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1. Introduction 

The well-known problem of automatic classification (further 

referred to as AC, for brevity) consists in the division of a given set of 

objects into several non-intersecting subsets (usually called classes, 

aggregates, clusters, etc.). It is required that objects belonging to the same 

class be in one sense or another, closely connected or similar, whereas 

objects belonging to different classes should be as dissimilar as possible 

and could easily be discernible. The informal character of the AC 

problem, its various statements and applications, numerous approaches 

and methods of solution are comprehensively described in several 

monographs and reviews (see e.g. Aivazyan et al, 1989, Barseguyan et al, 

2007, Braverman and Muchnik, 1983, Filippone et al, 2008, Gordon, 

1999, Luxburg, 2007, Mirkin, 1996, Mirkin, 2005, Newman and Girvan, 

2002, Newman, 2004). 

In this paper, the AC problem is considered in the most 

conventional form. Namely, it is assumed that a set of objects is given 

such that for all pairs of these objects a degree of dissimilarity (or 

similarity) has been already determined. The information on dissimilarity⁄ 

similarity is usually presented in one of the following three ways: 

1) a pattern matrix (also called entity-to-variable data table and 

objects/parameters matrix); 

2) a dissimilarity (similarity) matrix; 

3) an undirected graph. 

In order to solve the AC problem, a new algorithm is proposed. This 

algorithm finds the “correct” classes in diverse situations proceeding only 

from the initial data (the set of points in the Euclidean space, dissimilarity 

matrix, graph), with no additional assumptions of stochastic, geometric or 

other character, either explicit or implicit. Despite the large number of 

methods proposed for the solution of the AC problem, there are 

absolutely no methods that could find intuitively correct classifications 

even in simple cases of various characters. (An attempt to produce even a 

cursory review of these methods would make this paper several times 

longer.) Let us consider, as an example, the six sets shown in Fig.1. Even 

though it is possible to find a method coping with it for any of these sets, 

none of these methods is able to cope with all the sets. 

In the suggested approach, the initial data on the problem are 

presented by the well-known neighborhood graph (see e.g. Luxburg, 
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Fig.1. Simple two-dimensional classification problems 

2007). Graph vertices are in one-to-one correspondence to the given 

objects. Any vertex v is connected to 4 or 5 other vertices, which 

correspond to the objects that are closest to the object corresponding to 

vertex v. The proximity of objects is determined either immediately by 

the given dissimilarity matrix or by the Euclidean distances between the 

objects, calculated from the given pattern matrix. It is worth noting that 

the presentation of AC problem by a graph is the most general description 

– exactly because it uses the “softest” (non-numerical) data on the 

connections between objects to be classified. In the framework of the 

suggested approach, only such essentially qualitative data on the 

connections are used. 

Basically, throughout the paper I consider the sets of points on the 

plane (two-dimensional points). The idea is as follows. It is well known 

that AC is an informal problem. For two-dimensional sets considered, 

intuitively correct classifications are obvious. If a formal method cannot 

find them, then it is hardly probable that the same method is able to 

reveal cluster structures in more complicated multi-dimensional cases or 
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in the problems presented by the dissimilarity matrix. Still, as will be 

further demonstrated, the suggested approach copes not only with two-

dimensional problems (substantially more complicated than the problems 

shown in Fig.1), but also with multi-dimensional data and the 

dissimilarity matrix.  

The analysis of known AC methods demonstrates that they 

successfully tackle some complicated AC problems and fail in other 

problems seemingly much simpler. Importantly, both types of problems 

are different for different methods. It is probably the dissatisfaction with 

this fact that triggers the emergence of more and more AC methods; still, 

the situation is practically not improving. One can therefore assume that 

no formal model could be proposed that could offer a sufficiently 

description of correct classification. Therefore the approach suggested 

here (unlike many others, including those ones on which our approach is 

based technically) does not attempt at finding the only correct 

classification using only one formal model. Instead, a multistage 

procedure is proposed. The result of each stage is a family of 

classifications which is first gradually expanded and then is gradually 

contracted so that the output of the entire procedure almost always 

amounts to one classification. From this viewpoint, the approach is close 

to genetic algorithms because the latter also deal with sets of solutions 

(populations) rather than with individual solutions. An additional 

advantage of this approach is that it is possible to stop after a particular 

stage and select one of the few remaining classifications using some of 

the known methods. Since the remaining classifications are reasonable 

enough, applying the known methods can prove essentially more efficient 

than applying them from the start, which requires hard calculations with 

no guarantee of results.   

The material is structured as follows. In the Introduction, the 

particulars of the suggested approach are briefly described. In Section 2, 

the used version of the frequency method of dichotomy is presented in 

more detail. Section 3 outlines the construction of a family of 

classifications using a new divisive-agglomerative procedure (further, 

DAP for brevity). In Section 4 the most external cycle of the suggested 

general AC algorithm is presented: iterative constructions of families of 

classifications and the selection of stochastically stable classifications, i.e. 

classifications belonging to all families found by DAP under different 
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initializations of the randomizer. Section 5 offers examples illustrating all 

stages of the suggested general AC algorithm. In Section 6, 

classifications found by the suggested algorithm are compared with those 

obtained by several known methods for the same initial data. In 

conclusion, the main features of the suggested approach to AC are 

summarized and some new statements are discussed.  

2. Frequency Dichotomy Algorithms 

2.1. Newman-Girvan Algorithm. In the article of Newman and 

Girvan, 2002, an entirely new approach to graph decomposition – and 

thereby to the AC problem – was suggested. A cut of the initial graph is 

found as a result of some operations with no prior optimization 

requirements or other conditions imposed on this сut. We will outline the 

essence by citing the article. 

“We define the edge betweenness of an edge as the number of 

shortest paths between pairs of vertices that run along it. If there is more 

than one shortest path between a pair of vertices, each path is given equal 

weight such that the total weight of all the paths is unity. If a network 

contains communities or groups that are only loosely connected by a few 

intergroup edges, then all shortest paths between different communities 

must go along one of these few edges. Thus, the edges connecting 

communities will have high edge betweenness. By removing these edges, 

we separate groups from one another and so reveal the underlying 

community structure of the graph.”  

The formal algorithm for identifying communities is presented in 

the article as follows. 

Newman-Girvan Algorithm 

1. Calculate the betweenness for all edges in the network. 

2. Remove the edge with the highest betweenness. 

3. Recalculate betweennesses for all edges affected by the removal. 

4. Repeat from step 2 until no edges remain. 

It is clear that during the execution of the algorithm every increment (by 

1) of the number of network connectivity components amounts to the 

division of one of the groups into two parts, which results in an 

emergence of a hierarchical structure of groups (or communities) 

determined only by the initial graph. The calculation of betweenness 

degree is reduced to the determination of shortest paths for all pairs of 

vertices; as it is well known, this is a computationally efficient operation 
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with an upper estimation of n
2
. Subsequently (see Newman, 2004) several 

modifications of this approach have been suggested, the most important 

of which being: 

 use of random (instead of the shortest) paths for the calculation of 

edge betweenness; 

 use of a relatively small part of pairs of vertices (instead of using 

all of them) for the estimation of edge betweenness; 

 edge removal based on this estimation. 

In view of the above, it seems more convenient to use, instead of the 

notion of “edge betweenness”, the notion of “edge frequency” which 

should be understood as the number of occurrences of edges in the 

constructed paths. With these modifications, the algorithm of graph 

division into two parts can be described as follows. 

Generalized Newman-Girvan Algorithm 

1. Set the current frequency at every edge equal to zero. 

2. Choose randomly two vertices of the graph. 

3. Find by any method a path between vertices chosen at the previous 

step. If no such path exists, go to step 7. 

4. Add 1 to frequencies at all edges included in the path found at step 

3. 

5. Under certain conditions return to step 2. Such conditions may 

include, e.g. the fact that steps 2 to 4 have been applied a certain large 

number of times, or that stochastic stability has been achieved, i.e. 

when the indices of edges with the maximal frequency have not 

changed for a long time (obviously, different realizations of this step 

are possible). 

6. Remove the edge with the maximal frequency and return to step 1. 

7. Stop. The graph is divided into two connectivity components that 

correspond to the required groups. 

The above approach could be naturally referred to as frequency 

approach, since it is based on the calculation of frequencies of occurrence 

of graph edges in the consecutively constructed paths. It can be applied to 

every AC problem provided it is presented by a graph, in particular, by a 

neighborhood graph mentioned previously. An obvious drawback of 

Newman-Girvan algorithm (recognized by its authors) is that after the 

removal of an edge with the highest betweenness at step 2 all 

accumulated statistics of edge betweenness is deleted and, hence, cannot 
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be used subsequently. Had it been possible to save these data for the 

consecutive steps, it could essentially accelerate the algorithm. The 

following is said on the issue in the cited article by Newman and Girvan 

(2002): “To try to reduce the running time of the algorithm further, one 

might be tempted to calculate the betweennesses of all edges only once 

and then remove them in order of decreasing betweenness. We find 

however that this strategy does not work well, because if two 

communities are connected by more than one edge, then there is no 

guarantee that all of those edges will have high betweenness – we only 

know that at least one of them will. By recalculating betweennesses after 

the removal of each edge we ensure that at least one of the remaining 

edges between two communities will always have a high value.”  

It should be added that the same is true for the generalized 

Newman-Girvan algorithm. The next section shows how to avoid this 

trap. 

2.2. Algorithm of constructing a uniform cut. Note that in the 

previously proposed frequency algorithms any path connecting a certain 

pair of vertices is produced independently of all the paths already 

produced. However, if all paths already produced are taken into account 

we can obtain cuts between two sets of vertices whose all edges have the 

same maximal frequency. Then concurrent removal of all edges with the 

maximal frequency, performed once, produces the desired dichotomy of 

the graph. 

We will first present the algorithm itself and then give the 

necessary comments and examples of its performance in various 

situations. Though the algorithm belongs to frequency algorithms of 

classification, it can be considered new due to the presence of essential 

distinctive features. Importantly, unlike previously known versions of 

frequency algorithm, the algorithm under discussion finds an approximate 

solution of some graph optimization problem which offers a reasonable, 

if, as in other cases, incomplete, estimation of classification correctness 

(see the end of this section for details).   

Minimax frequency algorithm of graph dichotomy. The input of the 

algorithm is an undirected connected graph G. The algorithm has two 

integer parameters: 

 the maximal initial value f of edge frequency; 

 the number of repetition T for the collection of statistics. 
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1. Preliminary stage. Frequencies at each edge of the graph are initialized 

by integer numbers uniformly distributed over the segment [0, f – 1]. 

2. Cumulative stage. Operations of steps 2.1 – 2.3 are repeated Т times: 

2.1. Random choice of a pair of vertices of graph G. 

2.2. Construction of a minimax path (path connecting the two vertices 

chosen at step 2.1, whose longest edge is the shortest one among all 

such paths) by Deikstra algorithm. The length of an edge is its current 

frequency. 

2.3. Modification of frequencies. 1 is added to each frequency of all 

edges belonging to the path found at the previous step, 2.2. 

3. Final stage.  

3.1. The maximal value (achieved after Т repetitions) of frequency fmax 

at graph edges is stored. 

3.2. Operations of steps 2.1 – 2.3 are executed once. 

3.3. The new maximal value of frequency fmod at graph edges is 

determined. 

3.4. If fmod = fmax, return to step 3.2; otherwise go to the next step 3.5. 

3.5. Deduct 1 from frequencies in all edges forming the last found 

path. 

3.6. Remove all the edges at which the frequency is equal to fmax. 

3.7. Find two connectivity components of the modified graph. The 

two constructed sets of vertices form the solution of the considered 

dichotomy problem.  

We will first of all prove that immediately before the execution of 

step 3.6 the set of all edges whose frequency is equal to the maximal one 

indeed contains a cut of graph G.  

Statement 1. Prior to the execution of step 3.6: 

a) the maximal value of frequency over all the edges of the graph is equal 

to fmax, where fmax is the number stored at step 3.1; 

b) the set of all the edges whose frequency is equal to fmax, contains a cut 

of graph G. 

Proof. Step 3.2 refers to steps 2.1 – 2.3. If a new minimax path at step 2.2 

is found, exactly one of the following two cases is possible: 

1. There exists a minimax path connecting the vertices chosen at 

step 2.1 whose all edges have frequencies lower than fmax. 

2. No such path exists. 
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In the first case, after every addition of 1 (at step 2.3) to frequencies at all 

edges of the given path their maximal value (taken over all edges of the 

graph) does not exceed fmax. On the other hand, at least at one edge its 

frequency increases by 1, whilst at no edge the frequency can decrease. 

Both these facts mean that after a certain finite number t of executions of 

steps 3.2→3.3→3.4→3.2 (t ≤ m•fmax + 1, where m is the number of edges 

in the graph) at step 2.2 we encounter with case 2. In case 2, at any path 

connecting vertices chosen at step 2.1, there exists at least one edge 

whose frequency is no smaller than fmax. Since up to now we have only 

encountered with case 1, then, as it was previously established, no 

frequency exceeds fmax. Therefore at any path connecting vertices chosen 

at step 2.1, there exists at least one edge whose frequency is equal to fmax. 

Hence, the set of all the edges whose frequency equals fmax, contains a cut 

of graph G. Adding 1 to frequencies of all edges of the constructed path 

at step 2.3 and subsequently subtracting 1 at the same edges at step 3.5 

does not change frequencies, which proves a) and b) and, hence, 

completes the proof of statement 1■  

Figures 2а and 2b illustrate cases 1 and 2 considered in the proof of 

Statement 1. The cut itself, of course, depends upon the selection of pairs 

of vertices and the distribution of frequencies at edges that formed itself 

prior to the execution of step 3.1. This is the reason why the cumulative 

stage (which claims the most part of the time) should be carried out. As a 

result of this stage the required cut becomes stable in the sense that the 

edges that form the cut no longer depend upon the number T of the 

constructed minimax paths. Yet this cut can depend on the initialization 

of the random generator. So, the presence (or absence) of a dependence 

of the cut (and, hence, the corresponding dichotomy) upon the 

initialization of random generator turns out to be an important feature of 

the AC problem itself rather than the classification method used (see 

Section 2.3 for more details).  

Let us consider the connections between the proposed algorithm 

and the known optimization statements for a balanced cut in a graph. We 

will first introduce the necessary notations. Let N be the number of 

vertices, M the number of executions of steps 2.1 – 2.3 together 

(excluding the last one) that take place at stages 2 and 3 of the algorithm, 

A and B  denote any division  of the set  of graph vertices,  d(A, B) denote 
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Fig.2а. The dashed line marks the path connecting vertices a and b in which all 

edges have frequencies lower than the maximal frequency fm. 

 
Fig.2b. The dashed line marks the path connecting vertices a and b located at 

either side of the cut, in which all edges have frequencies equal to the maximal 

frequency. Necessarily, such a path passes along an edge with the maximal 

frequency fm. 

the cardinality of cut (A, B). Note that M equals the number of all the 

constructed paths in the graph and M ≥ Т. Let us now consider all the 

paths (from among the constructed ones) whose one end belongs to A and 

the other end to B. The sum S(A, B) of frequencies at all the edges from 

the cut (A, B) is no larger than the number of all such paths (to be denoted 

as М(A, B)).  First, every path increases the sum of frequencies at least by 

one (if it intersects the cut (A, B) once, whereas some paths can intersect 

it several times); second, we need to add the initial frequency values (see 
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the preliminary stage 1 of the algorithm). Since the vertices are chosen at 

random, the probability of the fact that one end of a path belongs to A and 

another to B is approximately equal to (2•|A|•|B|) ⁄ N
2
. Therefore for the 

total number of such paths an approximate equality  

М(A, B) ≈ ((2•|A|•|B|) ⁄N
2
)*М                                                                   (1) 

takes place. Assume (for the purpose of rough estimation) that any path 

from А to B intersects the cut (A, B) exactly once. Since the number of 

paths М significantly exceeds the maximal value of initial frequency f, 

the following rough estimation takes place: 

S(A, B) ≈ ((2•|A|•|B|) ⁄N
2
)*М.                                                                   (2) 

Dividing both parts of this approximate equality by the number of edges 

in the cut (A, B), we receive 

(A, B) = S(A, B) ⁄d(A, B) ≈ (((2•|A|•|B|) ⁄N
2
)*М) ⁄d(A, B),                      (3) 

where (A, B) is the mean frequency at edges belonging to the cut (A, B). 

It is very important that the proposed algorithm finds such a cut 

(A*, B*) whose edges have the same maximal frequency. This means that 

for any other cut (A, B) 

(A, B) ≤ (A*, B*).                                                                                (4)  

Formulae (4) and (3) together mean that the cut (A*, B*) maximizes 

(approximately, in view of the assumptions made) the expression 

(((2•|A|•|B|) ⁄N
2
)*М) ⁄d(A, B) over the set of all cuts of the considered 

graph. Eliminating from the latter expression the constants 2, N and М, 

common for all the cuts, we obtain the expression 

D(A, B) = .                                                                                      (5) 

Let us call the function D(A, B) the decomposition function of a graph. 

The above deliberations suggest the following plausible conclusion: the 

cut (A*, B*) found by the algorithm approximately maximizes the 

decomposition function (5) of the considered graph. The fact that in some 

cases this cut depends upon the initialization of a random generator (for 

which reason alone it cannot strictly maximize function (5) defined only 

by the graph itself) expresses exactly the approximate character of the 

solution of this optimization problem. Relevant examples are given in the 

next Section 2.3. 

The same optimization problem (named RatioCut Problem) is 

considered in Luxburg, 2007, where its connection with spectral 

classification methods is demonstrated. Yet the essential issue concerning 
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this NP-hard optimization problem does not consist in the search of its 

approximate solutions but, rather, in the elucidation of adequacy of this 

function to neighborhood graph decomposition, or, to be specific, does its 

maximization by the suggested algorithm allow finding intuitively correct 

classifications? Clearly, this question is informal and the answer can only 

be received through experiments. 

2.3. Examples of Dichotomies Constructed by the Suggested 

Minimax Algorithm. Dichotomies obtained by the algorithm for all the 

six 2-dimensional sets shown in Fig.1,  are presented in Fig.3.  In this and  

 
Fig.3. Solutions of six simple two-dimensional classification problems 

all the subsequent figures that present classification results, only edges 

connecting different classes are shown; lines intersecting these edges 

separate the found classes. In all six cases, not only the same program 

was used but the few variable parameters remained the same: f = 10, T = 

1000, in the construction of the neighborhood graph every vertex was 

connected to four closest vertices. The results do not depend on the initial 

seeds of the random generator. In no cases do they contradict the intuitive 

idea of the correctness of classification. 
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However this is not always the case, which set off the elaboration 

of the general AC algorithm described further in this work. In this 

algorithm, the suggested method of dichotomy is used as an essential step 

at the divisive stage (see Section 3). To understand the necessity of a 

deeper analysis, consider the following example. 

Example 1. Two two-dimensial sets are shown in Fig.4a and 4c. 

The dichotomy result for the set of Fig.4a is shown in Fig.4b. Similarly to 

all six cases shown in Fig.1 and 3, the result does not depend on the 

initialization of the random generator. The cut, found by the minimax 

algorithm, maximizes the decomposition function (5) over the set of all 

cuts of the neighborhood graph and determines an intuitively correct 

classification into two classes. 

 
Fig.4. Stable and instable dichotomies 

In contrast to the above, using the same algorithm for a similar set 

shown in Fig.4c, leads to results, perceptibly depending on the 

initialization of the random generator, as is clear from Fig.4d, 4e, and 4f. 

In these cases the found solutions do not coincide with the one intuitively 

obvious. Finally, the value of the decomposition function for the correct 
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cut is equal to 31549, whereas for the incorrect cut found by the minimax 

algorithm and shown in Fig.4d it is equal to 40382. In two other cases 

this function is also substantially greater than its value on the correct cut. 

This simple example once again emphasizes the fact that we have to be 

cautious when contemplating sufficiently popular balanced criteria of 

classification (as well as other formal models of classification that are 

applied without good reason and with no clear identification of the type 

of AC problems for which the model is adequate).     

The reason why criteria (5) fails in the case considered is clear 

enough. The quotient of the maximal and the minimal numbers of points 

belonging to correct classes in the set of Fig.4c is substantially greater 

than in the set in Fig.4a and in all sets in Fig.1. Therefore the numerator 

|A|×|B| in (5) is so small relative to the cardinality of product of 

approximately equal parts that it cannot be compensated by the 

denominator in (5), which is equal to the relatively small number of edges 

in the correct cut. The same phenomenon is true of other frequency 

algorithms of dichotomies (and even to a greater extent because it is 

manifested at a smaller ratio of cardinalities). 

In order to retain the strong properties of the suggested method of 

dichotomy and to avoid its weakness, it is natural to consider consecutive 

dichotomies instead of one. For instance, using the same algorithm for the 

maximal of the two classes shown in Fig.4d (as far as the number of 

points is concerned), yields a division into three classes shown in Fig.5. If 

we now pool the two largest classes, we will obtain precisely the correct 

classification. In the next Section 3 the essential procedure of the 

suggested general AC algorithm is described; this procedure allows 

finding a family of classifications, including the correct one, by 

consecutive execution of (1) the divisive and (2) the agglomerative 

stages.  

 3. Four-stages Divisive-Agglomerative Procedure 

This section describes the central part of the proposed 

classification algorithm, which we will refer to as divisive-agglomerative 

procedure (DAP). The procedure, whose flowchart is shown in Fig. 6, 

consists of four stages. The input is a neighborhood graph, constructed 

according to the initial data. The parameters of the procedure are the 

parameters of dichotomy (listed immediately before the minimax 

algorithm in Section 2.2) and an additional parameter k introduced below,  
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Fig.5. Result of two consecutive dichotomies 

which is the only one that is related to DAP itself. The output is a family 

of classifications of the initial set. 

 
Fig.6. Flow-chart of the divisive-agglomerative procedure 

Before we describe the stages of DAP, we will consider an 

auxiliary modification algorithm of for the matrix of class connections in 

the case of uniting two classes. This algorithm is used as a separate 

repeated step in the divisive and agglomerative algorithms presented 

below. 

Algorithm of connection matrix modification. The input of the 

algorithm consists of a symmetric m×m matrix D as well as indices i and j 

(i < j). The output of the algorithm is a similar matrix D’ for (m–1) 

classes, where the “new” i-th class is the union of the “old” i-th class and 

the j-th class. It is assumed that the value of connection between any one 

of the remaining classes and the new united class is equal to the sum of 

values of connection between this particular class and the i-th and the j-th 

classes, while all the other connections remain the same. This assumption 

is natural in the considered situation, where the value of connection 

between two classes is equal to the number of edges connecting the 

corresponding subgraphs of the initial graph.  

1. For all the elements of i-th row of matrix D let dik = dik + djk. 
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2. For all the elements of i-th column of matrix D let dki =  dki + dkj. 

3. Let dii = 0. 

4. Shift up all the rows starting with (j+1)-th row: dst = ds+1,t (s = j, …, 

m–2; t = 0, 1, …, m–1). 

5. Shift left all the columns starting with (j+1)-th column: dts = dt,s+1 (s 

= j, …, m–2; t = 0, 1, …, m–1). 

6. Delete the last row and the last column of matrix D. The obtained 

matrix D’ is the algorithm output. 

We will describe three stages of DAP separately, illustrating the 

description by an example.  

3.1. Divisive stage. Remember that a divisive AC algorithm 

consists in the consecutive division of the initial set: first the whole set is 

divided into two parts, whereupon one of the two parts is divided into two 

parts once again, and so on, until some classification is obtained that 

seems satisfactory. It is clear that the answers to the most essential 

questions – how to divide a set into two parts, and which of the already 

constructed parts is selected for the next division – determine the essence 

of the algorithm being designed. These important issues are reflected in 

the following algorithm.  

Divisive algorithm. The input of the algorithm is an undirected 

connected graph G. The only algorithm  parameter is a counting number 

k, equal to the maximal number of parts in the graph division. The output 

of the algorithm is described below. 

1. Initialization. Define the integer variable d (the number of the 

current dichotomy); a one-dimensional array P of length k–1 (the 

array of indices of subgraphs, consecutively chosen for division); an 

array S of length k, whose components are subgraphs. Let d = 0; S[d] 

= G, where G is the given input graph. Note that P[0] = 0 by 

construction. 

2. From subgraphs S[i] (0 ≤ i ≤ d), select a subgraph S[im] with the 

maximal number of vertices. 

3. Let P[d] = im. 

4. Divide subgraph S [im] into two subgraphs using the algorithm of 

dichotomy described in Section 2.2; denote these subgraphs as Sa and 

Sb. 

5. Let S[im] = Sa, S[d+1] = Sb. 

6. Let d = d+1. 
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7. If d < k–1, go to step 2. 

8. Construction of a family of classification of set A = {0, 1, …, k–1}. 

8.1. Define a classification   of the set A = {0, 1, …, k–1} into 

k classes: [j] = {j} (j = 0, 1, …, k–1). 

8.2. For i = k–3, …, 0 recurrently define classifications   of the 

set A = {0, 1, …, k–1} into (i+2) classes as follows:  

[j] = [j] (j = 0, 1, …, i+1; j ≠ P[i]),                                 (6) 

[P[i]] = [P[i]]  [i+2].                                            (7)   

9. Define a symmetric matrix D of dimension k×k whose element dij is 

equal to the number of edges connecting the i-th and the j-th 

subgraphs from array S (i, j = 0, 1, …, k–1;  i ≠ j). For this purpose, 

introduce an array а of length N, where N is the number of vertices of 

the initial graph G. For all vertices v of the subgraph S[i] let а[v] = i (i 

= 0, 1, …, k–1). Checking consecutively all the edges of the initial 

graph (specified as an array of pairs of adjacent vertices), add one to 

the element of matrix D with indices (p, q), where p = а[v], q = а[w], v 

and w are the ends of the next edge, and p < q. 

10. Construction of the family of matrices.  

10.1. Let  = D. 

10.2. For i = k–3, …, 0, recurrently define a new matrix   

proceeding from the matrix  and indices P[i+1] and (i+2) by 

using the above considered algorithm of modification of the 

connection matrix.  

11. Stop. 

The output of the divisive algorithm is constituted by the array S of 

subgraphs; the family of classifications { } (i = k–2, …, 0) of the set 

A = {0, 1, …, k–1} into (i+2) classes; the family of matrices { } (i = 

k–2, …, 0). We will henceforth refer to these classifications and matrices 

as basic. Subgraphs S[0], S[1], …, S[k – 1], which are the components of 

array S, are henceforth referred to as blocks, because all classes in all 

subsequently constructed classifications consist only of these components 

and/or their unions. 

Example 2. Consider the set shown in Fig.7a. Assume k = 4. The 

consecutive dichotomies are shown in Fig.7b – 7d. In this case P = (0, 0, 

1).  The array S consists  of four blocks,  shown  in Fig.7d.  The basic  
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Fig.7. Consecutive dichotomies 

classifications of set A = {0, 1, 2, 3}, in accordance with steps 8.1 and 8.2 

of the divisive algorithm, are: 

 = {{0,2},{1,3}},  = {{0},{1,3},{2}},  = {{0},{1},{2},{3}}.   (8)   

In accordance with steps 9 and 10.1 of the divisive algorithm we obtain 

 = D = .                                                                      (9) 

Further, for i = 1 we have P[i+1] = 1, i+2 = 3 and in accordance with 

step10.2 of the divisive algorithm and the algorithm of connection matrix 

modification from   we obtain the matrix 

 = . 

Similarly, for i = 0 we have P[i+1] = 0, i+2 = 2, and we obtain from   

the matrix  = . Thus, the following three basic matrices are 

found:  
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  = ,  = ,  = .                    (10) 

The arrays S of four blocks, the families of classifications (8) and 

matrices (10) together form the output of the divisive algorithm in the 

considered case. 

3.2. Agglomerative stage. The set A = {0, 1, …, k–1} is 

considered as the initial set. The element dij of the matrix , found at the 

divisive stage, is considered as the value of connection between the 

objects i and j; the value of connection between two subsets of A is 

defined as the sum of numbers dij over all pairs of objects belonging to 

these subsets. Remember that by construction this number dij coincides 

with the number of edges connecting the i-th and j-th subgraphs from the 

array S. In the agglomerative algorithm described below, for every i 

varying from k–2 to 0 the basic matrix  and the classification  

determine the new family of matrices and classifications, which we will 

refer to as adjoint ones. 

Agglomerative algorithm. The input of the algorithm consists of: 

the family of basic classifications { } (i = k–2, …, 0) of set A = {0, 1, 

…, k–1} into (i+2) classes; the family of basic matrices { } (i = k–2, 

…, 0). The output of the algorithm is a family of  of the same set A 

= {0, 1, …, k–1}. 

1. Construction of adjoint matrices and classifications. For every i = 

k–2, …, 0 (external cycle), the following operations are executed: 

1.1. For i+1, …, 2 (internal cycle) the next matrix  is defined by 

the previous matrix  as follows: 

1.1.1. Find a pair of indices s and t (s < t), such that the element 

dst of the matrix  is maximal. 

1.1.2. Construct the next matrix  from the matrix  and 

indices s and t, using the algorithm of connection matrix 

modification. 

1.1.3. Define the new classification  of set A = {0, 1, …, k–1} 

into j classes from the classification  as follows: 

[p] = [p] (p = 0, 1, …, t–1; p ≠ s),                               (11) 
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[p] = [p+1] (p = t, …, j–1),                                          (12) 

[s] = [s]  [t].                                                       (13) 

2. Presentation of the output. Present all constructed classifications in 

the following order, writing in one row all classifications into the 

same number of classes: 

, , …, , ; 

, …, , ; 

    …………………….                                                                          (14) 

, ; 

. 

In (14) the first classification in every row is basic; all of them are 

constructed from the initial classification  by formulae (6) and (7). 

All other classifications in (14) are the adjoint ones. The last 

classifications in every row (starting from the penultimate row) are 

adjoint to , penultimate classifications in every row (starting from 

the third row from the end) are adjoint to , and so on, up to the 

classification , adjoint to . In all cases the lower index is equal to the 

number of classes, while the upper index is the number of the group 

written diagonally; this group contains one basic classification (the first 

one in the diagonal), and all those adjoint to it as found by the 

agglomerative algorithm. The output of this algorithm consists of the 

family of classifications of the set A = {0, 1, …, k–1}, ordered as shown 

in (14); the basic classifications are determined by formulae (6), (7) and 

the adjoint ones by formulae (11) – (13)  

Example 2. Continuation. In this case three basic matrices are 

specified by (10) and three basic classifications are specified by (8). We 

will now come to construct adjoint matrices and classifications following 

the agglomerative algorithm. Fixing i = 2 we obtain for j = 3 (see step 

1.1.1) dst = 7, s = 0, t = 2. In accordance with step 1.1.2, the matrix is 

, and in accordance with step 1.1.3  the classification 

  = {{0,2},{1},{3}}. Further, at i=2 we obtain for j =2  dst = 2, s = 1, t 

= 2; the matrix  = ;  {{0,2},{1,3}}. Return to the external 

cycle and set i to 1. For the only j = 2 we obtain (see matrix ) dst = 7, s 
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= 0, t = 2, which gives  =  =  and  {{0,2},{1,3}}. 

Finally, for i = 0 the required j satisfying the conditions 1 ≥ j ≥ 2, does 

not exist and no adjoint matrices or classifications are constructed. 

By writing out all found classifications in accordance with step 3 

of the agglomerative algorithm we obtain 

 = {{0,2},{1,3}},   = {{0,2},{1,3}},   {{0,2},{1,3}},       

 = {{0},{1,3},{2}},   {{0,2},{1},{3}},                                    (15) 

 = {{0},{1},{2},{3}}. 

Note that the adjoint classification  {{0,2},{1},{3}} is the only 

correct classification (see Fig.8). This classification cannot be constructed 

directly by any number of consecutive dichotomies (e.g. it is not a basic 

classification for any parameter k), which is one of the reason why we 

had to introduce adjoint classifications. 

 

Fig.8. A correct adjoint classification  

3.3. Elimination stage. The output of the agglomeration stage is 

the family of classification of the set A = {0, 1, …, k–1} in form (14). 

Since the number of classifications in the i-th row from the bottom is 

equal to i, and the total number of rows is equal to k, it can be seen that 
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the total number of constructed classifications is . Some of them 

may be identical. This DAP stage is designed to eliminate these (certainly 

redundant) classifications. The algorithm itself is almost obvious, the 

more so as the dimension of the problem is not large (the number k of 

blocks is assumed to be small enough – about 10 to 20).  

Yet the comparison of two classifications of one and the same set 

can be easily made even for much greater k. It is sufficient to list the 

numbers in every class in the increasing order. The comparison of 

classifications is obviously reduced to the comparison of sets, whereas for 

ordered subsets of the same set it is reduced to consecutive comparison of 

elements having the same indices – up to the first discrepancy or to the 

end of the exhaustion. The output of this stage is a family of different 

classifications.                                                                                                                                                                                                                                                                                                                     

Example 2. Continuation. Of the 6 classifications (15) of the set A 

= {0, 1, 2, 3}, only 4 are different:  

 = {{0,2},{1,3}},   

 = {{0},{1,3},{2}},   {{0,2},{1},{3}},                                    (16) 

 = {{0},{1},{2},{3}}. 

These four classifications are shown in Fig.9. 

3.4. Presentation stage. The output of the elimination stage is the 

family (to be further denoted as F) of different classifications of the set A 

= {0, 1, …, k–1}. Yet the output of the whole DAP is, as was pointed out 

at the beginning of the Section, the family of classifications of the initial 

set of objects (e.g. vertices of the given graph G), rather than the set of 

indices of blocks A = {0, 1, …, k–1}. Transition from one family to the 

other is the goal of this stage. 

Of course, every block (e.g. a subgraph of the initial graph) is 

uniquely defined by its index (see the description of the output of the 

divisive algorithm). Therefore every classification of block indices 

uniquely defines some classification of the initial set. However, 

considering the subsequent operations of the suggested general AC 

algorithm, it seems expedient at this stage to present every classification 

into t classes as a set of t binary vectors (t = 2, …, k) of length N, where N 

is the number of vertices of graph G.  

Presentation algorithm. The input of the algorithm is the array S of 

blocks of length k, constructed at the divisive stage (see the description 
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Fig. 9. Classification a into two classes; classifications b and c into three classes; 

classification d into four classes 

in Section 3.1), and a family F of classifications of the set A = {0, 1, …, 

k–1}, whose elements correspond to the indices of subgraphs (or blocks) 

in the array S. The output of the algorithm is the family R of 

classifications of set of vertices of G, denoted below as V. 

1. Let R = Ø. 

2. For every classification С  F execute the following operations (the 

external cycle by the given classifications of A = {0, 1, …, k–1}): 

2.1. Let B = Ø (B denotes the set of binary vectors which defines 

the classification of set V corresponding to С). 

2.2. For every class X from classification С execute the following 

operations (cycle by classes from the fixed classification С): 

2.2.1. Define a vector x with N components and let xi  = 0 (i = 0, 

1, …, N – 1).  

2.2.2. For every index р X execute the following operations 

(cycle by indices from class X): 
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2.2.2.1. Consider the set of vertices of subgraph S[p] (it is 

given as an integer array z of length np, whose components 

are indices of vertices belonging to subgraph S[p]). 

2.2.2.2. For every component y of array z let x[y] = 1 

(internal cycle by vertices from one block). 

2.2.3. Add the vector x to the set B: B = BU{x}. 

2.3. Add the set of vectors B to the set R: R = RUB. 

Thus, the output of the presentation algorithm and, hence, the output of 

the whole DAP, is the family of classifications of the set of vertices of 

graph G; every one of which is presented by a set of binary vectors – one 

vector for each class.. 

To conclude this Section 3.4, we will give some comments. It may 

seem possible to significantly simplify the suggested DAP. Specifically, 

choose a sufficiently large value of the parameter k, make (k–1) 

consecutive dichotomies using the divisive algorithm and thus find one 

basic classification  (and the corresponding basic matrix  = D). 

After that, find all classifications adjoint to , one of which is correct. 

Indeed, this is how conventional agglomerative algorithms work, starting 

with the initial classification, all classes of which consist of one object. In 

many cases this simpler procedure also proves successful in the 

framework of the suggested approach. However it is not always the case.  

Example 3. Consider the set shown in Fig.10a (two two-

dimensional normal distributions consisting of 200 and 1000 points). The 

basic classification , i.e. at k = 3, for some initializations of the random 

generator is shown in Fig.10b. The only corresponding adjoint 

classification , shown in Fig.10c, is not correct. The correct 

classification in this case is the basic classification , shown in Fig.10d. 

This simple example demonstrates that we need to analyze all basic 

classifications. It is not a problem, however because computation time 

needed for all operations in the agglomerative algorithm is negligibly 

small as compared to the time required by (k – 1) dichotomies in the 

divisive algorithm. 

There is nothing drastic in this example. Generally, for sufficiently 

large k values, the classes are getting small, so that the number of edges 

connecting some classes with the remaining ones may be smaller than in 

the correct cut. Since in the aggregation the sets to be united are 

connected by the maximal number of edges, the correct classification 
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does not coincide with any classification, adjoint to the basic 

classification  for large k. In some cases (in particular, shown in 

example 3) this phenomenon can even happen for sufficiently small k. In 

Fig.10b the wrong cut consists of 6 edges, while the correct cut has 7 

edges. Therefore in the construction of an adjoint classification the sets 

selected for the union are wrong, which is demonstrated by Fig.10c. 

 

Fig.10. Example of a missed basic classification  

Numerous examples demonstrate that correct classifications are 

indeed present among the few classifications found by the suggested 

DAP. The method of their selection is considered in the next Section 4.  

4. Stable Classifications 

Since the suggested algorithm of dichotomy contains randomized 

steps (including the determination of the initial frequencies and the 

choice of every pair of vertices), the result of dichotomy is, generally 
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speaking, random. Examples considered in Section 2 point to the fact that 

correctness and stochastic stability are closely connected. An important 

fact could be experimentally established: in all cases when the result of 

dichotomy does not depend on the initialization of a random generator 

(which is stochastic stability), the constructed classification into two 

classes is correct, e.g. it does not contradict geometric intuition. 

Conversely, in all cases (reported in this work as well as in dozens of 

others) the absence of stability implies incorrectness of the constructed 

classification. It is exactly this deliberation that underlies the proposed 

algorithm of selection of correct classifications from among all found by 

the suggested DAP. 

Since the result of each dichotomy is random, all classifications 

constructed by DAP and even their number are random. We propose to 

repeat this procedure several times for different initializations of the 

random generator. It turned out that only very few of the classifications 

found belong to all of the constructed families, whereas the most of 

classifications do not belong to at least some of them and, hence, can be 

considered as random, instable and inessential. Classifications entering 

into all the families will be referred to as stable classifications. A correct 

classification is defined as a stable classification with the maximal 

number of classes (of course, this number cannot exceed a preset number 

k of blocks, which is the only parameter of DAP). Note that it is possible 

to choose k with a safety margin, essentially greater than the assumed 

maximally possible number of classes. 

The idea of basing the choice of classification on stochastic 

stability is not new. Yet the efficiency of this idea depends on how 

natural and strong the connection is between quality of classification and 

its stability. The experiments demonstrate that, within the suggested 

approach, this connection is practically decisive. The matter is that 

stochastic stability is analyzed for very few classifications, already 

constructed on the basis of the reasonable dichotomies, and the 

considered random families already contain correct classifications. 

Therefore none of the experiments yield partial coincidences (50-90%) 

for correct classifications. Either the coincidence is practically full (with a 

small number of declining points), or it does not reach 90%. This high 

stability (backed by intuitive obviousness of the results) is the strongest 

argument in favor of the suggested approach. In the case of absence of 
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stable classifications it may be reasonably inferred that the initial set does 

has no cluster structure. 

Before we give a formal description of the selection algorithm of 

stable classifications we will introduce necessary formal notions and 

describe auxiliary algorithms. Two finite sets A and B coincide at level α 

(0 ≤ α ≤ 1), if  

|A ∩ B| ⁄ |A  B| ≥ α                                                                                (17) 

(|X | denotes the cardinality of the finite set X). Two classifications P and 

Q of the same finite set M into the same number of classes m coincide at 

level α if it is possible to enumerate their classes P1, P2, …, Pm and Q1, 

Q2, …, Qm  so that sets Pi and Qi coincide at level α (i  = 1, 2, …, m). The 

following almost evident statement takes place. 

Statement 2. Let two classifications P and Q coincide at level α, 

and α > 0.5. Then the one-to-one correspondence between their classes 

mentioned in the previous definition is determined uniquely.  

Proof. It is sufficient to prove that any class from P may coincide 

at level α only with one class from Q.  

Assume that it is wrong and, hence, a class А from P coincides at level α 

with two different classes В и С from Q. Let А’ = A ∩ B, А’’ = A ∩ C. 

Since В ∩ C = Ø, А’ ∩ А’’ = Ø. Two conditions of coincidence (for B 

and C) can be written as: 

|А’| ≥ (|А’’| + |В|)α, 

|А’’| ≥ (|А’| + |C|)α. 

Summing up these two inequalities, after simple rearrangements we have 

(|А’|+|А’’|)β ≥ (|В| +|C|)α,                                                                       (18) 

where β = 1–α.                                                                                                       

At the same time by the definition of А’ and А’’ 

|А’| ≤ |В|, |А’’| ≤ |С| , hence 

(|А’|+|А’’|) ≤ (|В| +|C|).                                                                           (19) 

Since by condition α > 0.5, it implies that α > β. Therefore (18) implies 

(|А’|+|А’’|)α > (|В| +|C|)α,  

hence (|А’|+|А’’|) > (|В| +|C|), which contradicts (19). The contradiction 

completes the proof ■ 

Algorithm of checking the coincidence at level α of two subsets of 

the same set U. The algorithm is as follows. In our case every set is 

presented by a binary vector with m = |U| components (see the presenta-

tion algorithm in Section 3.4). 
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1. By one simultaneous survey of both vectors calculate: 

1.1. The number of components with two 1s. 

1.2. The number of components with at least one 1. 

2. Divide the first number by the second one.  

3. Compare the result with the given number α. If it exceeds α, then 

two sets coincide at level α; otherwise, they do not coincide. 

Algorithm of checking the coincidence at level α of two 

classifications of the same set into m classes. It is assumed that α > 0,5. 

1. Let i = 0. 

2. Let i = i + 1. 

3. If i > m, then the classifications coincide. Stop the algorithm. 

4. Let j = 0. 

5. Let j = j + 1. 

6. If j > m, then the classifications do not coincide. Stop the algorithm. 

7. Check the coincidence at level α of sets Pi and Qj. In the case of 

coincidence go to step 2, otherwise go to step 5. 

Statement 2 guarantees the correctness of the algorithm. The matter is 

that no analysis of different one-to-one correspondences between the 

classes is required. It is sufficient to find, for every class from the 1st 

classification, a class from the 2nd classification that coincides with it.  

Algorithm of selection of stable classifications. This algorithm is 

the external cycle in the considered general AC algorithm. The input of 

the algorithm is the given graph G; the output is a set (it may be an empty 

set or a set consisting of more than one element) of correct classifications 

in the AC problem, presented by the graph G. Parameters of the 

algorithms are two numbers r and α: r is equal to the number of 

repetitions of DAP; α sets a minimal level of coincidence of 

classifications for which the conclusion is made with regard to stochastic 

stability (the typical value of α lies in segment [0.90 – 0.95]). The 

remaining parameters have been described above. Classifications found 

by the algorithm will be called (r, α)-stable.  

1. Initialization. Execute DAP once. Let F = C, where C is the set of 

classifications found by DAP; F = {F1, …, Fn}. Let t = 0. 

2. Let t = t +1. If t = r, go to 4. 

3. Execute DAP once and denote the set of found classifications by C 

= {C1, …, }.    

3.1. Let i = 0. 
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3.2. Let i = i + 1. 

3.3. If i > n, then go to 2 

3.4. Let  j = 0. 

3.5. Let j = j + 1. 

3.6. If j ≤ mt, then go to 3.9. 

3.7. Delete the classification Fi from the list F = {F1, …, Fn}; 

reduce the indices of all classifications from (i + 1) by 1 and let n = 

n–1. 

3.8. If n = 0, then (r, α)-stable classifications do not exist. Stop. 

Otherwise, go to step 3.2. 

3.9. Check the coincidence at level α of sets Fi and Cj. (using the 

above described algorithm). In the case of coincidence go to 3.2; 

otherwise go to 3.5. 

4. The current set F = {F1, …, Fn} is the set of all (r, α)-stable 

classifications. Stop. 

Some comments to the last algorithm are needed. If classification 

Fi does not coincide with any of new classifications Cj (j = 1, …, mt), this 

means that Fi is not a stable one. Therefore at step 3.7 this classification 

is deleted from the list F. If at this step all classifications from F are 

deleted, then the algorithm stops at step 3.8. But if for classification Fi a 

classification Cj coinciding with it has been found (which is established at 

step 3.9), then Fi is still considered a stable one, and after returning to 

step 3.2 the next classification Fi+1 is checked. The return to step 2 after 

step 3.2 means the transition to the next iteration in the external cycle 

over new executions of DAP. 

Example 2. Continuation. A single execution of DAP yields 4 

classifications shown in Fig.9. From the viewpoint of stability, the most 

crucial one is the classification into 3 classes shown in Fig.9b, which is 

the basic classification  = {{0},{1,3},{2}}. Let the number r of 

repetitions of DAP be equal to 4. In four executions of DAP the 

classifications, corresponding to , are shown in Fig.11a – 11d. 

The classifications in Fig.11a and 11b coincide at level α ≈ 0,85 

(class {2} consists of 483 points in the first classification and of 410 

points in the second one. It is clear that at the level 0.9 or higher these 

classifications are not stable. The same is also true of the classification 

into 4 classes corresponding to the basic classification  = 

{{0},{1},{2},{3}} (see Fig.9d). Yet the classifications into 2 and 3 
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classes shown in Fig.9a and 9c are stable at level 1. Therefore the 

classification from Fig.9c is taken as a formal solution of AC problem in 

the considered case, because it is a stable classification with the maximal 

number of classes (under the restriction k = 4). Note that the algorithm 

finds the same single classification stable at level 1 under any k > 4, too. 

 

Fig.11.Example of instability of classification   

Stability parameters r and α are connected in the same way as the 

number of random trials and significance level are connected in statistics: 

the larger values of r correspond to the lower values of coincidence level 

α. Yet in the considered situations the coincidence level α decreases with 

the growth of r for unstable classifications. For stable classifications the 

coincidence level soon approaches a number sufficiently close to 1, and 

does not vary further with the growth of r. This allows us to assume that 

the number r of repetitions stays within the limit 5 – 15. Intermediate 

situations, when stability is lost after 20 – 30 repetitions, may happen 

(though for very few initial sets and rare initializations of the random 

generator). Natural modifications of the notion of stability that span these 
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very rare situations are disregarded here for the sake of brevity. 

5. Examples 

In this section several examples are considered in the increasing 

order of complexity (the notion of complexity is informal). In the first six 

examples 4 – 9, the initial sets are two-dimensional sets of points. The 

figures show only the final results of the suggested general AC algorithm. 

Parameters α, f and T were the same in all considered cases: α = 0.95; f = 

10; T = 1000. In examples 4 – 6, 10, 11 r = 10 and k = 6; in example 7 r = 

5 and k = 10; in example 8 r = 10 and k = 15. 

Example 4. The initial set is the union of two two-dimensional sets 

of points, each normally distributed along the x axis and uniformly along 

the y axis. The result of classification is shown in Fig.12. Note that the 

number of classes is not defined in advance – there is only the upper 

bound k. 

 
Fig.12. Classification result in example 4 (1397 points) 

Example 5. The initial set consists of two contacting rings with a 

few points inside. The result of classification is shown in Fig.13.  

Example 6. The initial set consists of four two-dimensional slight-

ly damaged normal distributions.  The result of classification  is shown in 
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Fig.14.   

 
Fig.13. Classification result in example 5 (3228 points) 

Example 7. The initial set resembles a spiral with two narrow 

isthmuses approximately in the middle and close to one of the ends. The 

result of classification is shown in Fig.15. 

Example 8. The initial set resembles a lake with two peninsulas. 

The smaller peninsula contains relatively few points (223 of 4501), while 

the number of edges, connecting it to the other part is equal to 6, i.e. it is 

not too small. Therefore this peninsula is revealed only after a conside-

rable number of consecutive dichotomies and therefore k was taken to be 

large enough (k=15). The result of classification is shown in Fig.16. 
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Fig.14. Classification result in example 6 (1279 points) 

 
Fig.15. Classification result in example 7 (4272 points) 
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Fig.16. Classification result in example 8 (4501 points) 

Example 9. The initial set is shown in Fig.17. No cluster structure 

is observed. The suggested algorithm confirms the fact: stable classifica-

tions are lacking even at level 0.6 for the number of repetitions r = 4. 

 
Fig.17. Example of absence of any reasonable classification 
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Example 10. Multidimensional data: a matrix of objects and 

parameters matrix. Unlike all previous examples, in this case the initial 

set is not two-dimensional. There are 15 objects and 20 parameters. Three 

classes are selected. The first class consists of objects with numbers 0, 3, 

6, 7, 10, 13; the second class consists of objects with numbers 1, 4, 5, 8, 

14; the third class consists of objects with numbers 2, 9, 11, 12. Two 

groups of parameters are selected. The first group consists of parameters 

0, 2, 3, 5, 8, 9, 11, 14, 16, 17, 19; the second group consists of parameters 

1, 4, 6, 7, 10, 12, 13, 15, 18. 

The objects from the first class have “large” values (between 44 

and 90) for the parameters of the first group and “small” values (between 

10 and 56) for the parameters of the second group. The objects from the 

second class have “large” values (between 44 and 90) for the parameters 

of the second group and “small” values (between 10 and 56) for the 

parameters of the first group. The objects from the third class have 

“intermediate” values (between 27 and 73) for the parameters of both 

groups. All numbers in the pattern matrix are randomly selected within 

the corresponding ranges (large, small, intermediate): 

The suggested general algorithm correctly finds the given 

classification into 3 classes. The parameters from the second group are 

marked grey; matrix rows are rearranged in such a way that the objects 

from the same class are written consecutively. Thus, in this example the 

correct classification is revealed despite significant intersections of large, 

small, and intermediate ranges: 
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Example 11. Dissimilarity matrix. There are 40 objects. Two 

classes are selected.  The first class consists of objects with numbers  0, 1, 

2, 3, 4, 7, 8, 9, 10, 11, 15, 20, 21, 22, 27, 28, 30, 31, 32, 33, 35, 36, 37, 

38; the second class consists of objects with numbers 5, 6, 12, 13, 14, 16, 

17, 18, 19, 23, 24, 25, 26, 29, 34, 39. Dissimilarities between objects 

belonging to the same classes are random numbers from 10 to 60, while 

dissimilarities between objects belonging to different classes are random 

numbers from 25 to 80.  

The suggested general algorithm finds correctly the initial 

classification into 2 classes. Matrix rows and columns are rearranged in 

such a way that the objects from the same class are written together. The 

data is presented by 4 matrices. The 1-st and the 4-th ones contain 

dissimilarities between objects from the 1-st and 2-nd class, respectively: 

there are no numbers larger than 60.  The 2-nd and the 3-rd ones contain 

dissimilarities between objects from different classes: there are no 

number lesser than 25. 
Matrix 1 
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Matrix 2 

 

 

Matrix 3 

 
 



39 
 

Matrix 4 

 

6. Comparison with Other Methods  

6.1. Comparison with SPSS. In this Section the six sets shown in 

Fig.1 are considered. All of them are correctly divided by the suggested 

algorithm of dichotomy (see classifications in Fig.3). The results of 

classification of the same sets by classification methods offered in the 

well known software package SPSS are presented below. The results of 

the K-mean method are shown in Fig.18. The results of the hierarchical 

algorithm (for the between-group linkage version) are shown in Fig.19. 

The results of other versions of hierarchical classifications are 

approximately the same. The best results are obtained for Ward’s method, 

yet only three sets of six are classified correctly (see Fig.20). In a slightly 

more complicated situation, carefully considered in example 2 with the 

continuations, Ward’s method gives unsatisfactory results (see Fig.21). 

6.2. Other Comparisons. To ascertain that many well-known 

methods are inoperative (at least, in some simple cases), no formal check 

of them (i.e. running of the respective programs for the sets, in which the 

suggested general AC algorithm gives correct classifications) is required 

at all. Their descriptions imply that in many cases (including rather 

simple) they will not work properly. Let us dwell on several well-known 

methods in more detail. 

1. Methods minimizing the mixture of variances. It is well known 

that in the case of two classes this mixture reaches its minimal value for a 

of non-convex classes a correct classification will not be obtained. 
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Fig.18. Results of K-mean method  

 
Fig.19. Results of hierarchical classification with between-groups linkage  
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Fig.20. Results of hierarchical classification with Ward’s method.  

Sets 1, 4 and 5 are classified correctly  

 

Fig.21. Example of the wrong classification by Ward’s method 
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2. Minimal linkage methods. Assume that A and B form an 

arbitrary division of an initial set into two subsets. Define  

d(A, B) = . 

A division maximizing d(A, B) is considered to be a solution of the AC 

problem. Example 5, in which the distance between classes is very close 

to 0, demonstrates that these methods do not work in such cases.  

3. Generalized Newman-Girvan Algorithm. The frequency 

methods are perhaps the strongest AC methods (from the viewpoint of 

diversity and incidence of problems solved by them). The algorithm 

copes with all test sets 1 – 6, except for set 4. The result of classification 

of this set is shown in Fig.22. The reason (as in example 1) consists in a 

large quotient of cardinalities of correct classes.  

 
Fig.22. Example of wrong classification by generalized Newman-Girvan 

algorithm 

4. Balanced Cut Criterion (5). In the above mentioned example 1 a 

discrepancy was noted between this criterion and some AC problems 
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(whose correct solutions do not correspond to cuts maximizing the 

criterion). Yet this example implies much more. The review by Luxburg 

(2007), devoted to Spectral Clustering, discusses the formal 

correspondence between the optimization problem with criterion (5), on 

the one hand, and a version of spectral algorithm, on the other hand. In 

the review of Filippone et al, 2008 attention is paid to the formal 

correspondence between three approaches: balance criteria optimization, 

spectral methods and kernel clustering methods. Yet the balance criterion 

optimization, as was revealed in several cases (not only in example 1 and 

test set 4), does not lead to correct classifications. Hence, the same 

conclusion is true for spectral and kernel methods that have been very 

popular and actively developing in the last few years.  

7. Conclusion 

The methods mentioned at the end of the previous section 

demonstrate diversity and depth of their mathematical foundations. 

However, the essentially simpler scheme suggested in this work is more 

efficient – first of all from the viewpoint of diversity and difficulty of 

problems being solved. It seems that practically all of the known methods 

have a drawback that at the first glance is not very important but in fact 

proves crucial. They do not contain any instructive description (to say 

nothing of a formal one) of a class of successfully solved problems. In the 

book of Braverman and Muchnik published quite a long time ago (1983) 

there is an honest confession of the authors, who say (in page 140): “It is 

natural that any specific functional cannot encompass the wide diversity 

of possible views of what a “good aggregation of elements” is. It is more 

likely that the biologist, the engineer, the geologist and the economist 

have different opinions on this subject. Therefore we can only be 

surprised that some functionals, suitable for solving a wide class of 

problems from various different fields, could be suggested.” However, it 

is desirable to have a more exact description.   

Let us dwell in more detail on the features of the suggested 

approach. 

1. The description of feasible initial sets is sufficiently clear-cut. 

Specifically, we consider AC problems, presented by undirected graphs. 

A class corresponds to a subgraph containing many vertices compared to 

the number of edges connecting the subgraph to other ones. No other data 

on mutual arrangement of subgraphs, weight of vertices, length of edges, 
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and so on are used. Note that just as the number of vertices in a subgraph, 

so the number of edges connecting this subgraph to other ones, can vary 

essentially depending on the subgraph. It is only important that the 

quotient of these numbers should be large enough.    

2. The character of the scheme does not presuppose the use of a 

single new idea, but rather a new combination of known ideas and their 

modifications. In the course of action, the family of constructed 

classifications first grows and then drops down to one classification. 

3. The number of classes is not given in advance. It is limited by a 

given sufficiently large number. 

4. There are relatively (for such a universal scheme) few 

parameters, all of which are meaningful. Two parameters f and Т of the 

suggested algorithm of frequency dichotomy have little effect on the 

result. All the above presented results are obtained for f = 10 and Т = 

1000. But for f = 20 and Т = 1500, as well as for other arbitrary changes 

of these parameters within limits 5 – 25 and 500 – 3000, the results 

practically remain the same. The only parameter of the divisive-

agglomerative procedure is the number k of blocks. This parameter is 

essential. Roughly speaking, for too small values of k correct 

classifications may be lost (in example 8 for k = 10 the smaller isthmus is 

not found), while for too large values of k redundant stable classifications 

may appear. Yet for all the intermediate k the same correct classification 

is found. Finally, at the external cycle of stability check two parameters 

are given: the number r of random trials and coincidence level α. It is 

possible to choose arbitrary r  {5, …, 10} and α  [0,95; 0,99]; for the 

variations within these limits the resulting stable classification remains 

unchanged.  

5. The result of application of the suggested AC algorithm is clear-

cut and unambiguous. Of course, preliminary knowledge of the 

considered AC problem can be very helpful – but rather at the 

interpretation stage than at the computational one. 

Of course, no universal methods of classification exist. The above 

formulated requirements to the feasibility of initial sets clearly point to 

the “local” character of the considered classifications because they are 

defined by local connections between classes. Not all classifications are 

local, though. In the set shown in Fig.23, the cluster structure evidently 

consists of two rings. But in this case it would be wrong to say that the 
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classes (in the corresponding neighborhood graph) are connected by a 

small number of edges. The suggested method leads to an obviously 

wrong result, even though the classes are connected by only 5 edges. It is 

only appropriate to repeat the above cited deliberation from the book by 

Braverman and Muchnik (1983) that one should not be surprised if a 

method fails in some case but rather, if it proves suitable for many 

various situations because it holds true for the suggested new AC 

algorithm. 

 
Fig.23. Example of non-local classification 
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