, or
t — 1 signals 0 and ¢ signals 1, with equal probability for both events (since the noise
voter randomizes uniformly). The conditional probability for state w = 0, conditional
upon 7’s signal being s; = 0 and upon #’s vote being pivotal under sincere voting, is
no less than ¢. To see this, let 7 be the event of a tie among the 2t other committee
members (including the noise voter), let Ny and N; be the (random) numbers of
signals 0 and 1 among the other 2t — 1 informed voters:

Prlo =07 A si=0] = 3Prlo=0[5=0ANo=tAN: =11+
+%Pr[w:0|si=O/\N0:t—1/\N1:t]
— %Pr[w:0|(t+1signals 0) A (t — 1 signals 1)] +
+% Pr|w =0 | (¢ signals 0) A (¢ signals 1)]
1

1
= §Pr [w=0] (t+ 1 signals 0) A (t — 1 signals 1)] + 3
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Moreover,

t+1 1 — t—1
Priw =0 (¢ + 1 signals 0) A (t — 1 signals 1)] = U4

~ 2Pr|[(t + 1 signals 0) A (t — 1 signals 1)]

and
1 _
Pr[(t + 1 signals 0) A (t — 1 signals 1)] = 3 [¢7 (1~ Q) (1 — )t ¢ ]

Hence,

1 1 1 (] _ o)t

Prlw=0|7 A 5,=0 = =+=- qt—(l q) —
22 ¢ (1-q +(1-q ¢!
1 1 2
— — + — . —q 5
2 2 2+(1-9

It is not difficult to verify that the quantity on the right-hand side exceeds ¢ when
1/2 < ¢ < 1 and equals ¢ when ¢ = 1.
A similar calculation holds for the case when s; = 1.
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