• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
03
Декабрь

Дифференциальные уравнения

2024/2025
Учебный год
RUS
Обучение ведется на русском языке
5
Кредиты
Статус:
Курс обязательный
Когда читается:
2-й курс, 1, 2 модуль

Преподаватели

Программа дисциплины

Аннотация

Курс посвящён основам теории обыкновенных дифференциальных уравнений и включает в себя изучение общей теории ДУ (теоремы существования и единственности, зависимость от параметров), линейных ДУ, устойчивости решений.
Цель освоения дисциплины

Цель освоения дисциплины

  • Освоение основных теорем базовых разделов теории дифференциальных уравнений (теорем существования и единственности, теории линейных систем, теория устойчивости)
  • Освоение основных методов для явного решения и качественного исследования дифференциальных уравнений
Планируемые результаты обучения

Планируемые результаты обучения

  • Знание общих свойств линейных ОДУ (продолжимость решений, независимость решений в точке и в целом, уравнение Лиувилля-Остроградского). Умение применять их для анализа конкретных линейных ОДУ.
  • Знание основных свойств операторов Коши и преобразований потока. Умение вычислять их в простейших случаях.
  • Знание примеров ОДУ, где отсутствует продолжимость решений на всю область определения правой части
  • Знание результатов, связывающих локальное поведение системы и её линеаризации. Умение их применять к анализу конкретных ДУ.
  • Знание условий дифференцируемости решения ОДУ по параметрам и началым условиям. Умение применить их к исследованию конкретных семейств ОДУ.
  • Знание условий непрерывной зависимости решения ОДУ от параметров и начальных условий. Умение применить их к исследованию конкретных семейств ОДУ.
  • Знание условий существования и единственности решения ОДУ. Умение применить их к исследованию конкретных ОДУ.
  • Знание утверждений о продолжимости решений ОДУ. Применение их в исследовании конкретных ОДУ.
  • Умение анализировать устойчивость неподвижных точек ОДУ с помощью функций Ляпунова и Четаева, а также с помощью линеаризации векторного поля в окрестности особой точки.
  • Умение дифференцировать и искать разложения Тейлора решения конкретных ОДУ по параметрам и начальным условиям.
  • Умение производить для конкретных ОДУ переход от уравнений высокого порядка к системам, от неавтономных систем к автономным и выполнять простейшие преобразования фазовых координат и времени
  • Умение решать линейные ДУ и системы с постоянными коэффициентами, вычислять матричную экспоненту. Умение решать неоднородные линейные ОДУ, в том числе с квазимногочленами в правой части.
  • Умение решать ОДУ с разделяющимися переменными. Умение применять различные методы для сведения различных классов ОДУ (однородные уравнения и др.) к уравнениям с разделяющимися переменными.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Элементарные свойства ОДУ и систем
  • Теорема о существовании и единственности решений ОДУ
  • Продолжение решений ОДУ
  • Непрерывная зависимость решений ОДУ от параметров и начальных условий
  • Оператор Коши и группа потока ОДУ
  • Гладкая зависимость решений ОДУ от параметров
  • Метод разделения переменных
  • Общие свойства линейных ОДУ и их систем
  • Линейные ОДУ с постоянными коэффициентами. Экспонента матрицы
  • Локальная теория дифференциальных уравнений вблизи особой точки
  • Устойчивость решений дифференциальных уравнений
Элементы контроля

Элементы контроля

  • неблокирующий Домашние задания
    Домашние задания выдаются 1 раз каждые 2-3 недели. Работы (сканы/фото) присылаются в указанный срок с корпоративной почты студента закреплённому за ним учебному ассистенту по дисциплине
  • неблокирующий Проверочные работы на семинарах
  • неблокирующий Коллоквиум
  • неблокирующий Контрольная работа
  • неблокирующий Письменный экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0,12*(Домашние задания)+0,21*(Проверочные работы)+0,12*(Коллоквиум)+0,18*(Контрльная работа)+0,4*(Экзамен)
Список литературы

Список литературы

Рекомендуемая основная литература

  • Обыкновенные дифференциальные уравнения : учеб. пособие для вузов, Арнольд, В. И., 1984

Рекомендуемая дополнительная литература

  • Лекции по теории обыкновенных дифференциальных уравнений : учебник для мех.-мат. фак. ун-тов, Петровский, И. Г., 1970

Авторы

  • Клименко Алексей Владимирович
  • Ильяшенко Юлий Сергеевич
  • Сапонов Павел Алексеевич