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1. Introduction

The well-known problem of automatic classification (further
referred to as AC, for brevity) consists in the division of a given set of
objects into several non-intersecting subsets (usually called classes,
aggregates, clusters, etc.). It is required that objects belonging to the same
class be in one sense or another, closely connected or similar, whereas
objects belonging to different classes should be as dissimilar as possible
and could easily be discernible. The informal character of the AC
problem, its various statements and applications, numerous approaches
and methods of solution are comprehensively described in several
monographs and reviews (see e.g. Aivazyan et al, 1989, Barseguyan et al,
2007, Braverman and Muchnik, 1983, Filippone et al, 2008, Gordon,
1999, Luxburg, 2007, Mirkin, 1996, Mirkin, 2005, Newman and Girvan,
2002, Newman, 2004).

In this paper, the AC problem is considered in the most
conventional form. Namely, it is assumed that a set of objects is given
such that for all pairs of these objects a degree of dissimilarity (or
similarity) has been already determined. The information on dissimilarity”
similarity is usually presented in one of the following three ways:

1) a pattern matrix (also called entity-to-variable data table and

objects/parameters matrix);

2) a dissimilarity (similarity) matrix;

3) an undirected graph.

In order to solve the AC problem, a new algorithm is proposed. This
algorithm finds the “correct” classes in diverse situations proceeding only
from the initial data (the set of points in the Euclidean space, dissimilarity
matrix, graph), with no additional assumptions of stochastic, geometric or
other character, either explicit or implicit. Despite the large number of
methods proposed for the solution of the AC problem, there are
absolutely no methods that could find intuitively correct classifications
even in simple cases of various characters. (An attempt to produce even a
cursory review of these methods would make this paper several times
longer.) Let us consider, as an example, the six sets shown in Fig.1. Even
though it is possible to find a method coping with it for any of these sets,
none of these methods is able to cope with all the sets.

In the suggested approach, the initial data on the problem are
presented by the well-known neighborhood graph (see e.g. Luxburg,
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Fig.1. Simple two-dimensional classification problems

2007). Graph vertices are in one-to-one correspondence to the given
objects. Any vertex v is connected to 4 or 5 other vertices, which
correspond to the objects that are closest to the object corresponding to
vertex v. The proximity of objects is determined either immediately by
the given dissimilarity matrix or by the Euclidean distances between the
objects, calculated from the given pattern matrix. It is worth noting that
the presentation of AC problem by a graph is the most general description
— exactly because it uses the “softest” (non-numerical) data on the
connections between objects to be classified. In the framework of the
suggested approach, only such essentially qualitative data on the
connections are used.

Basically, throughout the paper | consider the sets of points on the
plane (two-dimensional points). The idea is as follows. It is well known
that AC is an informal problem. For two-dimensional sets considered,
intuitively correct classifications are obvious. If a formal method cannot
find them, then it is hardly probable that the same method is able to
reveal cluster structures in more complicated multi-dimensional cases or
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in the problems presented by the dissimilarity matrix. Still, as will be
further demonstrated, the suggested approach copes not only with two-
dimensional problems (substantially more complicated than the problems
shown in Fig.1), but also with multi-dimensional data and the
dissimilarity matrix.

The analysis of known AC methods demonstrates that they
successfully tackle some complicated AC problems and fail in other
problems seemingly much simpler. Importantly, both types of problems
are different for different methods. It is probably the dissatisfaction with
this fact that triggers the emergence of more and more AC methods; still,
the situation is practically not improving. One can therefore assume that
no formal model could be proposed that could offer a sufficiently
description of correct classification. Therefore the approach suggested
here (unlike many others, including those ones on which our approach is
based technically) does not attempt at finding the only correct
classification using only one formal model. Instead, a multistage
procedure is proposed. The result of each stage is a family of
classifications which is first gradually expanded and then is gradually
contracted so that the output of the entire procedure almost always
amounts to one classification. From this viewpoint, the approach is close
to genetic algorithms because the latter also deal with sets of solutions
(populations) rather than with individual solutions. An additional
advantage of this approach is that it is possible to stop after a particular
stage and select one of the few remaining classifications using some of
the known methods. Since the remaining classifications are reasonable
enough, applying the known methods can prove essentially more efficient
than applying them from the start, which requires hard calculations with
no guarantee of results.

The material is structured as follows. In the Introduction, the
particulars of the suggested approach are briefly described. In Section 2,
the used version of the frequency method of dichotomy is presented in
more detail. Section 3 outlines the construction of a family of
classifications using a new divisive-agglomerative procedure (further,
DAP for brevity). In Section 4 the most external cycle of the suggested
general AC algorithm is presented: iterative constructions of families of
classifications and the selection of stochastically stable classifications, i.e.
classifications belonging to all families found by DAP under different
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initializations of the randomizer. Section 5 offers examples illustrating all
stages of the suggested general AC algorithm. In Section 6,
classifications found by the suggested algorithm are compared with those
obtained by several known methods for the same initial data. In
conclusion, the main features of the suggested approach to AC are
summarized and some new statements are discussed.

2. Frequency Dichotomy Algorithms

2.1. Newman-Girvan Algorithm. In the article of Newman and
Girvan, 2002, an entirely new approach to graph decomposition — and
thereby to the AC problem — was suggested. A cut of the initial graph is
found as a result of some operations with no prior optimization
requirements or other conditions imposed on this cut. We will outline the
essence by citing the article.

“We define the edge betweenness of an edge as the number of
shortest paths between pairs of vertices that run along it. If there is more
than one shortest path between a pair of vertices, each path is given equal
weight such that the total weight of all the paths is unity. If a network
contains communities or groups that are only loosely connected by a few
intergroup edges, then all shortest paths between different communities
must go along one of these few edges. Thus, the edges connecting
communities will have high edge betweenness. By removing these edges,
we separate groups from one another and so reveal the underlying
community structure of the graph.”

The formal algorithm for identifying communities is presented in
the article as follows.

Newman-Girvan Algorithm

1. Calculate the betweenness for all edges in the network.

2. Remove the edge with the highest betweenness.

3. Recalculate betweennesses for all edges affected by the removal.

4. Repeat from step 2 until no edges remain.
It is clear that during the execution of the algorithm every increment (by
1) of the number of network connectivity components amounts to the
division of one of the groups into two parts, which results in an
emergence of a hierarchical structure of groups (or communities)
determined only by the initial graph. The calculation of betweenness
degree is reduced to the determination of shortest paths for all pairs of
vertices; as it is well known, this is a computationally efficient operation
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with an upper estimation of n®. Subsequently (see Newman, 2004) several
modifications of this approach have been suggested, the most important
of which being:
e use of random (instead of the shortest) paths for the calculation of
edge betweenness;
o use of a relatively small part of pairs of vertices (instead of using
all of them) for the estimation of edge betweenness;
¢ edge removal based on this estimation.
In view of the above, it seems more convenient to use, instead of the
notion of “edge betweenness”, the notion of “edge frequency” which
should be understood as the number of occurrences of edges in the
constructed paths. With these modifications, the algorithm of graph
division into two parts can be described as follows.
Generalized Newman-Girvan Algorithm
1. Set the current frequency at every edge equal to zero.
2. Choose randomly two vertices of the graph.
3. Find by any method a path between vertices chosen at the previous
step. If no such path exists, go to step 7.
4. Add 1 to frequencies at all edges included in the path found at step
3.
5. Under certain conditions return to step 2. Such conditions may
include, e.g. the fact that steps 2 to 4 have been applied a certain large
number of times, or that stochastic stability has been achieved, i.e.
when the indices of edges with the maximal frequency have not
changed for a long time (obviously, different realizations of this step
are possible).
6. Remove the edge with the maximal frequency and return to step 1.
7. Stop. The graph is divided into two connectivity components that
correspond to the required groups.

The above approach could be naturally referred to as frequency
approach, since it is based on the calculation of frequencies of occurrence
of graph edges in the consecutively constructed paths. It can be applied to
every AC problem provided it is presented by a graph, in particular, by a
neighborhood graph mentioned previously. An obvious drawback of
Newman-Girvan algorithm (recognized by its authors) is that after the
removal of an edge with the highest betweenness at step 2 all
accumulated statistics of edge betweenness is deleted and, hence, cannot
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be used subsequently. Had it been possible to save these data for the
consecutive steps, it could essentially accelerate the algorithm. The
following is said on the issue in the cited article by Newman and Girvan
(2002): “To try to reduce the running time of the algorithm further, one
might be tempted to calculate the betweennesses of all edges only once
and then remove them in order of decreasing betweenness. We find
however that this strategy does not work well, because if two
communities are connected by more than one edge, then there is no
guarantee that all of those edges will have high betweenness — we only
know that at least one of them will. By recalculating betweennesses after
the removal of each edge we ensure that at least one of the remaining
edges between two communities will always have a high value.”

It should be added that the same is true for the generalized
Newman-Girvan algorithm. The next section shows how to avoid this
trap.

2.2. Algorithm of constructing a uniform cut. Note that in the
previously proposed frequency algorithms any path connecting a certain
pair of vertices is produced independently of all the paths already
produced. However, if all paths already produced are taken into account
we can obtain cuts between two sets of vertices whose all edges have the
same maximal frequency. Then concurrent removal of all edges with the
maximal frequency, performed once, produces the desired dichotomy of
the graph.

We will first present the algorithm itself and then give the
necessary comments and examples of its performance in various
situations. Though the algorithm belongs to frequency algorithms of
classification, it can be considered new due to the presence of essential
distinctive features. Importantly, unlike previously known versions of
frequency algorithm, the algorithm under discussion finds an approximate
solution of some graph optimization problem which offers a reasonable,
if, as in other cases, incomplete, estimation of classification correctness
(see the end of this section for details).

Minimax frequency algorithm of graph dichotomy. The input of the
algorithm is an undirected connected graph G. The algorithm has two
integer parameters:

¢ the maximal initial value f of edge frequency;

o the number of repetition T for the collection of statistics.
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1. Preliminary stage. Frequencies at each edge of the graph are initialized

by integer numbers uniformly distributed over the segment [0, f - 1].

2. Cumulative stage. Operations of steps 2.1 — 2.3 are repeated 7' times:
2.1. Random choice of a pair of vertices of graph G.
2.2. Construction of a minimax path (path connecting the two vertices
chosen at step 2.1, whose longest edge is the shortest one among all
such paths) by Deikstra algorithm. The length of an edge is its current
frequency.
2.3. Modification of frequencies. 1 is added to each frequency of all
edges belonging to the path found at the previous step, 2.2.

3. Final stage.
3.1. The maximal value (achieved after T repetitions) of frequency fiax
at graph edges is stored.
3.2. Operations of steps 2.1 — 2.3 are executed once.
3.3. The new maximal value of frequency f..q at graph edges is
determined.
3.4. If froq = frmax, FetUrn to step 3.2; otherwise go to the next step 3.5.
3.5. Deduct 1 from frequencies in all edges forming the last found
path.
3.6. Remove all the edges at which the frequency is equal to fiax.
3.7. Find two connectivity components of the modified graph. The
two constructed sets of vertices form the solution of the considered
dichotomy problem.

We will first of all prove that immediately before the execution of
step 3.6 the set of all edges whose frequency is equal to the maximal one
indeed contains a cut of graph G.

Statement 1. Prior to the execution of step 3.6:

a) the maximal value of frequency over all the edges of the graph is equal
to fiax, Where fiax IS the number stored at step 3.1;

b) the set of all the edges whose frequency is equal to fy.x, contains a cut
of graph G.

Proof. Step 3.2 refers to steps 2.1 — 2.3. If a new minimax path at step 2.2
is found, exactly one of the following two cases is possible:

1. There exists a minimax path connecting the vertices chosen at

step 2.1 whose all edges have frequencies lower than fi..

2. No such path exists.




In the first case, after every addition of 1 (at step 2.3) to frequencies at all
edges of the given path their maximal value (taken over all edges of the
graph) does not exceed fn.x. On the other hand, at least at one edge its
frequency increases by 1, whilst at no edge the frequency can decrease.
Both these facts mean that after a certain finite number t of executions of
steps 3.2—3.3—3.4—3.2 (t < mefax + 1, where m is the number of edges
in the graph) at step 2.2 we encounter with case 2. In case 2, at any path
connecting vertices chosen at step 2.1, there exists at least one edge
whose frequency is no smaller than f.... Since up to now we have only
encountered with case 1, then, as it was previously established, no
frequency exceeds f.x. Therefore at any path connecting vertices chosen
at step 2.1, there exists at least one edge whose frequency is equal to fiay.
Hence, the set of all the edges whose frequency equals f.x, coOntains a cut
of graph G. Adding 1 to frequencies of all edges of the constructed path
at step 2.3 and subsequently subtracting 1 at the same edges at step 3.5
does not change frequencies, which proves a) and b) and, hence,
completes the proof of statement 1m

Figures 2a and 2b illustrate cases 1 and 2 considered in the proof of
Statement 1. The cut itself, of course, depends upon the selection of pairs
of vertices and the distribution of frequencies at edges that formed itself
prior to the execution of step 3.1. This is the reason why the cumulative
stage (which claims the most part of the time) should be carried out. As a
result of this stage the required cut becomes stable in the sense that the
edges that form the cut no longer depend upon the number T of the
constructed minimax paths. Yet this cut can depend on the initialization
of the random generator. So, the presence (or absence) of a dependence
of the cut (and, hence, the corresponding dichotomy) upon the
initialization of random generator turns out to be an important feature of
the AC problem itself rather than the classification method used (see
Section 2.3 for more details).

Let us consider the connections between the proposed algorithm
and the known optimization statements for a balanced cut in a graph. We
will first introduce the necessary notations. Let N be the number of
vertices, M the number of executions of steps 2.1 — 2.3 together
(excluding the last one) that take place at stages 2 and 3 of the algorithm,
Aand B denote any division of the set of graph vertices, d(A, B) denote
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Fig.2a. The dashed line marks the path connecting vertices a and b in which all
edges have frequencies lower than the maximal frequency f,.

Fig.2b. The dashed line marks the path connecting vertices a and b located at
either side of the cut, in which all edges have frequencies equal to the maximal
frequency. Necessarily, such a path passes along an edge with the maximal
frequency fp.

the cardinality of cut (A, B). Note that M equals the number of all the
constructed paths in the graph and M > T. Let us now consider all the
paths (from among the constructed ones) whose one end belongs to A and
the other end to B. The sum S(A, B) of frequencies at all the edges from
the cut (A, B) is no larger than the number of all such paths (to be denoted
as M(A, B)). First, every path increases the sum of frequencies at least by
one (if it intersects the cut (A, B) once, whereas some paths can intersect
it several times); second, we need to add the initial frequency values (see
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the preliminary stage 1 of the algorithm). Since the vertices are chosen at
random, the probability of the fact that one end of a path belongs to A and
another to B is approximately equal to (2¢|AJ*|B|) / N2, Therefore for the
total number of such paths an approximate equality
M(A, B) = ((2+|Al*|B) N*)*M 1)
takes place. Assume (for the purpose of rough estimation) that any path
from A4 to B intersects the cut (A, B) exactly once. Since the number of
paths M significantly exceeds the maximal value of initial frequency f,
the following rough estimation takes place:
S(A, B) = ((2+|A[*[B) N*)*M. )
Dividing both parts of this approximate equality by the number of edges
in the cut (A, B), we receive
f(A, B) =S(A, B)/A(A, B) = (((2+|Al*[B) N°)*M) M(A, B), 3)
where f(A, B) is the mean frequency at edges belonging to the cut (A, B).
It is very important that the proposed algorithm finds such a cut
(A*, B*) whose edges have the same maximal frequency. This means that
for any other cut (A, B)
f(A, B) < f(A*, B¥). (4)
Formulae (4) and (3) together mean that the cut (A*, B*) maximizes
(approximately, in view of the assumptions made) the expression
(((2+|A*|B]) N?)*M) A(A, B) over the set of all cuts of the considered
graph. Eliminating from the latter expression the constants 2, N and M,

common for all the cuts, we obtain the expression
_ l4]x|B|
D(A, B) = AAB) 5)
Let us call the function D(A, B) the decomposition function of a graph.
The above deliberations suggest the following plausible conclusion: the
cut (A*, B*) found by the algorithm approximately maximizes the
decomposition function (5) of the considered graph. The fact that in some
cases this cut depends upon the initialization of a random generator (for
which reason alone it cannot strictly maximize function (5) defined only
by the graph itself) expresses exactly the approximate character of the
solution of this optimization problem. Relevant examples are given in the
next Section 2.3.
The same optimization problem (named RatioCut Problem) is
considered in Luxburg, 2007, where its connection with spectral
classification methods is demonstrated. Yet the essential issue concerning
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this NP-hard optimization problem does not consist in the search of its
approximate solutions but, rather, in the elucidation of adequacy of this
function to neighborhood graph decomposition, or, to be specific, does its
maximization by the suggested algorithm allow finding intuitively correct
classifications? Clearly, this question is informal and the answer can only
be received through experiments.

2.3. Examples of Dichotomies Constructed by the Suggested
Minimax Algorithm. Dichotomies obtained by the algorithm for all the
six 2-dimensional sets shown in Fig.1, are presented in Fig.3. In this and

Fig.3. Solutions of six simple two-dimensional classification problems

all the subsequent figures that present classification results, only edges
connecting different classes are shown; lines intersecting these edges
separate the found classes. In all six cases, not only the same program
was used but the few variable parameters remained the same: f=10, T =
1000, in the construction of the neighborhood graph every vertex was
connected to four closest vertices. The results do not depend on the initial
seeds of the random generator. In no cases do they contradict the intuitive
idea of the correctness of classification.

13



However this is not always the case, which set off the elaboration
of the general AC algorithm described further in this work. In this
algorithm, the suggested method of dichotomy is used as an essential step
at the divisive stage (see Section 3). To understand the necessity of a
deeper analysis, consider the following example.

Example 1. Two two-dimensial sets are shown in Fig.4a and 4c.
The dichotomy result for the set of Fig.4a is shown in Fig.4b. Similarly to
all six cases shown in Fig.1 and 3, the result does not depend on the
initialization of the random generator. The cut, found by the minimax
algorithm, maximizes the decomposition function (5) over the set of all
cuts of the neighborhood graph and determines an intuitively correct
classification into two classes.

Fig.4. Stable and instable dichotomies

In contrast to the above, using the same algorithm for a similar set
shown in Fig.4c, leads to results, perceptibly depending on the
initialization of the random generator, as is clear from Fig.4d, 4e, and 4f.
In these cases the found solutions do not coincide with the one intuitively
obvious. Finally, the value of the decomposition function for the correct
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cut is equal to 31549, whereas for the incorrect cut found by the minimax
algorithm and shown in Fig.4d it is equal to 40382. In two other cases
this function is also substantially greater than its value on the correct cut.
This simple example once again emphasizes the fact that we have to be
cautious when contemplating sufficiently popular balanced criteria of
classification (as well as other formal models of classification that are
applied without good reason and with no clear identification of the type
of AC problems for which the model is adequate).

The reason why criteria (5) fails in the case considered is clear
enough. The quotient of the maximal and the minimal numbers of points
belonging to correct classes in the set of Fig.4c is substantially greater
than in the set in Fig.4a and in all sets in Fig.1. Therefore the numerator
|A|x|B|] in (5) is so small relative to the cardinality of product of
approximately equal parts that it cannot be compensated by the
denominator in (5), which is equal to the relatively small number of edges
in the correct cut. The same phenomenon is true of other frequency
algorithms of dichotomies (and even to a greater extent because it is
manifested at a smaller ratio of cardinalities).

In order to retain the strong properties of the suggested method of
dichotomy and to avoid its weakness, it is natural to consider consecutive
dichotomies instead of one. For instance, using the same algorithm for the
maximal of the two classes shown in Fig.4d (as far as the number of
points is concerned), yields a division into three classes shown in Fig.5. If
we now pool the two largest classes, we will obtain precisely the correct
classification. In the next Section 3 the essential procedure of the
suggested general AC algorithm is described; this procedure allows
finding a family of classifications, including the correct one, by
consecutive execution of (1) the divisive and (2) the agglomerative
stages.

3. Four-stages Divisive-Agglomerative Procedure

This section describes the central part of the proposed
classification algorithm, which we will refer to as divisive-agglomerative
procedure (DAP). The procedure, whose flowchart is shown in Fig. 6,
consists of four stages. The input is a neighborhood graph, constructed
according to the initial data. The parameters of the procedure are the
parameters of dichotomy (listed immediately before the minimax
algorithm in Section 2.2) and an additional parameter k introduced below,
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Fig.5. Result of two consecutive dichotomies

which is the only one that is related to DAP itself. The output is a family
of classifications of the initial set.

‘ AGGRE- ELIMI- PRESEN-

INPUT SIV OUTPUT

> Dl;’l-‘[ 22]’25 »| GATIVE NATION TATION |———
’ STAGE STAGE STAGE

Fig.6. Flow-chart of the divisive-agglomerative procedure

Before we describe the stages of DAP, we will consider an
auxiliary modification algorithm of for the matrix of class connections in
the case of uniting two classes. This algorithm is used as a separate
repeated step in the divisive and agglomerative algorithms presented
below.

Algorithm of connection matrix modification. The input of the
algorithm consists of a symmetric mxm matrix D as well as indices i and j
(i <j). The output of the algorithm is a similar matrix D’ for (m-1)
classes, where the “new” i-th class is the union of the “old” i-th class and
the j-th class. It is assumed that the value of connection between any one
of the remaining classes and the new united class is equal to the sum of
values of connection between this particular class and the i-th and the j-th
classes, while all the other connections remain the same. This assumption
is natural in the considered situation, where the value of connection
between two classes is equal to the number of edges connecting the
corresponding subgraphs of the initial graph.

1. For all the elements of i-th row of matrix D let dj = dix + djs.
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2. For all the elements of i-th column of matrix D let di; = dy; + .

3. Let dii =0.

4. Shift up all the rows starting with (j+1)-th row: dgt = ds+1: (S =1, ...,
m-2;t=0, 1, ..., m-1).

5. Shift left all the columns starting with (j+1)-th column: dis = di s+ (S
=j,...,m2;t=0,1, ..., m-1).

6. Delete the last row and the last column of matrix D. The obtained
matrix D’ is the algorithm output.

We will describe three stages of DAP separately, illustrating the
description by an example.

3.1. Divisive stage. Remember that a divisive AC algorithm
consists in the consecutive division of the initial set: first the whole set is
divided into two parts, whereupon one of the two parts is divided into two
parts once again, and so on, until some classification is obtained that
seems satisfactory. It is clear that the answers to the most essential
guestions — how to divide a set into two parts, and which of the already
constructed parts is selected for the next division — determine the essence
of the algorithm being designed. These important issues are reflected in
the following algorithm.

Divisive algorithm. The input of the algorithm is an undirected
connected graph G. The only algorithm parameter is a counting number
k, equal to the maximal number of parts in the graph division. The output
of the algorithm is described below.

1. Initialization. Define the integer variable d (the number of the
current dichotomy); a one-dimensional array P of length k-1 (the
array of indices of subgraphs, consecutively chosen for division); an
array S of length k, whose components are subgraphs. Let d = 0; S[d]
= G, where G is the given input graph. Note that P[0] = 0 by
construction.

2. From subgraphs S[i] (0 < i < d), select a subgraph S[im] with the
maximal number of vertices.

3. Let P[d] = im.

4. Divide subgraph S [im] into two subgraphs using the algorithm of
dichotomy described in Section 2.2; denote these subgraphs as S, and
Sp.

5. Let S[im] = S,, S[d+1] = S,

6. Letd =d+1.
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7. 1f d < k-1, go to step 2.
8. Construction of a family of classification of set A={0, 1, ..., k-1}.
8.1. Define a classification Cjf~2 of the set A= {0, I, ..., k-1} into
k classes: AK2[[1={i} (=0, 1, ..., k-1).
8.2. For i = k-3, ..., 0 recurrently define classifications Cf,, of the
set A= {0, 1, ..., k-1}into (i+2) classes as follows:
AL, i) = AT =0, 1, ..., i+1; j £ P[i]), (6)
AL, [P[iT] = AIL[PLi]] U AL 3[i+2]. (7)
9. Define a symmetric matrix D of dimension kxk whose element dj; is
equal to the number of edges connecting the i-th and the j-th
subgraphs from array S (i, j =0, 1, ..., k=1; i #j). For this purpose,
introduce an array « of length N, where N is the number of vertices of
the initial graph G. For all vertices v of the subgraph S[i] let a[v] =i (i
=0, 1, ..., k-1). Checking consecutively all the edges of the initial
graph (specified as an array of pairs of adjacent vertices), add one to
the element of matrix D with indices (p, q), where p = a[Vv], g = a[w], v
and w are the ends of the next edge, and p < g.
10. Construction of the family of matrices.
10.1. Let D2 = D.
10.2. For i = k-3, ..., 0, recurrently define a new matrix D},
proceeding from the matrix Dl-‘j31 and indices P[i+1] and (i+2) by
using the above considered algorithm of modification of the
connection matrix.
11. Stop.
The output of the divisive algorithm is constituted by the array S of
subgraphs; the family of classifications {D},,} (i = k-2, ..., 0) of the set
A=1{0, 1, ..., k-1} into (i+2) classes; the family of matrices {DF1} (i =
k=2, ..., 0). We will henceforth refer to these classifications and matrices
as basic. Subgraphs S[0], S[1], ..., S[k — 1], which are the components of
array S, are henceforth referred to as blocks, because all classes in all
subsequently constructed classifications consist only of these components
and/or their unions.
Example 2. Consider the set shown in Fig.7a. Assume k = 4. The
consecutive dichotomies are shown in Fig.7b — 7d. In this case P = (0, 0,
1). The array S consists of four blocks, shown in Fig.7d. The basic
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a) initial set b) after 1st dichotomy

Ly [ SeiEe e
d) after 3rd dichotomy

c) .lltuanllthomm}
Fig.7. Consecutive dichotomies

classifications of set A = {0, 1, 2, 3}, in accordance with steps 8.1 and 8.2

of the divisive algorithm, are:

€2 = {{0.23.{1.3}}, €3 = {{0}.{1.3}.{2}}, CZ = {{0}{1}{2}.{3}}. (8)

In accordance with steps 9 and 10.1 of the divisive algorithm we obtain

(9)

S NO
N RO
S O
S ON

Further, for i = 1 we have P[i+1] = 1, i+2 = 3 and in accordance with
step10.2 of the divisive algorithm and the algorithm of connection matrix
modification from DZ we obtain the matrix

0 0 7
D1 = (0 0 1>.
7 1 0
Similarly, for i = 0 we have P[i+1] = 0, i+2 = 2, and we obtain from D}

(0 1). Thus, the following three basic matrices are

the matrix D; = 1 0

found:
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0 07 0 00 7
2_(0 0 1 2 1_ _(0 1
D4_ 7 1 0 0 ’D3_(g 2 é>’D2_(1 O) (10)
0 2 0O

The arrays S of four blocks, the families of classifications (8) and
matrices (10) together form the output of the divisive algorithm in the
considered case.

3.2. Agglomerative stage. The set A = {0, 1, ..., k-1} is
considered as the initial set. The element d;; of the matrix D2, found at the
divisive stage, is considered as the value of connection between the
objects i and j; the value of connection between two subsets of A is
defined as the sum of numbers d;; over all pairs of objects belonging to
these subsets. Remember that by construction this number dj coincides
with the number of edges connecting the i-th and j-th subgraphs from the
array S. In the agglomerative algorithm described below, for every i
varying from k-2 to 0 the basic matrix D/, , and the classification C%,,
determine the new family of matrices and classifications, which we will
refer to as adjoint ones.

Agglomerative algorithm. The input of the algorithm consists of:
the family of basic classifications {C’,,} (i = k-2, ..., 0) of set A = {0, 1,
..., k=1} into (i+2) classes; the family of basic matrices {D},,} (i = k-2,
..., 0). The output of the algorithm is a family of @ of the same set A
={0, 1, ..., k-1}.

1. Construction of adjoint matrices and classifications. For every i =
k-2, ..., 0 (external cycle), the following operations are executed:

1.1. For i+1, ..., 2 (internal cycle) the next matrix Dji is defined by

the previous matrix Dj"+1 as follows:

1.1.1. Find a pair of indices s and t (s < t), such that the element
dy; of the matrix D/, is maximal.
1.1.2. Construct the next matrix D} from the matrix Df,, and

indices s and t, using the algorithm of connection matrix
modification.

1.1.3. Define the new classification Cj" of set A=1{0,1, ..., k-1}

into j classes from the classification Cj, ; as follows:

Al = AL [pl (p=0,1, ..., t-1; p#5), (11)
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Aj[p] = Aj 4 [p+1] (p=t, ..., j-1), (12)
Aj[s] = Aj44[s] Y Aj 4t (13)
2. Presentation of the output. Present all constructed classifications in
the following order, writing in one row all classifications into the
same number of classes:
C9,C3, ..., Ck=3 ck2;
ci, ..., C¥3,ck 2
......................... (14)

In (14) the first classification in every row is basic; all of them are
constructed from the initial classification Cx~2 by formulae (6) and (7).
All other classifications in (14) are the adjoint ones. The last
classifications in every row (starting from the penultimate row) are
adjoint to Cf2, penultimate classifications in every row (starting from
the third row from the end) are adjoint to C}=3, and so on, up to the
classification €, adjoint to C3. In all cases the lower index is equal to the
number of classes, while the upper index is the number of the group
written diagonally; this group contains one basic classification (the first
one in the diagonal), and all those adjoint to it as found by the
agglomerative algorithm. The output of this algorithm consists of the
family of classifications of the set A = {0, 1, ..., k-1}, ordered as shown
in (14); the basic classifications are determined by formulae (6), (7) and
the adjoint ones by formulae (11) — (13)

Example 2. Continuation. In this case three basic matrices are
specified by (10) and three basic classifications are specified by (8). We
will now come to construct adjoint matrices and classifications following
the agglomerative algorithm. Fixing i = 2 we obtain for j = 3 (see step
1.11)dy =7,s=0,t=2. Inaccordance with step 1.1.2, the matrix is

01 0

D% = (1 0 2), and in accordance with step 1.1.3 the classification
0 2 O

c? ={{0,2},{1},{3}}. Further, at i=2 we obtain for j =2 dy=2,s=1,t

= 2; the matrix D7 = ((1) (1)) C7 = {{0,2},{1,3}}. Return to the external

cycle and set i to 1. For the only j = 2 we obtain (see matrix D) dy = 7, s
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=0, t = 2, which gives D} = DY = (‘1’ (1)) and C} = €2 ={{0,2}.{1,3}}.
Finally, for i = 0 the required j satisfying the conditions 1 > j > 2, does
not exist and no adjoint matrices or classifications are constructed.

By writing out all found classifications in accordance with step 3
of the agglomerative algorithm we obtain
€z ={{0.2}{1.3}}, €3 ={{0.2}{1.3}}, €7 ={{0,2}{1.3}},
C3 ={{0}{1.3}{2}}, €F ={{0.2}.{1}{3}}, (15)
Ci = {0} {1}{2}.{3}}.
Note that the adjoint classification €2 = {{0,2},{1}.{3}} is the only
correct classification (see Fig.8). This classification cannot be constructed
directly by any number of consecutive dichotomies (e.g. it is not a basic
classification for any parameter k), which is one of the reason why we
had to introduce adjoint classifications.

\ /

Fig.8. A correct adjoint classification C%

3.3. Elimination stage. The output of the agglomeration stage is
the family of classification of the set A = {0, 1, ..., k-1} in form (14).
Since the number of classifications in the i-th row from the bottom is
equal to i, and the total number of rows is equal to k, it can be seen that
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the total number of constructed classifications is k(kz_l). Some of them

may be identical. This DAP stage is designed to eliminate these (certainly
redundant) classifications. The algorithm itself is almost obvious, the
more so as the dimension of the problem is not large (the number k of
blocks is assumed to be small enough — about 10 to 20).

Yet the comparison of two classifications of one and the same set
can be easily made even for much greater k. It is sufficient to list the
numbers in every class in the increasing order. The comparison of
classifications is obviously reduced to the comparison of sets, whereas for
ordered subsets of the same set it is reduced to consecutive comparison of
elements having the same indices — up to the first discrepancy or to the
end of the exhaustion. The output of this stage is a family of different
classifications.

Example 2. Continuation. Of the 6 classifications (15) of the set A
={0, 1, 2, 3}, only 4 are different:
¢9 = {{0,2}.{1.3}},

C3 ={{0}{1,3}{2}}, €% ={{0,2},{1},{3}}, (16)
Ci = {{0}{1}{2}{3}}.

These four classifications are shown in Fig.9.

3.4. Presentation stage. The output of the elimination stage is the
family (to be further denoted as F) of different classifications of the set A
= {0, 1, ..., k=1}. Yet the output of the whole DAP is, as was pointed out
at the beginning of the Section, the family of classifications of the initial
set of objects (e.g. vertices of the given graph G), rather than the set of
indices of blocks A = {0, 1, ..., k-1}. Transition from one family to the
other is the goal of this stage.

Of course, every block (e.g. a subgraph of the initial graph) is
uniquely defined by its index (see the description of the output of the
divisive algorithm). Therefore every classification of block indices
uniquely defines some classification of the initial set. However,
considering the subsequent operations of the suggested general AC
algorithm, it seems expedient at this stage to present every classification
into t classes as a set of t binary vectors (t=2, ..., k) of length N, where N
is the number of vertices of graph G.

Presentation algorithm. The input of the algorithm is the array S of
blocks of length k, constructed at the divisive stage (see the description
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Fig. 9. Classification a into two classes; classifications b and c into three classes;
classification d into four classes

in Section 3.1), and a family F of classifications of the set A= {0, 1, ...,
k—1}, whose elements correspond to the indices of subgraphs (or blocks)
in the array S. The output of the algorithm is the family R of
classifications of set of vertices of G, denoted below as V.
1.LetR=0.
2. For every classification C € F execute the following operations (the
external cycle by the given classifications of A= {0, 1, ..., k-1}):
2.1. Let B = @ (B denotes the set of binary vectors which defines
the classification of set V corresponding to C).
2.2. For every class X from classification C execute the following
operations (cycle by classes from the fixed classification C):
2.2.1. Define a vector x with N components and let x; =0 (i =0,
I,...,N=-1).
2.2.2. For every index peX execute the following operations
(cycle by indices from class X):
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2.2.2.1. Consider the set of vertices of subgraph S[p] (it is
given as an integer array z of length n,, whose components
are indices of vertices belonging to subgraph S[p]).
2.2.2.2. For every component y of array z let x[y] = 1
(internal cycle by vertices from one block).

2.2.3. Add the vector x to the set B: B = BU{x}.

2.3. Add the set of vectors B to the set R: R = RUB.

Thus, the output of the presentation algorithm and, hence, the output of
the whole DAP, is the family of classifications of the set of vertices of
graph G; every one of which is presented by a set of binary vectors — one
vector for each class..

To conclude this Section 3.4, we will give some comments. It may
seem possible to significantly simplify the suggested DAP. Specifically,
choose a sufficiently large value of the parameter k, make (k-1)
consecutive dichotomies using the divisive algorithm and thus find one
basic classification C¥~2 (and the corresponding basic matrix D=2 = D).
After that, find all classifications adjoint to C,’c“z, one of which is correct.
Indeed, this is how conventional agglomerative algorithms work, starting
with the initial classification, all classes of which consist of one object. In
many cases this simpler procedure also proves successful in the
framework of the suggested approach. However it is not always the case.

Example 3. Consider the set shown in Fig.10a (two two-
dimensional normal distributions consisting of 200 and 1000 points). The
basic classification C3, i.e. at k = 3, for some initializations of the random
generator is shown in Fig.10b. The only corresponding adjoint
classification €2, shown in Fig.10c, is not correct. The correct
classification in this case is the basic classification CJ, shown in Fig.10d.
This simple example demonstrates that we need to analyze all basic
classifications. It is not a problem, however because computation time
needed for all operations in the agglomerative algorithm is negligibly
small as compared to the time required by (k — 1) dichotomies in the
divisive algorithm.

There is nothing drastic in this example. Generally, for sufficiently
large k values, the classes are getting small, so that the number of edges
connecting some classes with the remaining ones may be smaller than in
the correct cut. Since in the aggregation the sets to be united are
connected by the maximal number of edges, the correct classification
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does not coincide with any classification, adjoint to the basic
classification CX~2 for large k. In some cases (in particular, shown in
example 3) this phenomenon can even happen for sufficiently small k. In
Fig.10b the wrong cut consists of 6 edges, while the correct cut has 7
edges. Therefore in the construction of an adjoint classification the sets
selected for the union are wrong, which is demonstrated by Fig.10c.

C d
Fig.10. Example of a missed basic classification
Numerous examples demonstrate that correct classifications are

indeed present among the few classifications found by the suggested
DAP. The method of their selection is considered in the next Section 4.

4. Stable Classifications
Since the suggested algorithm of dichotomy contains randomized
steps (including the determination of the initial frequencies and the
choice of every pair of vertices), the result of dichotomy is, generally
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speaking, random. Examples considered in Section 2 point to the fact that
correctness and stochastic stability are closely connected. An important
fact could be experimentally established: in all cases when the result of
dichotomy does not depend on the initialization of a random generator
(which is stochastic stability), the constructed classification into two
classes is correct, e.g. it does not contradict geometric intuition.
Conversely, in all cases (reported in this work as well as in dozens of
others) the absence of stability implies incorrectness of the constructed
classification. It is exactly this deliberation that underlies the proposed
algorithm of selection of correct classifications from among all found by
the suggested DAP.

Since the result of each dichotomy is random, all classifications
constructed by DAP and even their number are random. We propose to
repeat this procedure several times for different initializations of the
random generator. It turned out that only very few of the classifications
found belong to all of the constructed families, whereas the most of
classifications do not belong to at least some of them and, hence, can be
considered as random, instable and inessential. Classifications entering
into all the families will be referred to as stable classifications. A correct
classification is defined as a stable classification with the maximal
number of classes (of course, this number cannot exceed a preset number
k of blocks, which is the only parameter of DAP). Note that it is possible
to choose k with a safety margin, essentially greater than the assumed
maximally possible number of classes.

The idea of basing the choice of classification on stochastic
stability is not new. Yet the efficiency of this idea depends on how
natural and strong the connection is between quality of classification and
its stability. The experiments demonstrate that, within the suggested
approach, this connection is practically decisive. The matter is that
stochastic stability is analyzed for very few classifications, already
constructed on the basis of the reasonable dichotomies, and the
considered random families already contain correct classifications.
Therefore none of the experiments yield partial coincidences (50-90%)
for correct classifications. Either the coincidence is practically full (with a
small number of declining points), or it does not reach 90%. This high
stability (backed by intuitive obviousness of the results) is the strongest
argument in favor of the suggested approach. In the case of absence of
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stable classifications it may be reasonably inferred that the initial set does
has no cluster structure.

Before we give a formal description of the selection algorithm of
stable classifications we will introduce necessary formal notions and
describe auxiliary algorithms. Two finite sets A and B coincide at level o
0<a<l),if
JANB|/[AUB|>a @an
(X | denotes the cardinality of the finite set X). Two classifications P and
Q of the same finite set M into the same number of classes m coincide at
level a if it is possible to enumerate their classes Py, P, ..., Pnand Qq,
Q., ..., Qn so that sets P; and Q; coincide at level o (i =1, 2, ..., m). The
following almost evident statement takes place.

Statement 2. Let two classifications P and Q coincide at level a,
and a > 0.5. Then the one-to-one correspondence between their classes
mentioned in the previous definition is determined uniquely.

Proof. It is sufficient to prove that any class from P may coincide
at level a only with one class from Q.

Assume that it is wrong and, hence, a class 4 from P coincides at level a
with two different classes B u C from Q. Let A’=ANB,4”’=ANC.
SinceBNC=0,4"N A" =@. Two conditions of coincidence (for B
and C) can be written as:

471> (4" + |Bl)o,

|47z (47 + |Ca.

Summing up these two inequalities, after simple rearrangements we have
(14 71+4")B = (18] +IC)a, (18)
where B = 1-a.

At the same time by the definition of 4’ and 4"’

|4’ <|B|, |4 <|C], hence

(14 71+4"1) < (1B] +[C]). (19)
Since by condition o > 0.5, it implies that a. > 8. Therefore (18) implies
(14°1+14 " "Da > (IB] +|C])a,

hence (|4°|+|4°’]) > (|B] +|C|), which contradicts (19). The contradiction
completes the proof m

Algorithm of checking the coincidence at level a of two subsets of
the same set U. The algorithm is as follows. In our case every set is
presented by a binary vector with m = |U| components (see the presenta-
tion algorithm in Section 3.4).
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1. By one simultaneous survey of both vectors calculate:
1.1. The number of components with two 1s.
1.2. The number of components with at least one 1.
2. Divide the first number by the second one.
3. Compare the result with the given number a. If it exceeds o, then
two sets coincide at level a; otherwise, they do not coincide.
Algorithm of checking the coincidence at level o of two
classifications of the same set into m classes. It is assumed that o > 0,5.
1. Leti=0.
2. Leti=i+1.
3. If i > m, then the classifications coincide. Stop the algorithm.
4. Letj=0.
5 Letj=j+1.
6. If j > m, then the classifications do not coincide. Stop the algorithm.
7. Check the coincidence at level a of sets P; and Q. In the case of
coincidence go to step 2, otherwise go to step 5.
Statement 2 guarantees the correctness of the algorithm. The matter is
that no analysis of different one-to-one correspondences between the
classes is required. It is sufficient to find, for every class from the 1st
classification, a class from the 2nd classification that coincides with it.
Algorithm of selection of stable classifications. This algorithm is
the external cycle in the considered general AC algorithm. The input of
the algorithm is the given graph G; the output is a set (it may be an empty
set or a set consisting of more than one element) of correct classifications
in the AC problem, presented by the graph G. Parameters of the
algorithms are two numbers r and o: r is equal to the number of
repetitions of DAP; o sets a minimal level of coincidence of
classifications for which the conclusion is made with regard to stochastic
stability (the typical value of a lies in segment [0.90 — 0.95]). The
remaining parameters have been described above. Classifications found
by the algorithm will be called (r, a))-stable.
1. Initialization. Execute DAP once. Let F = C, where C is the set of
classifications found by DAP; F = {F,, ..., F.}. Lett=0.
2. Lett=t+1. Ift=r,goto4.
3. Execute DAP once and denote the set of found classifications by C
= {Cl, ceey Cmt}
3.1. Leti=0.
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3.2. Leti=i+1.

3.3.Ifi>n,thengoto 2

3.4. Let j=0.

3.5. Letj=j+1.

3.6. If j <m,, then go to 3.9.

3.7. Delete the classification F; from the list F = {F,, ..., F.};

reduce the indices of all classifications from (i + 1) by 1 and letn =

n-1.

3.8. If n = 0, then (r, a)-stable classifications do not exist. Stop.

Otherwise, go to step 3.2.

3.9. Check the coincidence at level a of sets F; and C;. (using the

above described algorithm). In the case of coincidence go to 3.2;

otherwise go to 3.5.

4. The current set F = {F,, ..., F.} is the set of all (r, a)-stable
classifications. Stop.

Some comments to the last algorithm are needed. If classification
Fi does not coincide with any of new classifications C; (j =1, ..., my), this
means that F; is not a stable one. Therefore at step 3.7 this classification
is deleted from the list F. If at this step all classifications from F are
deleted, then the algorithm stops at step 3.8. But if for classification F; a
classification C; coinciding with it has been found (which is established at
step 3.9), then F; is still considered a stable one, and after returning to
step 3.2 the next classification Fi.; is checked. The return to step 2 after
step 3.2 means the transition to the next iteration in the external cycle
over new executions of DAP.

Example 2. Continuation. A single execution of DAP yields 4
classifications shown in Fig.9. From the viewpoint of stability, the most
crucial one is the classification into 3 classes shown in Fig.9b, which is
the basic classification €I = {{0}.{1,3},{2}}. Let the number r of
repetitions of DAP be equal to 4. In four executions of DAP the
classifications, corresponding to €3, are shown in Fig.11a — 11d.

The classifications in Fig.11a and 11b coincide at level o ~ 0,85
(class {2} consists of 483 points in the first classification and of 410
points in the second one. It is clear that at the level 0.9 or higher these
classifications are not stable. The same is also true of the classification
into 4 classes corresponding to the basic classification C? =
{{0}{1}{2}.{3}} (see Fig.9d). Yet the classifications into 2 and 3
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classes shown in Fig.9a and 9c are stable at level 1. Therefore the
classification from Fig.9c is taken as a formal solution of AC problem in
the considered case, because it is a stable classification with the maximal
number of classes (under the restriction k = 4). Note that the algorithm
finds the same single classification stable at level 1 under any k > 4, too.

Fig.11.Example of instability of classification

Stability parameters r and o are connected in the same way as the
number of random trials and significance level are connected in statistics:
the larger values of r correspond to the lower values of coincidence level
a. Yet in the considered situations the coincidence level o decreases with
the growth of r for unstable classifications. For stable classifications the
coincidence level soon approaches a number sufficiently close to 1, and
does not vary further with the growth of r. This allows us to assume that
the number r of repetitions stays within the limit 5 — 15. Intermediate
situations, when stability is lost after 20 — 30 repetitions, may happen
(though for very few initial sets and rare initializations of the random
generator). Natural modifications of the notion of stability that span these
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very rare situations are disregarded here for the sake of brevity.

5. Examples

In this section several examples are considered in the increasing
order of complexity (the notion of complexity is informal). In the first six
examples 4 — 9, the initial sets are two-dimensional sets of points. The
figures show only the final results of the suggested general AC algorithm.
Parameters o, f and T were the same in all considered cases: a = 0.95; f =
10; T =1000. In examples 4 —6, 10, 11 r=10and k = 6; inexample 7 r =
5and k = 10; in example 8 r = 10 and k = 15.

Example 4. The initial set is the union of two two-dimensional sets
of points, each normally distributed along the x axis and uniformly along
the y axis. The result of classification is shown in Fig.12. Note that the
number of classes is not defined in advance — there is only the upper
bound k.

Fig.12. Classification result in example 4 (1397 points)
Example 5. The initial set consists of two contacting rings with a
few points inside. The result of classification is shown in Fig.13.

Example 6. The initial set consists of four two-dimensional slight-
ly damaged normal distributions. The result of classification is shown in
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Fig.13. Classification result in example 5 (3228 points)

Example 7. The initial set resembles a spiral with two narrow
isthmuses approximately in the middle and close to one of the ends. The
result of classification is shown in Fig.15.

Example 8. The initial set resembles a lake with two peninsulas.
The smaller peninsula contains relatively few points (223 of 4501), while
the number of edges, connecting it to the other part is equal to 6, i.e. it is
not too small. Therefore this peninsula is revealed only after a conside-
rable number of consecutive dichotomies and therefore k was taken to be
large enough (k=15). The result of classification is shown in Fig.16.

33



Fig.14. Classification result in example 6 (1279 points)

Fig.15. Classification result in example 7 (4272 points)
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Fig.16. Classification result in example 8 (4501 points)

Example 9. The initial set is shown in Fig.17. No cluster structure
is observed. The suggested algorithm confirms the fact: stable classifica-
tions are lacking even at level 0.6 for the number of repetitions r = 4.

Fig.17. Example of absence of any reasonable classification
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Example 10. Multidimensional data: a matrix of objects and
parameters matrix. Unlike all previous examples, in this case the initial
set is not two-dimensional. There are 15 objects and 20 parameters. Three
classes are selected. The first class consists of objects with numbers 0, 3,
6, 7, 10, 13; the second class consists of objects with numbers 1, 4, 5, 8,
14; the third class consists of objects with numbers 2, 9, 11, 12. Two
groups of parameters are selected. The first group consists of parameters
0,2,3,5,8,9,11, 14, 16, 17, 19; the second group consists of parameters
1,4,6,7,10, 12, 13, 15, 18.

The objects from the first class have “large” values (between 44
and 90) for the parameters of the first group and “small” values (between
10 and 56) for the parameters of the second group. The objects from the
second class have “large” values (between 44 and 90) for the parameters
of the second group and “small” values (between 10 and 56) for the
parameters of the first group. The objects from the third class have
“intermediate” values (between 27 and 73) for the parameters of both
groups. All numbers in the pattern matrix are randomly selected within
the corresponding ranges (large, small, intermediate):

The suggested general algorithm correctly finds the given
classification into 3 classes. The parameters from the second group are
marked grey; matrix rows are rearranged in such a way that the objects
from the same class are written consecutively. Thus, in this example the
correct classification is revealed despite significant intersections of large,

small, and intermediate ranges:
o 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18 19



Example 11. Dissimilarity matrix. There are 40 objects. Two
classes are selected. The first class consists of objects with numbers 0, 1,
2,3,4,7,8,9, 10, 11, 15, 20, 21, 22, 27, 28, 30, 31, 32, 33, 35, 36, 37,
38; the second class consists of objects with numbers 5, 6, 12, 13, 14, 16,
17, 18, 19, 23, 24, 25, 26, 29, 34, 39. Dissimilarities between objects
belonging to the same classes are random numbers from 10 to 60, while
dissimilarities between objects belonging to different classes are random
numbers from 25 to 80.

The suggested general algorithm finds correctly the initial
classification into 2 classes. Matrix rows and columns are rearranged in
such a way that the objects from the same class are written together. The
data is presented by 4 matrices. The 1-st and the 4-th ones contain
dissimilarities between objects from the 1-st and 2-nd class, respectively:
there are no numbers larger than 60. The 2-nd and the 3-rd ones contain
dissimilarities between objects from different classes: there are no
number lesser than 25.

Matrix 1
01 2 3 4 7 8 5 1011 15 20 21 22 27 28 30 31 32 33 35 36 37 38

O|-- 52 51 35 23 25 55 21 4% 20 37 13 37 53 22 44 21 28 48 55 51 16 48 28
1|52 -- 4% 45 43 45 19 3% 42 14 41 21 o0 52 458 24 35 13 13 58 21 35 30 o0
2|51 4% —— 47 11 57 48 11 34 36 60 5% 28 57 44 37 29 46 27 30 45 12 37 49
3|35 45 47 -- 11 13 15 28 21 30 35 27 36 26 3% 38 32 35 37 25 48 15 31 46
4123 43 11 11 —— 17 46 24 31 21 28 56 52 25 22 60 33 55 5B 15 36 41 47 45
7125 4% 57 13 17 —— 53 1% 54 5% 30 60 14 55 50 54 57 16 28 36 52 a0 28 28
8|55 19 48 15 46 53 -- 56 14 56 47 34 56 24 46 24 25 27 12 11 1% 20 56 33
9021 3% 11 28 24 1% 56 —— 5B 30 38 37 28 52 44 37 26 40 27 31 42 55 17 54
10 4% 42 34 21 31 54 14 55 ——- 57 4% 50 3% 33 35 46 21 36 24 55 40 60 1% 56
11|20 14 36 30 21 5% 56 30 57 —- 28 25 60 48 44 31 36 50 53 2% 32 50 44 25
15|37 41 o0 35 28 30 47 35 49 28 —- 42 32 20 19 28 30 41 56 58 20 23 57 42
20|13 21 5% 27 56 60 34 37 50 25 42 —- 1% 57 14 40 36 20 50 18 27 20 53 33
21 |37 60 28 36 52 14 56 25 3% 60 32 1% —— 42 14 50 50 35 54 33 33 3% 11 54
22 |53 52 57 26 25 58 24 52 33 48 20 57 42 —- 27 23 40 31 195 60 32 16 2B 54
27 |22 48 44 39 22 50 46 44 38 44 1% 14 14 27 -- 60 52 17 17 1% 35 16 24 27
25 |44 24 37 38 e0 54 24 37 46 31 28 40 50 23 60 -- 13 34 17 41 19 13 25 25
30 |21 3% 2% 32 33 57 25 26 21 36 30 36 50 40 52 13 —— 43 16 17 50 25 35 43
31|28 13 46 35 55 16 27 40 36 50 41 20 35 31 17 34 43 —— 31 17 25 40 45 18
32 |48 13 27 37 55 286 12 27 24 53 56 50 54 15 17 17 16 31 —— 45 17 23 18 21
33|55 58 30 25 15 36 11 31 55 2% 58 16 33 a0 19 41 17 17 45 —- 57 45 19 24
35 |51 21 45 48 36 52 19 42 40 32 20 27 33 32 35 1% 50 28 17 57 —- 15 51 18
36|16 35 12 15 41 60 20 55 60 50 23 20 3% 16 16 13 25 40 23 4% 15 —- 55 23
37 |48 30 37 31 47 28 56 17 19 44 57 53 11 28 24 25 35 45 18 1% 51 55 —- 32
35 |28 60 49 46 45 28 33 54 56 25 42 33 54 54 27 2% 43 18 21 24 18 23 32 —
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o1 2

5 & 12 13

14

Matrix 2

17

13

15

24

25

o177
1|46
2|31
3|47
4|40
7|48
8|37
9|28
10 |78
11 j41
15 |44
20 |59
21 |51
22 |77
27 |89
28 |65
30 |25
31 |46
32 |26
33|76
35 |79
36 |37
37131
38 |50

3

4

41
69
66
53
75
56
43
37
33
a0
a6
31
56
25
52
31
62
77
53
40
a6l
62
77
77

73
3
4z
59
54
69
70
5a
T8
54
25
38
75
65
6%
35
52
26
51
43
43
30
44
47

51
35
30
59
35
73
54
47
6l
52
73
61
34
79
59
43
75
25
&0
54
40
3z
44

10

43
45
63
36
57
37
59
45
65
76
30
25
30
33
45
54
43
32
a0
35
64
62
50
45

63
77
a0
55
41
59
29
38
70
63
&7
34
59
25
58
71
58
36
6%
43
51
31
41
40

6g
37
38
77
55
51
72
30
57
62
50
76
40
45
50
45
33
54
55
58
Kl
75
64
62

a0
26
67
78
35
T4
63
53
52
32
&7
25
74
65
77
34
66
75
5%
66
34
60
61
73

Matrix 3

15

20

21

22

74
66
62
34
40
45
28
73
66
71
61
71
4%
3z
31
T4
64
45
70
77
26
43
35
34

27

50
53
32
52
65
27
78
28
50
25
3
47
64
72
43
67
63
T4
44
4z
5z
71
27
57

28

31

32

33

35

36

37

5|77

6141
12|73
13|62
14|79
16143
17163
15|68
19|60
23187
24|74
25150
26|66
29|62
34|73
3542

46
69
21
51
43
45
77
37
26
35
66
53
76
75
43
74

31
66
4z
35
29
63
50
38
&7
65
62
32
52
27
51
47

a7
53
59
30
5z
36
55
77
78
75
34
52
71
3
3
50

40
75
54
55
69
57
41
55
35
42
40
65
a7
41
75
53

43
56
69
35
31
37
59
51
74
65
43
27
28
77
34
55

37

70
73
43
59
29
T2
63
359
28
7B
it
58
66
40

37
56
54
64
49
38
30
53
64
73
28
59
78
48
39

T8

78
47
61
65
70
57
52
32
66
50
40
58
27
34

44
66
25
52
a7
30
67
50
67
70
61
31
63
63
71
66

59
31
38
73
41
29
34
76
25
&7
T1
47
77
62
70
52

38

51
56
75
61
71
30
59
40
74
51
49
64
68
30
73
38

T7
29
65
34
35
33
25
45
a5
34
32
T2
T4
65
53
29

69
52
69
79
44
49
58
a0
77
67
31
43
50
70
77
56

65
31
35
59
33
54
71
45
34
T4
T4
67
4%
T4
66
77

46
T7
26
75
52
32
36
54
75
41
45
T4
71
51
52
59

26
53
51
25
43
&0
659
55
59
6l
70
44
58
40
43
56

TE
40
43
60
72
35
43
58
66
61
T7
4z
55
59
67
78

79
61
43
S4
58
64
51
31
34
359
26
52
44
45
46
55

37
62
30
40
41
62
21
75
60
45
48
71
68
62
59
49

31
T7
46
32
34
50
41
a4
6l
37
35
27
a7
70
a0
30



Matrix 4
5 6 12 13 14 16 17 18 15 23 24 25 20 29 34 35
5)]-— 13 60 46 14 22 25 19 18 53 46 55 31 19 44 21
6|13 —— 43 52 37 41 42 41 27 3% 57 31 2% 48 31 35
12|60 43 —— 16 23 22 42 12 55 55 39 55 44 15 43 12
13|46 52 16 -- 29 5% 40 18 1% 36 13 12 5% 23 31 50
14114 37 23 2% —— 46 4% 36 31 48 28 58 4% 33 34 51
16|22 41 22 5% 46 -- 53 16 60 27 36 14 53 15 23 31
17|28 42 42 40 4% 53 —- 54 46 24 57 55 57 33 23 40
1819 41 12 18 36 16 54 —— 12 25 40 15 37 33 15 15
1918 27 55 1% 31 &0 46 12 — 13 19 48 25 56 26 16
23|53 39 55 36 48 27 24 25 13 —— 1% 54 56 5B 44 35
24|46 57 3% 13 28 36 57 40 1% 1% —— 47 52 12 38 28
25|55 31 58 12 55 14 55 15 48 54 47 —- 18 36 47 42
26|31 29 44 59 49 53 57 37 25 56 52 18 — 29 48 33
25|19 48 15 23 33 15 33 33 560 58 12 30 2% -- 22 50
34|44 31 43 31 34 23 23 15 260 44 38 47 48 22 -- 5@
35|21 3% 1z 50 51 31 40 15 16 35 28 42 33 50 58 -
6. Comparison with Other Methods
6.1. Comparison with SPSS. In this Section the six sets shown in
Fig.1 are considered. All of them are correctly divided by the suggested
algorithm of dichotomy (see classifications in Fig.3). The results of
classification of the same sets by classification methods offered in the
well known software package SPSS are presented below. The results of
the K-mean method are shown in Fig.18. The results of the hierarchical
algorithm (for the between-group linkage version) are shown in Fig.19.
The results of other versions of hierarchical classifications are
approximately the same. The best results are obtained for Ward’s method,
yet only three sets of six are classified correctly (see Fig.20). In a slightly
more complicated situation, carefully considered in example 2 with the
continuations, Ward’s method gives unsatisfactory results (see Fig.21).
6.2. Other Comparisons. To ascertain that many well-known
methods are inoperative (at least, in some simple cases), no formal check
of them (i.e. running of the respective programs for the sets, in which the
suggested general AC algorithm gives correct classifications) is required
at all. Their descriptions imply that in many cases (including rather
simple) they will not work properly. Let us dwell on several well-known
methods in more detail.
1. Methods minimizing the mixture of variances. It is well known
that in the case of two classes this mixture reaches its minimal value for a
of non-convex classes a correct classification will not be obtained.
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Fig.19. Results of hierarchical classification with between-groups linkage
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5 6

Fig.20. Results of hierarchical classification with Ward’s method.
Sets 1, 4 and 5 are classified correctly

Fig.21. Example of the wrong classification by Ward’s method
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2. Minimal linkage methods. Assume that A and B form an
arbitrary division of an initial set into two subsets. Define
d(A, B) = miniEA,jeB dU
A division maximizing d(A, B) is considered to be a solution of the AC
problem. Example 5, in which the distance between classes is very close
to 0, demonstrates that these methods do not work in such cases.

3. Generalized Newman-Girvan Algorithm. The frequency
methods are perhaps the strongest AC methods (from the viewpoint of
diversity and incidence of problems solved by them). The algorithm
copes with all test sets 1 — 6, except for set 4. The result of classification
of this set is shown in Fig.22. The reason (as in example 1) consists in a
large quotient of cardinalities of correct classes.

Fig.22. Example of wrong classification by generalized Newman-Girvan
algorithm

4. Balanced Cut Criterion (5). In the above mentioned example 1 a
discrepancy was noted between this criterion and some AC problems
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(whose correct solutions do not correspond to cuts maximizing the
criterion). Yet this example implies much more. The review by Luxburg
(2007), devoted to Spectral Clustering, discusses the formal
correspondence between the optimization problem with criterion (5), on
the one hand, and a version of spectral algorithm, on the other hand. In
the review of Filippone et al, 2008 attention is paid to the formal
correspondence between three approaches: balance criteria optimization,
spectral methods and kernel clustering methods. Yet the balance criterion
optimization, as was revealed in several cases (not only in example 1 and
test set 4), does not lead to correct classifications. Hence, the same
conclusion is true for spectral and kernel methods that have been very
popular and actively developing in the last few years.

7. Conclusion

The methods mentioned at the end of the previous section
demonstrate diversity and depth of their mathematical foundations.
However, the essentially simpler scheme suggested in this work is more
efficient — first of all from the viewpoint of diversity and difficulty of
problems being solved. It seems that practically all of the known methods
have a drawback that at the first glance is not very important but in fact
proves crucial. They do not contain any instructive description (to say
nothing of a formal one) of a class of successfully solved problems. In the
book of Braverman and Muchnik published quite a long time ago (1983)
there is an honest confession of the authors, who say (in page 140): “It is
natural that any specific functional cannot encompass the wide diversity
of possible views of what a “good aggregation of elements” is. It is more
likely that the biologist, the engineer, the geologist and the economist
have different opinions on this subject. Therefore we can only be
surprised that some functionals, suitable for solving a wide class of
problems from various different fields, could be suggested.” However, it
is desirable to have a more exact description.

Let us dwell in more detail on the features of the suggested
approach.

1. The description of feasible initial sets is sufficiently clear-cut.
Specifically, we consider AC problems, presented by undirected graphs.
A class corresponds to a subgraph containing many vertices compared to
the number of edges connecting the subgraph to other ones. No other data
on mutual arrangement of subgraphs, weight of vertices, length of edges,
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and so on are used. Note that just as the number of vertices in a subgraph,
so the number of edges connecting this subgraph to other ones, can vary
essentially depending on the subgraph. It is only important that the
guotient of these numbers should be large enough.

2. The character of the scheme does not presuppose the use of a
single new idea, but rather a new combination of known ideas and their
modifications. In the course of action, the family of constructed
classifications first grows and then drops down to one classification.

3. The number of classes is not given in advance. It is limited by a
given sufficiently large number.

4. There are relatively (for such a universal scheme) few
parameters, all of which are meaningful. Two parameters f and T of the
suggested algorithm of frequency dichotomy have little effect on the
result. All the above presented results are obtained for f = 10 and 7 =
1000. But for f = 20 and T = 1500, as well as for other arbitrary changes
of these parameters within limits 5 — 25 and 500 — 3000, the results
practically remain the same. The only parameter of the divisive-
agglomerative procedure is the number k of blocks. This parameter is
essential. Roughly speaking, for too small values of Kk correct
classifications may be lost (in example 8 for k = 10 the smaller isthmus is
not found), while for too large values of k redundant stable classifications
may appear. Yet for all the intermediate k the same correct classification
is found. Finally, at the external cycle of stability check two parameters
are given: the number r of random trials and coincidence level o. It is
possible to choose arbitrary r € {5, ..., 10} and a € [0,95; 0,99]; for the
variations within these limits the resulting stable classification remains
unchanged.

5. The result of application of the suggested AC algorithm is clear-
cut and unambiguous. Of course, preliminary knowledge of the
considered AC problem can be very helpful — but rather at the
interpretation stage than at the computational one.

Of course, no universal methods of classification exist. The above
formulated requirements to the feasibility of initial sets clearly point to
the “local” character of the considered classifications because they are
defined by local connections between classes. Not all classifications are
local, though. In the set shown in Fig.23, the cluster structure evidently
consists of two rings. But in this case it would be wrong to say that the
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classes (in the corresponding neighborhood graph) are connected by a
small number of edges. The suggested method leads to an obviously
wrong result, even though the classes are connected by only 5 edges. It is
only appropriate to repeat the above cited deliberation from the book by
Braverman and Muchnik (1983) that one should not be surprised if a
method fails in some case but rather, if it proves suitable for many
various situations because it holds true for the suggested new AC
algorithm.

Fig.23. Example of non-local classification

The author is grateful to professors F.T. Aleskerov and B.G.
Mirkin for their attention and numerous helpful observations, and his
colleagues K.B. Pogorelskiy, E.G. Galitskiy and E.B. Galitskiy for the
help in experimenting on SPSS. The author thanks the Decision Analysis
Laboratory at SU-HSE for the financial support of the work.
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PyGunnckuii, A. A.

JIMBU3MMHO-arJIOMEPAaTUBHBIN JITOPUTM KJIaccU(PUKaUMyM Ha OCHOBE MUHMMAKCHOM
MoauduUKauuu yactoTHoro noaxoxa : [penpunt WP7/2010/07 [Tekct| / A. A. PyOunHCKMIA ;
Toc. yH-T — Bpicmias mikona 3koHomuku. — M.: U3a. gom Toc. yH-Ta — Beiciieit mkosbt
sKoHoMuKH, 2010. — 48 c. — 150 aKk3.

B pabore paccmarpuBaeTcs TpaiMIIMOHHAs 3aaua aBToMaTHYecKoii kiaccudukauuu (AK).
[IpennoxeHHbIil MOAXOA COCTOUT B HOBOM KOMOMHAIIMY 1OCTATOYHO M3BECTHBIX METOIOB U UX
Momubukaru. CHavaa OCYIIECTBISIOTCS MTOCAeI0BATEIbHBIE TUXOTOMUU UCXOIHOTO MHO-
JKECTBA M TEM CaMbIM CTPOMTCSI cCeMeicTBO Kiaccudukauumii Ha 2, 3, ..., kK TOAMHOXECTB, Ile
k — HEKOTOPOE YHMCII0, 3aBEIOMO TIPEBOCXOISIIIEE TIPEATIONATaeMOe YMCIO0 KJIACCOB (IUBU3UM-
HBIi 2Tam). Mcronb3yemMasi IMXOTOMUSI OTHOCUTCST K YACTOTHBIM METOIaM, TIPEICTABIISIT COO0M
MX HOBYIO MOIM(DUKAIIMIO; OHA €CTECTBEHHO BKJIIOUAET B ce0sl 2JIeMEHThl paHAOMU3aLUU. 3a-
TeM U3 KXo U3 MOTyIeHHBIX KJIAaCCU(UKALINIA CTPOUTCS HOBOE CEMECTBO KiaccuuKauii
MyTEM MOCJIeIOBATEIbHOTO 00BbeAMHEH NS Haubosiee O1M3KUX MOIMHOXECTB (arJioMepaTUBHbII
artamn). [locne 3TOro UI MabHEIIETo aHaIM3a OCTABIISIIOTCS TOJBKO HECOBMAIAIOIINE KiIac-
cuduxanuu. HakoHel, Bech Mpoliecc MOBTOPSIETCS] HECKOIBLKO pa3, B pe3yJibraTe Yero 00Jb-
LIMHCTBO M3 OCTaBIIMXCSI KJIacCU(UKAIMI OKa3bIBAIOTCS CTOXaCTMUYECKU HEYCTOWYMBBIMMU.
YeroituuBasi Kiiaccudukaims ¢ MaKCUMaJIbHO BO3BMOXHBIM YKMCIIOM KJIACCOB M OOBSIBIISICTCSI
peuieHneM UcXoaHoi 3anaun AK, a OTCyTCTBUE YCTOMUMBBIX KJACCU(PUKALIMI MHTEPIPETUPY-
€TCsI KaK OTCYTCTBUE KJIACTEPHOU CTPYKTYPHI B UCXOJHOM MHOXECTBE.
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cuteTa — BeIciei 1KOJIbI 9KOHOMUKU U MeXIyHapOAHbIi yHUBEpCUTET «/lyOHa»
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