
Alexander Rubchinsky

A DIVISIVE-AGGLOMERATIVE
CLASSIFICATION ALGORITHM

BASED ON THE MINIMAX MODIFICATION
OF FREQUENCY APPROACH

Препринт WP7/2010/07
Серия WP7

Математические методы
анализа решений в экономике,

бизнесе и политике

Москва
2010

R88

УДК 519.8
ББК �22.18

R 88

Редакторы серии WP7
«Математические методы анализа решений в экономике,

бизнесе и политике»
Ф.Т. Алескеров, В.В. Подиновский, Б.Г. Миркин

Rubchinsky, А.
A Divisive-Agglomerative Classification Algorithm Based on the Minimax Modification of

Frequency Approach : Working paper WP7/2010/07 [Тext] / А. Rubchinsky ; The University –
Higher School of Economics. – Moscow: Publishing House of the University – Higher School
of Economics, 2010. – 48 p. – 150 copies.

The conventional problem of automatic classification (AC for brevity) is considered. The
suggested approach is based on the new combinations of known methods and their modifica-
tions. At first, consecutive dichotomies of the initial set are produced, whereby a family of clas-
sifications consisting of 2, 3, …, k subsets is constructed, where k is a number certainly exceeding
the assumed number of classes (the divisive stage). The dichotomy used is a new modification
of the frequency method, which naturally includes elements of randomization. Second, each of
the constructed classifications generates a new family of classifications by consecutively uniting
the subsets that are the closest to one another (the agglomerative stage). After that, only non-co-
inciding classifications are left for further analysis. Finally, the process is repeated several times,
with the result that most of the classifications turn out to be stochastically unstable. A stable clas-
sification with the maximal number of classes is declared to be the correct solution of the initial
AC, while the absence of stable classifications is interpreted as the absence of cluster structure in
the initial set.

УДК 519.8
ББК 22.18

Rubchinsky Alexander – Decision Analysis Laboratory at Higher School of Economics and
International University “Dubna”

© Rubchinsky А., 2010
 Оформление. Издательский дом
Государственного университета –
Высшей школы экономики, 2010

Препринты Государственного университета – Высшей школы экономики
размещаются по адресу: http://www.hse.ru/org/hse/wp

3

1. Introduction

The well-known problem of automatic classification (further

referred to as AC, for brevity) consists in the division of a given set of

objects into several non-intersecting subsets (usually called classes,

aggregates, clusters, etc.). It is required that objects belonging to the same

class be in one sense or another, closely connected or similar, whereas

objects belonging to different classes should be as dissimilar as possible

and could easily be discernible. The informal character of the AC

problem, its various statements and applications, numerous approaches

and methods of solution are comprehensively described in several

monographs and reviews (see e.g. Aivazyan et al, 1989, Barseguyan et al,

2007, Braverman and Muchnik, 1983, Filippone et al, 2008, Gordon,

1999, Luxburg, 2007, Mirkin, 1996, Mirkin, 2005, Newman and Girvan,

2002, Newman, 2004).

In this paper, the AC problem is considered in the most

conventional form. Namely, it is assumed that a set of objects is given

such that for all pairs of these objects a degree of dissimilarity (or

similarity) has been already determined. The information on dissimilarity⁄

similarity is usually presented in one of the following three ways:

1) a pattern matrix (also called entity-to-variable data table and

objects/parameters matrix);

2) a dissimilarity (similarity) matrix;

3) an undirected graph.

In order to solve the AC problem, a new algorithm is proposed. This

algorithm finds the “correct” classes in diverse situations proceeding only

from the initial data (the set of points in the Euclidean space, dissimilarity

matrix, graph), with no additional assumptions of stochastic, geometric or

other character, either explicit or implicit. Despite the large number of

methods proposed for the solution of the AC problem, there are

absolutely no methods that could find intuitively correct classifications

even in simple cases of various characters. (An attempt to produce even a

cursory review of these methods would make this paper several times

longer.) Let us consider, as an example, the six sets shown in Fig.1. Even

though it is possible to find a method coping with it for any of these sets,

none of these methods is able to cope with all the sets.

In the suggested approach, the initial data on the problem are

presented by the well-known neighborhood graph (see e.g. Luxburg,

4

Fig.1. Simple two-dimensional classification problems

2007). Graph vertices are in one-to-one correspondence to the given

objects. Any vertex v is connected to 4 or 5 other vertices, which

correspond to the objects that are closest to the object corresponding to

vertex v. The proximity of objects is determined either immediately by

the given dissimilarity matrix or by the Euclidean distances between the

objects, calculated from the given pattern matrix. It is worth noting that

the presentation of AC problem by a graph is the most general description

– exactly because it uses the “softest” (non-numerical) data on the

connections between objects to be classified. In the framework of the

suggested approach, only such essentially qualitative data on the

connections are used.

Basically, throughout the paper I consider the sets of points on the

plane (two-dimensional points). The idea is as follows. It is well known

that AC is an informal problem. For two-dimensional sets considered,

intuitively correct classifications are obvious. If a formal method cannot

find them, then it is hardly probable that the same method is able to

reveal cluster structures in more complicated multi-dimensional cases or

5

in the problems presented by the dissimilarity matrix. Still, as will be

further demonstrated, the suggested approach copes not only with two-

dimensional problems (substantially more complicated than the problems

shown in Fig.1), but also with multi-dimensional data and the

dissimilarity matrix.

The analysis of known AC methods demonstrates that they

successfully tackle some complicated AC problems and fail in other

problems seemingly much simpler. Importantly, both types of problems

are different for different methods. It is probably the dissatisfaction with

this fact that triggers the emergence of more and more AC methods; still,

the situation is practically not improving. One can therefore assume that

no formal model could be proposed that could offer a sufficiently

description of correct classification. Therefore the approach suggested

here (unlike many others, including those ones on which our approach is

based technically) does not attempt at finding the only correct

classification using only one formal model. Instead, a multistage

procedure is proposed. The result of each stage is a family of

classifications which is first gradually expanded and then is gradually

contracted so that the output of the entire procedure almost always

amounts to one classification. From this viewpoint, the approach is close

to genetic algorithms because the latter also deal with sets of solutions

(populations) rather than with individual solutions. An additional

advantage of this approach is that it is possible to stop after a particular

stage and select one of the few remaining classifications using some of

the known methods. Since the remaining classifications are reasonable

enough, applying the known methods can prove essentially more efficient

than applying them from the start, which requires hard calculations with

no guarantee of results.

The material is structured as follows. In the Introduction, the

particulars of the suggested approach are briefly described. In Section 2,

the used version of the frequency method of dichotomy is presented in

more detail. Section 3 outlines the construction of a family of

classifications using a new divisive-agglomerative procedure (further,

DAP for brevity). In Section 4 the most external cycle of the suggested

general AC algorithm is presented: iterative constructions of families of

classifications and the selection of stochastically stable classifications, i.e.

classifications belonging to all families found by DAP under different

6

initializations of the randomizer. Section 5 offers examples illustrating all

stages of the suggested general AC algorithm. In Section 6,

classifications found by the suggested algorithm are compared with those

obtained by several known methods for the same initial data. In

conclusion, the main features of the suggested approach to AC are

summarized and some new statements are discussed.

2. Frequency Dichotomy Algorithms

2.1. Newman-Girvan Algorithm. In the article of Newman and

Girvan, 2002, an entirely new approach to graph decomposition – and

thereby to the AC problem – was suggested. A cut of the initial graph is

found as a result of some operations with no prior optimization

requirements or other conditions imposed on this сut. We will outline the

essence by citing the article.

“We define the edge betweenness of an edge as the number of

shortest paths between pairs of vertices that run along it. If there is more

than one shortest path between a pair of vertices, each path is given equal

weight such that the total weight of all the paths is unity. If a network

contains communities or groups that are only loosely connected by a few

intergroup edges, then all shortest paths between different communities

must go along one of these few edges. Thus, the edges connecting

communities will have high edge betweenness. By removing these edges,

we separate groups from one another and so reveal the underlying

community structure of the graph.”

The formal algorithm for identifying communities is presented in

the article as follows.

Newman-Girvan Algorithm

1. Calculate the betweenness for all edges in the network.

2. Remove the edge with the highest betweenness.

3. Recalculate betweennesses for all edges affected by the removal.

4. Repeat from step 2 until no edges remain.

It is clear that during the execution of the algorithm every increment (by

1) of the number of network connectivity components amounts to the

division of one of the groups into two parts, which results in an

emergence of a hierarchical structure of groups (or communities)

determined only by the initial graph. The calculation of betweenness

degree is reduced to the determination of shortest paths for all pairs of

vertices; as it is well known, this is a computationally efficient operation

7

with an upper estimation of n
2
. Subsequently (see Newman, 2004) several

modifications of this approach have been suggested, the most important

of which being:

 use of random (instead of the shortest) paths for the calculation of

edge betweenness;

 use of a relatively small part of pairs of vertices (instead of using

all of them) for the estimation of edge betweenness;

 edge removal based on this estimation.

In view of the above, it seems more convenient to use, instead of the

notion of “edge betweenness”, the notion of “edge frequency” which

should be understood as the number of occurrences of edges in the

constructed paths. With these modifications, the algorithm of graph

division into two parts can be described as follows.

Generalized Newman-Girvan Algorithm

1. Set the current frequency at every edge equal to zero.

2. Choose randomly two vertices of the graph.

3. Find by any method a path between vertices chosen at the previous

step. If no such path exists, go to step 7.

4. Add 1 to frequencies at all edges included in the path found at step

3.

5. Under certain conditions return to step 2. Such conditions may

include, e.g. the fact that steps 2 to 4 have been applied a certain large

number of times, or that stochastic stability has been achieved, i.e.

when the indices of edges with the maximal frequency have not

changed for a long time (obviously, different realizations of this step

are possible).

6. Remove the edge with the maximal frequency and return to step 1.

7. Stop. The graph is divided into two connectivity components that

correspond to the required groups.

The above approach could be naturally referred to as frequency

approach, since it is based on the calculation of frequencies of occurrence

of graph edges in the consecutively constructed paths. It can be applied to

every AC problem provided it is presented by a graph, in particular, by a

neighborhood graph mentioned previously. An obvious drawback of

Newman-Girvan algorithm (recognized by its authors) is that after the

removal of an edge with the highest betweenness at step 2 all

accumulated statistics of edge betweenness is deleted and, hence, cannot

8

be used subsequently. Had it been possible to save these data for the

consecutive steps, it could essentially accelerate the algorithm. The

following is said on the issue in the cited article by Newman and Girvan

(2002): “To try to reduce the running time of the algorithm further, one

might be tempted to calculate the betweennesses of all edges only once

and then remove them in order of decreasing betweenness. We find

however that this strategy does not work well, because if two

communities are connected by more than one edge, then there is no

guarantee that all of those edges will have high betweenness – we only

know that at least one of them will. By recalculating betweennesses after

the removal of each edge we ensure that at least one of the remaining

edges between two communities will always have a high value.”

It should be added that the same is true for the generalized

Newman-Girvan algorithm. The next section shows how to avoid this

trap.

2.2. Algorithm of constructing a uniform cut. Note that in the

previously proposed frequency algorithms any path connecting a certain

pair of vertices is produced independently of all the paths already

produced. However, if all paths already produced are taken into account

we can obtain cuts between two sets of vertices whose all edges have the

same maximal frequency. Then concurrent removal of all edges with the

maximal frequency, performed once, produces the desired dichotomy of

the graph.

We will first present the algorithm itself and then give the

necessary comments and examples of its performance in various

situations. Though the algorithm belongs to frequency algorithms of

classification, it can be considered new due to the presence of essential

distinctive features. Importantly, unlike previously known versions of

frequency algorithm, the algorithm under discussion finds an approximate

solution of some graph optimization problem which offers a reasonable,

if, as in other cases, incomplete, estimation of classification correctness

(see the end of this section for details).

Minimax frequency algorithm of graph dichotomy. The input of the

algorithm is an undirected connected graph G. The algorithm has two

integer parameters:

 the maximal initial value f of edge frequency;

 the number of repetition T for the collection of statistics.

9

1. Preliminary stage. Frequencies at each edge of the graph are initialized

by integer numbers uniformly distributed over the segment [0, f – 1].

2. Cumulative stage. Operations of steps 2.1 – 2.3 are repeated Т times:

2.1. Random choice of a pair of vertices of graph G.

2.2. Construction of a minimax path (path connecting the two vertices

chosen at step 2.1, whose longest edge is the shortest one among all

such paths) by Deikstra algorithm. The length of an edge is its current

frequency.

2.3. Modification of frequencies. 1 is added to each frequency of all

edges belonging to the path found at the previous step, 2.2.

3. Final stage.

3.1. The maximal value (achieved after Т repetitions) of frequency fmax

at graph edges is stored.

3.2. Operations of steps 2.1 – 2.3 are executed once.

3.3. The new maximal value of frequency fmod at graph edges is

determined.

3.4. If fmod = fmax, return to step 3.2; otherwise go to the next step 3.5.

3.5. Deduct 1 from frequencies in all edges forming the last found

path.

3.6. Remove all the edges at which the frequency is equal to fmax.

3.7. Find two connectivity components of the modified graph. The

two constructed sets of vertices form the solution of the considered

dichotomy problem.

We will first of all prove that immediately before the execution of

step 3.6 the set of all edges whose frequency is equal to the maximal one

indeed contains a cut of graph G.

Statement 1. Prior to the execution of step 3.6:

a) the maximal value of frequency over all the edges of the graph is equal

to fmax, where fmax is the number stored at step 3.1;

b) the set of all the edges whose frequency is equal to fmax, contains a cut

of graph G.

Proof. Step 3.2 refers to steps 2.1 – 2.3. If a new minimax path at step 2.2

is found, exactly one of the following two cases is possible:

1. There exists a minimax path connecting the vertices chosen at

step 2.1 whose all edges have frequencies lower than fmax.

2. No such path exists.

10

In the first case, after every addition of 1 (at step 2.3) to frequencies at all

edges of the given path their maximal value (taken over all edges of the

graph) does not exceed fmax. On the other hand, at least at one edge its

frequency increases by 1, whilst at no edge the frequency can decrease.

Both these facts mean that after a certain finite number t of executions of

steps 3.2→3.3→3.4→3.2 (t ≤ m•fmax + 1, where m is the number of edges

in the graph) at step 2.2 we encounter with case 2. In case 2, at any path

connecting vertices chosen at step 2.1, there exists at least one edge

whose frequency is no smaller than fmax. Since up to now we have only

encountered with case 1, then, as it was previously established, no

frequency exceeds fmax. Therefore at any path connecting vertices chosen

at step 2.1, there exists at least one edge whose frequency is equal to fmax.

Hence, the set of all the edges whose frequency equals fmax, contains a cut

of graph G. Adding 1 to frequencies of all edges of the constructed path

at step 2.3 and subsequently subtracting 1 at the same edges at step 3.5

does not change frequencies, which proves a) and b) and, hence,

completes the proof of statement 1■

Figures 2а and 2b illustrate cases 1 and 2 considered in the proof of

Statement 1. The cut itself, of course, depends upon the selection of pairs

of vertices and the distribution of frequencies at edges that formed itself

prior to the execution of step 3.1. This is the reason why the cumulative

stage (which claims the most part of the time) should be carried out. As a

result of this stage the required cut becomes stable in the sense that the

edges that form the cut no longer depend upon the number T of the

constructed minimax paths. Yet this cut can depend on the initialization

of the random generator. So, the presence (or absence) of a dependence

of the cut (and, hence, the corresponding dichotomy) upon the

initialization of random generator turns out to be an important feature of

the AC problem itself rather than the classification method used (see

Section 2.3 for more details).

Let us consider the connections between the proposed algorithm

and the known optimization statements for a balanced cut in a graph. We

will first introduce the necessary notations. Let N be the number of

vertices, M the number of executions of steps 2.1 – 2.3 together

(excluding the last one) that take place at stages 2 and 3 of the algorithm,

A and B denote any division of the set of graph vertices, d(A, B) denote

11

Fig.2а. The dashed line marks the path connecting vertices a and b in which all

edges have frequencies lower than the maximal frequency fm.

Fig.2b. The dashed line marks the path connecting vertices a and b located at

either side of the cut, in which all edges have frequencies equal to the maximal

frequency. Necessarily, such a path passes along an edge with the maximal

frequency fm.

the cardinality of cut (A, B). Note that M equals the number of all the

constructed paths in the graph and M ≥ Т. Let us now consider all the

paths (from among the constructed ones) whose one end belongs to A and

the other end to B. The sum S(A, B) of frequencies at all the edges from

the cut (A, B) is no larger than the number of all such paths (to be denoted

as М(A, B)). First, every path increases the sum of frequencies at least by

one (if it intersects the cut (A, B) once, whereas some paths can intersect

it several times); second, we need to add the initial frequency values (see

12

the preliminary stage 1 of the algorithm). Since the vertices are chosen at

random, the probability of the fact that one end of a path belongs to A and

another to B is approximately equal to (2•|A|•|B|) ⁄ N
2
. Therefore for the

total number of such paths an approximate equality

М(A, B) ≈ ((2•|A|•|B|) ⁄N
2
)*М (1)

takes place. Assume (for the purpose of rough estimation) that any path

from А to B intersects the cut (A, B) exactly once. Since the number of

paths М significantly exceeds the maximal value of initial frequency f,

the following rough estimation takes place:

S(A, B) ≈ ((2•|A|•|B|) ⁄N
2
)*М. (2)

Dividing both parts of this approximate equality by the number of edges

in the cut (A, B), we receive

(A, B) = S(A, B) ⁄d(A, B) ≈ (((2•|A|•|B|) ⁄N
2
)*М) ⁄d(A, B), (3)

where (A, B) is the mean frequency at edges belonging to the cut (A, B).

It is very important that the proposed algorithm finds such a cut

(A*, B*) whose edges have the same maximal frequency. This means that

for any other cut (A, B)

(A, B) ≤ (A*, B*). (4)

Formulae (4) and (3) together mean that the cut (A*, B*) maximizes

(approximately, in view of the assumptions made) the expression

(((2•|A|•|B|) ⁄N
2
)*М) ⁄d(A, B) over the set of all cuts of the considered

graph. Eliminating from the latter expression the constants 2, N and М,

common for all the cuts, we obtain the expression

D(A, B) = . (5)

Let us call the function D(A, B) the decomposition function of a graph.

The above deliberations suggest the following plausible conclusion: the

cut (A*, B*) found by the algorithm approximately maximizes the

decomposition function (5) of the considered graph. The fact that in some

cases this cut depends upon the initialization of a random generator (for

which reason alone it cannot strictly maximize function (5) defined only

by the graph itself) expresses exactly the approximate character of the

solution of this optimization problem. Relevant examples are given in the

next Section 2.3.

The same optimization problem (named RatioCut Problem) is

considered in Luxburg, 2007, where its connection with spectral

classification methods is demonstrated. Yet the essential issue concerning

13

this NP-hard optimization problem does not consist in the search of its

approximate solutions but, rather, in the elucidation of adequacy of this

function to neighborhood graph decomposition, or, to be specific, does its

maximization by the suggested algorithm allow finding intuitively correct

classifications? Clearly, this question is informal and the answer can only

be received through experiments.

2.3. Examples of Dichotomies Constructed by the Suggested

Minimax Algorithm. Dichotomies obtained by the algorithm for all the

six 2-dimensional sets shown in Fig.1, are presented in Fig.3. In this and

Fig.3. Solutions of six simple two-dimensional classification problems

all the subsequent figures that present classification results, only edges

connecting different classes are shown; lines intersecting these edges

separate the found classes. In all six cases, not only the same program

was used but the few variable parameters remained the same: f = 10, T =

1000, in the construction of the neighborhood graph every vertex was

connected to four closest vertices. The results do not depend on the initial

seeds of the random generator. In no cases do they contradict the intuitive

idea of the correctness of classification.

14

However this is not always the case, which set off the elaboration

of the general AC algorithm described further in this work. In this

algorithm, the suggested method of dichotomy is used as an essential step

at the divisive stage (see Section 3). To understand the necessity of a

deeper analysis, consider the following example.

Example 1. Two two-dimensial sets are shown in Fig.4a and 4c.

The dichotomy result for the set of Fig.4a is shown in Fig.4b. Similarly to

all six cases shown in Fig.1 and 3, the result does not depend on the

initialization of the random generator. The cut, found by the minimax

algorithm, maximizes the decomposition function (5) over the set of all

cuts of the neighborhood graph and determines an intuitively correct

classification into two classes.

Fig.4. Stable and instable dichotomies

In contrast to the above, using the same algorithm for a similar set

shown in Fig.4c, leads to results, perceptibly depending on the

initialization of the random generator, as is clear from Fig.4d, 4e, and 4f.

In these cases the found solutions do not coincide with the one intuitively

obvious. Finally, the value of the decomposition function for the correct

15

cut is equal to 31549, whereas for the incorrect cut found by the minimax

algorithm and shown in Fig.4d it is equal to 40382. In two other cases

this function is also substantially greater than its value on the correct cut.

This simple example once again emphasizes the fact that we have to be

cautious when contemplating sufficiently popular balanced criteria of

classification (as well as other formal models of classification that are

applied without good reason and with no clear identification of the type

of AC problems for which the model is adequate).

The reason why criteria (5) fails in the case considered is clear

enough. The quotient of the maximal and the minimal numbers of points

belonging to correct classes in the set of Fig.4c is substantially greater

than in the set in Fig.4a and in all sets in Fig.1. Therefore the numerator

|A|×|B| in (5) is so small relative to the cardinality of product of

approximately equal parts that it cannot be compensated by the

denominator in (5), which is equal to the relatively small number of edges

in the correct cut. The same phenomenon is true of other frequency

algorithms of dichotomies (and even to a greater extent because it is

manifested at a smaller ratio of cardinalities).

In order to retain the strong properties of the suggested method of

dichotomy and to avoid its weakness, it is natural to consider consecutive

dichotomies instead of one. For instance, using the same algorithm for the

maximal of the two classes shown in Fig.4d (as far as the number of

points is concerned), yields a division into three classes shown in Fig.5. If

we now pool the two largest classes, we will obtain precisely the correct

classification. In the next Section 3 the essential procedure of the

suggested general AC algorithm is described; this procedure allows

finding a family of classifications, including the correct one, by

consecutive execution of (1) the divisive and (2) the agglomerative

stages.

 3. Four-stages Divisive-Agglomerative Procedure

This section describes the central part of the proposed

classification algorithm, which we will refer to as divisive-agglomerative

procedure (DAP). The procedure, whose flowchart is shown in Fig. 6,

consists of four stages. The input is a neighborhood graph, constructed

according to the initial data. The parameters of the procedure are the

parameters of dichotomy (listed immediately before the minimax

algorithm in Section 2.2) and an additional parameter k introduced below,

16

Fig.5. Result of two consecutive dichotomies

which is the only one that is related to DAP itself. The output is a family

of classifications of the initial set.

Fig.6. Flow-chart of the divisive-agglomerative procedure

Before we describe the stages of DAP, we will consider an

auxiliary modification algorithm of for the matrix of class connections in

the case of uniting two classes. This algorithm is used as a separate

repeated step in the divisive and agglomerative algorithms presented

below.

Algorithm of connection matrix modification. The input of the

algorithm consists of a symmetric m×m matrix D as well as indices i and j

(i < j). The output of the algorithm is a similar matrix D’ for (m–1)

classes, where the “new” i-th class is the union of the “old” i-th class and

the j-th class. It is assumed that the value of connection between any one

of the remaining classes and the new united class is equal to the sum of

values of connection between this particular class and the i-th and the j-th

classes, while all the other connections remain the same. This assumption

is natural in the considered situation, where the value of connection

between two classes is equal to the number of edges connecting the

corresponding subgraphs of the initial graph.

1. For all the elements of i-th row of matrix D let dik = dik + djk.

17

2. For all the elements of i-th column of matrix D let dki = dki + dkj.

3. Let dii = 0.

4. Shift up all the rows starting with (j+1)-th row: dst = ds+1,t (s = j, …,

m–2; t = 0, 1, …, m–1).

5. Shift left all the columns starting with (j+1)-th column: dts = dt,s+1 (s

= j, …, m–2; t = 0, 1, …, m–1).

6. Delete the last row and the last column of matrix D. The obtained

matrix D’ is the algorithm output.

We will describe three stages of DAP separately, illustrating the

description by an example.

3.1. Divisive stage. Remember that a divisive AC algorithm

consists in the consecutive division of the initial set: first the whole set is

divided into two parts, whereupon one of the two parts is divided into two

parts once again, and so on, until some classification is obtained that

seems satisfactory. It is clear that the answers to the most essential

questions – how to divide a set into two parts, and which of the already

constructed parts is selected for the next division – determine the essence

of the algorithm being designed. These important issues are reflected in

the following algorithm.

Divisive algorithm. The input of the algorithm is an undirected

connected graph G. The only algorithm parameter is a counting number

k, equal to the maximal number of parts in the graph division. The output

of the algorithm is described below.

1. Initialization. Define the integer variable d (the number of the

current dichotomy); a one-dimensional array P of length k–1 (the

array of indices of subgraphs, consecutively chosen for division); an

array S of length k, whose components are subgraphs. Let d = 0; S[d]

= G, where G is the given input graph. Note that P[0] = 0 by

construction.

2. From subgraphs S[i] (0 ≤ i ≤ d), select a subgraph S[im] with the

maximal number of vertices.

3. Let P[d] = im.

4. Divide subgraph S [im] into two subgraphs using the algorithm of

dichotomy described in Section 2.2; denote these subgraphs as Sa and

Sb.

5. Let S[im] = Sa, S[d+1] = Sb.

6. Let d = d+1.

18

7. If d < k–1, go to step 2.

8. Construction of a family of classification of set A = {0, 1, …, k–1}.

8.1. Define a classification of the set A = {0, 1, …, k–1} into

k classes: [j] = {j} (j = 0, 1, …, k–1).

8.2. For i = k–3, …, 0 recurrently define classifications of the

set A = {0, 1, …, k–1} into (i+2) classes as follows:

[j] = [j] (j = 0, 1, …, i+1; j ≠ P[i]), (6)

[P[i]] = [P[i]] [i+2]. (7)

9. Define a symmetric matrix D of dimension k×k whose element dij is

equal to the number of edges connecting the i-th and the j-th

subgraphs from array S (i, j = 0, 1, …, k–1; i ≠ j). For this purpose,

introduce an array а of length N, where N is the number of vertices of

the initial graph G. For all vertices v of the subgraph S[i] let а[v] = i (i

= 0, 1, …, k–1). Checking consecutively all the edges of the initial

graph (specified as an array of pairs of adjacent vertices), add one to

the element of matrix D with indices (p, q), where p = а[v], q = а[w], v

and w are the ends of the next edge, and p < q.

10. Construction of the family of matrices.

10.1. Let = D.

10.2. For i = k–3, …, 0, recurrently define a new matrix

proceeding from the matrix and indices P[i+1] and (i+2) by

using the above considered algorithm of modification of the

connection matrix.

11. Stop.

The output of the divisive algorithm is constituted by the array S of

subgraphs; the family of classifications { } (i = k–2, …, 0) of the set

A = {0, 1, …, k–1} into (i+2) classes; the family of matrices { } (i =

k–2, …, 0). We will henceforth refer to these classifications and matrices

as basic. Subgraphs S[0], S[1], …, S[k – 1], which are the components of

array S, are henceforth referred to as blocks, because all classes in all

subsequently constructed classifications consist only of these components

and/or their unions.

Example 2. Consider the set shown in Fig.7a. Assume k = 4. The

consecutive dichotomies are shown in Fig.7b – 7d. In this case P = (0, 0,

1). The array S consists of four blocks, shown in Fig.7d. The basic

19

Fig.7. Consecutive dichotomies

classifications of set A = {0, 1, 2, 3}, in accordance with steps 8.1 and 8.2

of the divisive algorithm, are:

 = {{0,2},{1,3}}, = {{0},{1,3},{2}}, = {{0},{1},{2},{3}}. (8)

In accordance with steps 9 and 10.1 of the divisive algorithm we obtain

 = D = . (9)

Further, for i = 1 we have P[i+1] = 1, i+2 = 3 and in accordance with

step10.2 of the divisive algorithm and the algorithm of connection matrix

modification from we obtain the matrix

 = .

Similarly, for i = 0 we have P[i+1] = 0, i+2 = 2, and we obtain from

the matrix = . Thus, the following three basic matrices are

found:

20

 = , = , = . (10)

The arrays S of four blocks, the families of classifications (8) and

matrices (10) together form the output of the divisive algorithm in the

considered case.

3.2. Agglomerative stage. The set A = {0, 1, …, k–1} is

considered as the initial set. The element dij of the matrix , found at the

divisive stage, is considered as the value of connection between the

objects i and j; the value of connection between two subsets of A is

defined as the sum of numbers dij over all pairs of objects belonging to

these subsets. Remember that by construction this number dij coincides

with the number of edges connecting the i-th and j-th subgraphs from the

array S. In the agglomerative algorithm described below, for every i

varying from k–2 to 0 the basic matrix and the classification

determine the new family of matrices and classifications, which we will

refer to as adjoint ones.

Agglomerative algorithm. The input of the algorithm consists of:

the family of basic classifications { } (i = k–2, …, 0) of set A = {0, 1,

…, k–1} into (i+2) classes; the family of basic matrices { } (i = k–2,

…, 0). The output of the algorithm is a family of of the same set A

= {0, 1, …, k–1}.

1. Construction of adjoint matrices and classifications. For every i =

k–2, …, 0 (external cycle), the following operations are executed:

1.1. For i+1, …, 2 (internal cycle) the next matrix is defined by

the previous matrix as follows:

1.1.1. Find a pair of indices s and t (s < t), such that the element

dst of the matrix is maximal.

1.1.2. Construct the next matrix from the matrix and

indices s and t, using the algorithm of connection matrix

modification.

1.1.3. Define the new classification of set A = {0, 1, …, k–1}

into j classes from the classification as follows:

[p] = [p] (p = 0, 1, …, t–1; p ≠ s), (11)

21

[p] = [p+1] (p = t, …, j–1), (12)

[s] = [s] [t]. (13)

2. Presentation of the output. Present all constructed classifications in

the following order, writing in one row all classifications into the

same number of classes:

, , …, , ;

, …, , ;

 ……………………. (14)

, ;

.

In (14) the first classification in every row is basic; all of them are

constructed from the initial classification by formulae (6) and (7).

All other classifications in (14) are the adjoint ones. The last

classifications in every row (starting from the penultimate row) are

adjoint to , penultimate classifications in every row (starting from

the third row from the end) are adjoint to , and so on, up to the

classification , adjoint to . In all cases the lower index is equal to the

number of classes, while the upper index is the number of the group

written diagonally; this group contains one basic classification (the first

one in the diagonal), and all those adjoint to it as found by the

agglomerative algorithm. The output of this algorithm consists of the

family of classifications of the set A = {0, 1, …, k–1}, ordered as shown

in (14); the basic classifications are determined by formulae (6), (7) and

the adjoint ones by formulae (11) – (13)

Example 2. Continuation. In this case three basic matrices are

specified by (10) and three basic classifications are specified by (8). We

will now come to construct adjoint matrices and classifications following

the agglomerative algorithm. Fixing i = 2 we obtain for j = 3 (see step

1.1.1) dst = 7, s = 0, t = 2. In accordance with step 1.1.2, the matrix is

, and in accordance with step 1.1.3 the classification

 = {{0,2},{1},{3}}. Further, at i=2 we obtain for j =2 dst = 2, s = 1, t

= 2; the matrix = ; {{0,2},{1,3}}. Return to the external

cycle and set i to 1. For the only j = 2 we obtain (see matrix) dst = 7, s

22

= 0, t = 2, which gives = = and {{0,2},{1,3}}.

Finally, for i = 0 the required j satisfying the conditions 1 ≥ j ≥ 2, does

not exist and no adjoint matrices or classifications are constructed.

By writing out all found classifications in accordance with step 3

of the agglomerative algorithm we obtain

 = {{0,2},{1,3}}, = {{0,2},{1,3}}, {{0,2},{1,3}},

 = {{0},{1,3},{2}}, {{0,2},{1},{3}}, (15)

 = {{0},{1},{2},{3}}.

Note that the adjoint classification {{0,2},{1},{3}} is the only

correct classification (see Fig.8). This classification cannot be constructed

directly by any number of consecutive dichotomies (e.g. it is not a basic

classification for any parameter k), which is one of the reason why we

had to introduce adjoint classifications.

Fig.8. A correct adjoint classification

3.3. Elimination stage. The output of the agglomeration stage is

the family of classification of the set A = {0, 1, …, k–1} in form (14).

Since the number of classifications in the i-th row from the bottom is

equal to i, and the total number of rows is equal to k, it can be seen that

23

the total number of constructed classifications is . Some of them

may be identical. This DAP stage is designed to eliminate these (certainly

redundant) classifications. The algorithm itself is almost obvious, the

more so as the dimension of the problem is not large (the number k of

blocks is assumed to be small enough – about 10 to 20).

Yet the comparison of two classifications of one and the same set

can be easily made even for much greater k. It is sufficient to list the

numbers in every class in the increasing order. The comparison of

classifications is obviously reduced to the comparison of sets, whereas for

ordered subsets of the same set it is reduced to consecutive comparison of

elements having the same indices – up to the first discrepancy or to the

end of the exhaustion. The output of this stage is a family of different

classifications.

Example 2. Continuation. Of the 6 classifications (15) of the set A

= {0, 1, 2, 3}, only 4 are different:

 = {{0,2},{1,3}},

 = {{0},{1,3},{2}}, {{0,2},{1},{3}}, (16)

 = {{0},{1},{2},{3}}.

These four classifications are shown in Fig.9.

3.4. Presentation stage. The output of the elimination stage is the

family (to be further denoted as F) of different classifications of the set A

= {0, 1, …, k–1}. Yet the output of the whole DAP is, as was pointed out

at the beginning of the Section, the family of classifications of the initial

set of objects (e.g. vertices of the given graph G), rather than the set of

indices of blocks A = {0, 1, …, k–1}. Transition from one family to the

other is the goal of this stage.

Of course, every block (e.g. a subgraph of the initial graph) is

uniquely defined by its index (see the description of the output of the

divisive algorithm). Therefore every classification of block indices

uniquely defines some classification of the initial set. However,

considering the subsequent operations of the suggested general AC

algorithm, it seems expedient at this stage to present every classification

into t classes as a set of t binary vectors (t = 2, …, k) of length N, where N

is the number of vertices of graph G.

Presentation algorithm. The input of the algorithm is the array S of

blocks of length k, constructed at the divisive stage (see the description

24

Fig. 9. Classification a into two classes; classifications b and c into three classes;

classification d into four classes

in Section 3.1), and a family F of classifications of the set A = {0, 1, …,

k–1}, whose elements correspond to the indices of subgraphs (or blocks)

in the array S. The output of the algorithm is the family R of

classifications of set of vertices of G, denoted below as V.

1. Let R = Ø.

2. For every classification С F execute the following operations (the

external cycle by the given classifications of A = {0, 1, …, k–1}):

2.1. Let B = Ø (B denotes the set of binary vectors which defines

the classification of set V corresponding to С).

2.2. For every class X from classification С execute the following

operations (cycle by classes from the fixed classification С):

2.2.1. Define a vector x with N components and let xi = 0 (i = 0,

1, …, N – 1).

2.2.2. For every index р X execute the following operations

(cycle by indices from class X):

25

2.2.2.1. Consider the set of vertices of subgraph S[p] (it is

given as an integer array z of length np, whose components

are indices of vertices belonging to subgraph S[p]).

2.2.2.2. For every component y of array z let x[y] = 1

(internal cycle by vertices from one block).

2.2.3. Add the vector x to the set B: B = BU{x}.

2.3. Add the set of vectors B to the set R: R = RUB.

Thus, the output of the presentation algorithm and, hence, the output of

the whole DAP, is the family of classifications of the set of vertices of

graph G; every one of which is presented by a set of binary vectors – one

vector for each class..

To conclude this Section 3.4, we will give some comments. It may

seem possible to significantly simplify the suggested DAP. Specifically,

choose a sufficiently large value of the parameter k, make (k–1)

consecutive dichotomies using the divisive algorithm and thus find one

basic classification (and the corresponding basic matrix = D).

After that, find all classifications adjoint to , one of which is correct.

Indeed, this is how conventional agglomerative algorithms work, starting

with the initial classification, all classes of which consist of one object. In

many cases this simpler procedure also proves successful in the

framework of the suggested approach. However it is not always the case.

Example 3. Consider the set shown in Fig.10a (two two-

dimensional normal distributions consisting of 200 and 1000 points). The

basic classification , i.e. at k = 3, for some initializations of the random

generator is shown in Fig.10b. The only corresponding adjoint

classification , shown in Fig.10c, is not correct. The correct

classification in this case is the basic classification , shown in Fig.10d.

This simple example demonstrates that we need to analyze all basic

classifications. It is not a problem, however because computation time

needed for all operations in the agglomerative algorithm is negligibly

small as compared to the time required by (k – 1) dichotomies in the

divisive algorithm.

There is nothing drastic in this example. Generally, for sufficiently

large k values, the classes are getting small, so that the number of edges

connecting some classes with the remaining ones may be smaller than in

the correct cut. Since in the aggregation the sets to be united are

connected by the maximal number of edges, the correct classification

26

does not coincide with any classification, adjoint to the basic

classification for large k. In some cases (in particular, shown in

example 3) this phenomenon can even happen for sufficiently small k. In

Fig.10b the wrong cut consists of 6 edges, while the correct cut has 7

edges. Therefore in the construction of an adjoint classification the sets

selected for the union are wrong, which is demonstrated by Fig.10c.

Fig.10. Example of a missed basic classification

Numerous examples demonstrate that correct classifications are

indeed present among the few classifications found by the suggested

DAP. The method of their selection is considered in the next Section 4.

4. Stable Classifications

Since the suggested algorithm of dichotomy contains randomized

steps (including the determination of the initial frequencies and the

choice of every pair of vertices), the result of dichotomy is, generally

27

speaking, random. Examples considered in Section 2 point to the fact that

correctness and stochastic stability are closely connected. An important

fact could be experimentally established: in all cases when the result of

dichotomy does not depend on the initialization of a random generator

(which is stochastic stability), the constructed classification into two

classes is correct, e.g. it does not contradict geometric intuition.

Conversely, in all cases (reported in this work as well as in dozens of

others) the absence of stability implies incorrectness of the constructed

classification. It is exactly this deliberation that underlies the proposed

algorithm of selection of correct classifications from among all found by

the suggested DAP.

Since the result of each dichotomy is random, all classifications

constructed by DAP and even their number are random. We propose to

repeat this procedure several times for different initializations of the

random generator. It turned out that only very few of the classifications

found belong to all of the constructed families, whereas the most of

classifications do not belong to at least some of them and, hence, can be

considered as random, instable and inessential. Classifications entering

into all the families will be referred to as stable classifications. A correct

classification is defined as a stable classification with the maximal

number of classes (of course, this number cannot exceed a preset number

k of blocks, which is the only parameter of DAP). Note that it is possible

to choose k with a safety margin, essentially greater than the assumed

maximally possible number of classes.

The idea of basing the choice of classification on stochastic

stability is not new. Yet the efficiency of this idea depends on how

natural and strong the connection is between quality of classification and

its stability. The experiments demonstrate that, within the suggested

approach, this connection is practically decisive. The matter is that

stochastic stability is analyzed for very few classifications, already

constructed on the basis of the reasonable dichotomies, and the

considered random families already contain correct classifications.

Therefore none of the experiments yield partial coincidences (50-90%)

for correct classifications. Either the coincidence is practically full (with a

small number of declining points), or it does not reach 90%. This high

stability (backed by intuitive obviousness of the results) is the strongest

argument in favor of the suggested approach. In the case of absence of

28

stable classifications it may be reasonably inferred that the initial set does

has no cluster structure.

Before we give a formal description of the selection algorithm of

stable classifications we will introduce necessary formal notions and

describe auxiliary algorithms. Two finite sets A and B coincide at level α

(0 ≤ α ≤ 1), if

|A ∩ B| ⁄ |A B| ≥ α (17)

(|X | denotes the cardinality of the finite set X). Two classifications P and

Q of the same finite set M into the same number of classes m coincide at

level α if it is possible to enumerate their classes P1, P2, …, Pm and Q1,

Q2, …, Qm so that sets Pi and Qi coincide at level α (i = 1, 2, …, m). The

following almost evident statement takes place.

Statement 2. Let two classifications P and Q coincide at level α,

and α > 0.5. Then the one-to-one correspondence between their classes

mentioned in the previous definition is determined uniquely.

Proof. It is sufficient to prove that any class from P may coincide

at level α only with one class from Q.

Assume that it is wrong and, hence, a class А from P coincides at level α

with two different classes В и С from Q. Let А’ = A ∩ B, А’’ = A ∩ C.

Since В ∩ C = Ø, А’ ∩ А’’ = Ø. Two conditions of coincidence (for B

and C) can be written as:

|А’| ≥ (|А’’| + |В|)α,

|А’’| ≥ (|А’| + |C|)α.

Summing up these two inequalities, after simple rearrangements we have

(|А’|+|А’’|)β ≥ (|В| +|C|)α, (18)

where β = 1–α.

At the same time by the definition of А’ and А’’

|А’| ≤ |В|, |А’’| ≤ |С| , hence

(|А’|+|А’’|) ≤ (|В| +|C|). (19)

Since by condition α > 0.5, it implies that α > β. Therefore (18) implies

(|А’|+|А’’|)α > (|В| +|C|)α,

hence (|А’|+|А’’|) > (|В| +|C|), which contradicts (19). The contradiction

completes the proof ■

Algorithm of checking the coincidence at level α of two subsets of

the same set U. The algorithm is as follows. In our case every set is

presented by a binary vector with m = |U| components (see the presenta-

tion algorithm in Section 3.4).

29

1. By one simultaneous survey of both vectors calculate:

1.1. The number of components with two 1s.

1.2. The number of components with at least one 1.

2. Divide the first number by the second one.

3. Compare the result with the given number α. If it exceeds α, then

two sets coincide at level α; otherwise, they do not coincide.

Algorithm of checking the coincidence at level α of two

classifications of the same set into m classes. It is assumed that α > 0,5.

1. Let i = 0.

2. Let i = i + 1.

3. If i > m, then the classifications coincide. Stop the algorithm.

4. Let j = 0.

5. Let j = j + 1.

6. If j > m, then the classifications do not coincide. Stop the algorithm.

7. Check the coincidence at level α of sets Pi and Qj. In the case of

coincidence go to step 2, otherwise go to step 5.

Statement 2 guarantees the correctness of the algorithm. The matter is

that no analysis of different one-to-one correspondences between the

classes is required. It is sufficient to find, for every class from the 1st

classification, a class from the 2nd classification that coincides with it.

Algorithm of selection of stable classifications. This algorithm is

the external cycle in the considered general AC algorithm. The input of

the algorithm is the given graph G; the output is a set (it may be an empty

set or a set consisting of more than one element) of correct classifications

in the AC problem, presented by the graph G. Parameters of the

algorithms are two numbers r and α: r is equal to the number of

repetitions of DAP; α sets a minimal level of coincidence of

classifications for which the conclusion is made with regard to stochastic

stability (the typical value of α lies in segment [0.90 – 0.95]). The

remaining parameters have been described above. Classifications found

by the algorithm will be called (r, α)-stable.

1. Initialization. Execute DAP once. Let F = C, where C is the set of

classifications found by DAP; F = {F1, …, Fn}. Let t = 0.

2. Let t = t +1. If t = r, go to 4.

3. Execute DAP once and denote the set of found classifications by C

= {C1, …, }.

3.1. Let i = 0.

30

3.2. Let i = i + 1.

3.3. If i > n, then go to 2

3.4. Let j = 0.

3.5. Let j = j + 1.

3.6. If j ≤ mt, then go to 3.9.

3.7. Delete the classification Fi from the list F = {F1, …, Fn};

reduce the indices of all classifications from (i + 1) by 1 and let n =

n–1.

3.8. If n = 0, then (r, α)-stable classifications do not exist. Stop.

Otherwise, go to step 3.2.

3.9. Check the coincidence at level α of sets Fi and Cj. (using the

above described algorithm). In the case of coincidence go to 3.2;

otherwise go to 3.5.

4. The current set F = {F1, …, Fn} is the set of all (r, α)-stable

classifications. Stop.

Some comments to the last algorithm are needed. If classification

Fi does not coincide with any of new classifications Cj (j = 1, …, mt), this

means that Fi is not a stable one. Therefore at step 3.7 this classification

is deleted from the list F. If at this step all classifications from F are

deleted, then the algorithm stops at step 3.8. But if for classification Fi a

classification Cj coinciding with it has been found (which is established at

step 3.9), then Fi is still considered a stable one, and after returning to

step 3.2 the next classification Fi+1 is checked. The return to step 2 after

step 3.2 means the transition to the next iteration in the external cycle

over new executions of DAP.

Example 2. Continuation. A single execution of DAP yields 4

classifications shown in Fig.9. From the viewpoint of stability, the most

crucial one is the classification into 3 classes shown in Fig.9b, which is

the basic classification = {{0},{1,3},{2}}. Let the number r of

repetitions of DAP be equal to 4. In four executions of DAP the

classifications, corresponding to , are shown in Fig.11a – 11d.

The classifications in Fig.11a and 11b coincide at level α ≈ 0,85

(class {2} consists of 483 points in the first classification and of 410

points in the second one. It is clear that at the level 0.9 or higher these

classifications are not stable. The same is also true of the classification

into 4 classes corresponding to the basic classification =

{{0},{1},{2},{3}} (see Fig.9d). Yet the classifications into 2 and 3

31

classes shown in Fig.9a and 9c are stable at level 1. Therefore the

classification from Fig.9c is taken as a formal solution of AC problem in

the considered case, because it is a stable classification with the maximal

number of classes (under the restriction k = 4). Note that the algorithm

finds the same single classification stable at level 1 under any k > 4, too.

Fig.11.Example of instability of classification

Stability parameters r and α are connected in the same way as the

number of random trials and significance level are connected in statistics:

the larger values of r correspond to the lower values of coincidence level

α. Yet in the considered situations the coincidence level α decreases with

the growth of r for unstable classifications. For stable classifications the

coincidence level soon approaches a number sufficiently close to 1, and

does not vary further with the growth of r. This allows us to assume that

the number r of repetitions stays within the limit 5 – 15. Intermediate

situations, when stability is lost after 20 – 30 repetitions, may happen

(though for very few initial sets and rare initializations of the random

generator). Natural modifications of the notion of stability that span these

32

very rare situations are disregarded here for the sake of brevity.

5. Examples

In this section several examples are considered in the increasing

order of complexity (the notion of complexity is informal). In the first six

examples 4 – 9, the initial sets are two-dimensional sets of points. The

figures show only the final results of the suggested general AC algorithm.

Parameters α, f and T were the same in all considered cases: α = 0.95; f =

10; T = 1000. In examples 4 – 6, 10, 11 r = 10 and k = 6; in example 7 r =

5 and k = 10; in example 8 r = 10 and k = 15.

Example 4. The initial set is the union of two two-dimensional sets

of points, each normally distributed along the x axis and uniformly along

the y axis. The result of classification is shown in Fig.12. Note that the

number of classes is not defined in advance – there is only the upper

bound k.

Fig.12. Classification result in example 4 (1397 points)

Example 5. The initial set consists of two contacting rings with a

few points inside. The result of classification is shown in Fig.13.

Example 6. The initial set consists of four two-dimensional slight-

ly damaged normal distributions. The result of classification is shown in

33

Fig.14.

Fig.13. Classification result in example 5 (3228 points)

Example 7. The initial set resembles a spiral with two narrow

isthmuses approximately in the middle and close to one of the ends. The

result of classification is shown in Fig.15.

Example 8. The initial set resembles a lake with two peninsulas.

The smaller peninsula contains relatively few points (223 of 4501), while

the number of edges, connecting it to the other part is equal to 6, i.e. it is

not too small. Therefore this peninsula is revealed only after a conside-

rable number of consecutive dichotomies and therefore k was taken to be

large enough (k=15). The result of classification is shown in Fig.16.

34

Fig.14. Classification result in example 6 (1279 points)

Fig.15. Classification result in example 7 (4272 points)

35

Fig.16. Classification result in example 8 (4501 points)

Example 9. The initial set is shown in Fig.17. No cluster structure

is observed. The suggested algorithm confirms the fact: stable classifica-

tions are lacking even at level 0.6 for the number of repetitions r = 4.

Fig.17. Example of absence of any reasonable classification

36

Example 10. Multidimensional data: a matrix of objects and

parameters matrix. Unlike all previous examples, in this case the initial

set is not two-dimensional. There are 15 objects and 20 parameters. Three

classes are selected. The first class consists of objects with numbers 0, 3,

6, 7, 10, 13; the second class consists of objects with numbers 1, 4, 5, 8,

14; the third class consists of objects with numbers 2, 9, 11, 12. Two

groups of parameters are selected. The first group consists of parameters

0, 2, 3, 5, 8, 9, 11, 14, 16, 17, 19; the second group consists of parameters

1, 4, 6, 7, 10, 12, 13, 15, 18.

The objects from the first class have “large” values (between 44

and 90) for the parameters of the first group and “small” values (between

10 and 56) for the parameters of the second group. The objects from the

second class have “large” values (between 44 and 90) for the parameters

of the second group and “small” values (between 10 and 56) for the

parameters of the first group. The objects from the third class have

“intermediate” values (between 27 and 73) for the parameters of both

groups. All numbers in the pattern matrix are randomly selected within

the corresponding ranges (large, small, intermediate):

The suggested general algorithm correctly finds the given

classification into 3 classes. The parameters from the second group are

marked grey; matrix rows are rearranged in such a way that the objects

from the same class are written consecutively. Thus, in this example the

correct classification is revealed despite significant intersections of large,

small, and intermediate ranges:

37

Example 11. Dissimilarity matrix. There are 40 objects. Two

classes are selected. The first class consists of objects with numbers 0, 1,

2, 3, 4, 7, 8, 9, 10, 11, 15, 20, 21, 22, 27, 28, 30, 31, 32, 33, 35, 36, 37,

38; the second class consists of objects with numbers 5, 6, 12, 13, 14, 16,

17, 18, 19, 23, 24, 25, 26, 29, 34, 39. Dissimilarities between objects

belonging to the same classes are random numbers from 10 to 60, while

dissimilarities between objects belonging to different classes are random

numbers from 25 to 80.

The suggested general algorithm finds correctly the initial

classification into 2 classes. Matrix rows and columns are rearranged in

such a way that the objects from the same class are written together. The

data is presented by 4 matrices. The 1-st and the 4-th ones contain

dissimilarities between objects from the 1-st and 2-nd class, respectively:

there are no numbers larger than 60. The 2-nd and the 3-rd ones contain

dissimilarities between objects from different classes: there are no

number lesser than 25.
Matrix 1

38

Matrix 2

Matrix 3

39

Matrix 4

6. Comparison with Other Methods

6.1. Comparison with SPSS. In this Section the six sets shown in

Fig.1 are considered. All of them are correctly divided by the suggested

algorithm of dichotomy (see classifications in Fig.3). The results of

classification of the same sets by classification methods offered in the

well known software package SPSS are presented below. The results of

the K-mean method are shown in Fig.18. The results of the hierarchical

algorithm (for the between-group linkage version) are shown in Fig.19.

The results of other versions of hierarchical classifications are

approximately the same. The best results are obtained for Ward’s method,

yet only three sets of six are classified correctly (see Fig.20). In a slightly

more complicated situation, carefully considered in example 2 with the

continuations, Ward’s method gives unsatisfactory results (see Fig.21).

6.2. Other Comparisons. To ascertain that many well-known

methods are inoperative (at least, in some simple cases), no formal check

of them (i.e. running of the respective programs for the sets, in which the

suggested general AC algorithm gives correct classifications) is required

at all. Their descriptions imply that in many cases (including rather

simple) they will not work properly. Let us dwell on several well-known

methods in more detail.

1. Methods minimizing the mixture of variances. It is well known

that in the case of two classes this mixture reaches its minimal value for a

of non-convex classes a correct classification will not be obtained.

40

Fig.18. Results of K-mean method

Fig.19. Results of hierarchical classification with between-groups linkage

41

Fig.20. Results of hierarchical classification with Ward’s method.

Sets 1, 4 and 5 are classified correctly

Fig.21. Example of the wrong classification by Ward’s method

42

2. Minimal linkage methods. Assume that A and B form an

arbitrary division of an initial set into two subsets. Define

d(A, B) = .

A division maximizing d(A, B) is considered to be a solution of the AC

problem. Example 5, in which the distance between classes is very close

to 0, demonstrates that these methods do not work in such cases.

3. Generalized Newman-Girvan Algorithm. The frequency

methods are perhaps the strongest AC methods (from the viewpoint of

diversity and incidence of problems solved by them). The algorithm

copes with all test sets 1 – 6, except for set 4. The result of classification

of this set is shown in Fig.22. The reason (as in example 1) consists in a

large quotient of cardinalities of correct classes.

Fig.22. Example of wrong classification by generalized Newman-Girvan

algorithm

4. Balanced Cut Criterion (5). In the above mentioned example 1 a

discrepancy was noted between this criterion and some AC problems

43

(whose correct solutions do not correspond to cuts maximizing the

criterion). Yet this example implies much more. The review by Luxburg

(2007), devoted to Spectral Clustering, discusses the formal

correspondence between the optimization problem with criterion (5), on

the one hand, and a version of spectral algorithm, on the other hand. In

the review of Filippone et al, 2008 attention is paid to the formal

correspondence between three approaches: balance criteria optimization,

spectral methods and kernel clustering methods. Yet the balance criterion

optimization, as was revealed in several cases (not only in example 1 and

test set 4), does not lead to correct classifications. Hence, the same

conclusion is true for spectral and kernel methods that have been very

popular and actively developing in the last few years.

7. Conclusion

The methods mentioned at the end of the previous section

demonstrate diversity and depth of their mathematical foundations.

However, the essentially simpler scheme suggested in this work is more

efficient – first of all from the viewpoint of diversity and difficulty of

problems being solved. It seems that practically all of the known methods

have a drawback that at the first glance is not very important but in fact

proves crucial. They do not contain any instructive description (to say

nothing of a formal one) of a class of successfully solved problems. In the

book of Braverman and Muchnik published quite a long time ago (1983)

there is an honest confession of the authors, who say (in page 140): “It is

natural that any specific functional cannot encompass the wide diversity

of possible views of what a “good aggregation of elements” is. It is more

likely that the biologist, the engineer, the geologist and the economist

have different opinions on this subject. Therefore we can only be

surprised that some functionals, suitable for solving a wide class of

problems from various different fields, could be suggested.” However, it

is desirable to have a more exact description.

Let us dwell in more detail on the features of the suggested

approach.

1. The description of feasible initial sets is sufficiently clear-cut.

Specifically, we consider AC problems, presented by undirected graphs.

A class corresponds to a subgraph containing many vertices compared to

the number of edges connecting the subgraph to other ones. No other data

on mutual arrangement of subgraphs, weight of vertices, length of edges,

44

and so on are used. Note that just as the number of vertices in a subgraph,

so the number of edges connecting this subgraph to other ones, can vary

essentially depending on the subgraph. It is only important that the

quotient of these numbers should be large enough.

2. The character of the scheme does not presuppose the use of a

single new idea, but rather a new combination of known ideas and their

modifications. In the course of action, the family of constructed

classifications first grows and then drops down to one classification.

3. The number of classes is not given in advance. It is limited by a

given sufficiently large number.

4. There are relatively (for such a universal scheme) few

parameters, all of which are meaningful. Two parameters f and Т of the

suggested algorithm of frequency dichotomy have little effect on the

result. All the above presented results are obtained for f = 10 and Т =

1000. But for f = 20 and Т = 1500, as well as for other arbitrary changes

of these parameters within limits 5 – 25 and 500 – 3000, the results

practically remain the same. The only parameter of the divisive-

agglomerative procedure is the number k of blocks. This parameter is

essential. Roughly speaking, for too small values of k correct

classifications may be lost (in example 8 for k = 10 the smaller isthmus is

not found), while for too large values of k redundant stable classifications

may appear. Yet for all the intermediate k the same correct classification

is found. Finally, at the external cycle of stability check two parameters

are given: the number r of random trials and coincidence level α. It is

possible to choose arbitrary r {5, …, 10} and α [0,95; 0,99]; for the

variations within these limits the resulting stable classification remains

unchanged.

5. The result of application of the suggested AC algorithm is clear-

cut and unambiguous. Of course, preliminary knowledge of the

considered AC problem can be very helpful – but rather at the

interpretation stage than at the computational one.

Of course, no universal methods of classification exist. The above

formulated requirements to the feasibility of initial sets clearly point to

the “local” character of the considered classifications because they are

defined by local connections between classes. Not all classifications are

local, though. In the set shown in Fig.23, the cluster structure evidently

consists of two rings. But in this case it would be wrong to say that the

45

classes (in the corresponding neighborhood graph) are connected by a

small number of edges. The suggested method leads to an obviously

wrong result, even though the classes are connected by only 5 edges. It is

only appropriate to repeat the above cited deliberation from the book by

Braverman and Muchnik (1983) that one should not be surprised if a

method fails in some case but rather, if it proves suitable for many

various situations because it holds true for the suggested new AC

algorithm.

Fig.23. Example of non-local classification

The author is grateful to professors F.T. Aleskerov and B.G.

Mirkin for their attention and numerous helpful observations, and his

colleagues K.B. Pogorelskiy, E.G. Galitskiy and E.B. Galitskiy for the

help in experimenting on SPSS. The author thanks the Decision Analysis

Laboratory at SU-HSE for the financial support of the work.

References

Aivazyan S.A., Buchstaber V.M., Yenyukov I.S., Meshalkin L.D.

Classification and Reduction of Dimensionality (in Russian). – Moscow:

Finansy i Statistika, 1989.

46

Barseguyan A.A., Kupriyanov M.S., Stepanenko V.V., Holod I.I.

Tecnologies of Data Analysis: Data Mining, Visual Mining, Text Mining,

OLAP. 2-nd Edition (in Russian) – St.Peterburg.: BHV-Peterburg, 2007.

Braverman E.M., Muchnik I.B., Structured Methods of Experimental

Data Processing (in Russian) – Moscow: Nauka, 1983.

Filippone M., Camastra F., Masulli F. Rovetta S. A Survey of Kernel and

Spectral Methods for Clustering. – Pattern Recognition, 41(1):176-190,

January 2008.

Gordon, A.D. Classification. – Chapman & Hall/CRC, 1999..

Luxburg, U. A Tutorial on Spectral Clustering. – Statistics and Compu-

ting 17(4): 395-416, 2007.

Mirkin, B. Mathematical Classification and Clustering. – Kluwer

Academic Publishers, 1996.

Mirkin, B., Clustering for Data Mining: A Data Recovery Approach. –

Chapman & Hall/CRC, 2005.

Newman, M.E.J., Girvan, M. Community structure in social and

biological networks. – Proc. Natl. Acad. Sci. USA 99, 7821–7826, 2002.

Newman, M.E.J. Detecting community structure in networks. – Eur.

Phys. J. B 38, 321–330, 2004.

http://arxiv.org/abs/cond-mat/0112110
http://arxiv.org/abs/cond-mat/0112110
http://arxiv.org/abs/cond-mat/0112110
http://www-personal.umich.edu/~mejn/papers/epjb.pdf

3

© Rubchinsky А., 2010
 Оформление. Издательский дом
Государственного университета –
Высшей школы экономики, 2010

Рубчинский, А. А.
Дивизимно-агломеративный алгоритм классификации на основе минимаксной

модификации частотного подхода : Препринт WP7/2010/07 [Текст] / А. А. Рубчинский ;
Гос. ун-т – Высшая школа экономики. – М.: Изд. дом Гос. ун-та – Высшей школы
экономики, 2010. – 48 с. – 150 экз.

В работе рассматривается традиционная задача автоматической классификации (АК).
Предложенный подход состоит в новой комбинации достаточно известных методов и их
модификации. Сначала осуществляются последовательные дихотомии исходного мно-
жества и тем самым строится семейство классификаций на 2, 3, …, k подмножеств, где
k – некоторое число, заведомо превосходящее предполагаемое число классов (дивизим-
ный этап). Используемая дихотомия относится к частотным методам, представляя собой
их новую модификацию; она естественно включает в себя элементы рандомизации. За-
тем из каждой из полученных классификаций строится новое семейство классификаций
путём последовательного объединения наиболее близких подмножеств (агломеративный
этап). После этого для дальнейшего анализа оставляются только несовпадающие клас-
сификации. Наконец, весь процесс повторяется несколько раз, в результате чего боль-
шинство из оставшихся классификаций оказываются стохастически неустойчивыми.
Устойчивая классификация с максимально возможным числом классов и объявляется
решением исходной задачи АК, а отсутствие устойчивых классификаций интерпретиру-
ется как отсутствие кластерной структуры в исходном множестве.

Рубчинский А.А. – Лаборатория анализа и выбора решений Государственного универ-
ситета – Высшей школы экономики и Международный университет «Дубна»

4

Препринт WP7/2010/07
Серия WP7

Математические методы анализа решений
в экономике, бизнесе и политике

Рубчинский Александр Анатольевич

Дивизимно-агломеративный алгоритм классификации
на основе минимаксной модификации частотного подхода

(на английском языке)

Публикуется в авторской редакции

Зав. редакцией оперативного выпуска А.В. Заиченко
Технический редактор Н.С. Петрин

Отпечатано в типографии Государственного университета –
Высшей школы экономики с представленного оригинал-макета

Формат 60×84 1/
16

. Тираж 150 экз. Уч.-изд. л. 2,9

Усл. печ. л. 2,79. Заказ №  . Изд. № 1190

Государственный университет – Высшая школа экономики
125319, Москва, Кочновский проезд, 3

Типография Государственного университета – Высшей школы экономики

Тел.: (495) 772-95-71; 772-95-73

