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I. Introduction 
 

ne of main stages in systems studying is associated with analysis of links (relationships) 
between constituents (elements) of those systems. The process of analysis represents 

systematic rigorously prescribed procedure (call it «hard» for convenience). Revealing and 
understanding of systems’ structural features is grounded on categories of the whole and its 
parts, bringing into play various forms of cognitive activity, and apparently observations, 
reasoning and formalized mathematical representations (models) are among them. Analysis 
can be viewed as a surjection, i.e. mapping of the observable reality onto the human’s brain 
forming peculiar multilayered mental model(s). 

Preliminary conclusions on complexity of system are often drawn on the basis of common 
observations of system’s organization if comprehended or caught on neatly [17,27]. Revealing 
and  understanding  of  structural  peculiarities,  classification  of  systems as  simple  or  complex  
ones  take  into  consideration  several  factors,  and  the  most  significant  of  them are  variety  of  
elements and connections between them. The latter virtually serves as one of major sources of 
display of multifaceted complexity [10-13,24]. 

Diverse mathematical methods used for analysis of system’s structure and estimation of its 
complexity, as well as extensive field of mathematical modeling in whole, apparently imply 
presence of humans «on the scene», i.e. active implicit use of their habitual and unintelligible 
cognitive processes like thinking, perceiving, making decisions, etc. Rapidly increasing area of 
cognitive modeling is not exclusively linked to knowledge fields concerned with «process of 
thought» in large, but also utilizes mathematical and computer languages to describe and 
analyze particularities of human information processing [8,35]. 

The paper undertakes an attempt to elaborate on ideas stated in [14]; it discusses possible 
approach to modification of system’s structural complexity estimate  obtained within the 
framework of the holist system-theoretic procedure called Q-analysis and usually attributed to 
mathematician Ronald Atkin [2-5]. The modeling approach has been already used for solving 
problems in range of application domains that cover, for example, street network, geology, 
GIS analysis, Internet-based teleoperation schemes, transportation, water distribution (list of 
references can be found in [14]). The gist of the procedure is based on guidelines laid down by 
C.H.Dowker’s paper [16]; in outline it discusses simplicial complexes K and L defined by 
hypothetical  relation  between  elements  of  two  sets,  isomorphism  of  their  homology  and  
cohomology groups. In accordance with Q-analysis approach, a structure of system under 
consideration is utilized with a purpose of obtaining its representation in the form of 
geometric simplicial complex K. It is formed by regularly adjoining faces called simplexes – 
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in  other  words,  the  intersection  of  two simplexes  is  «either  empty,  or  an  iterated  (common)  
face of each» [30]. With regard to topologization as a polyhedra (subspace of the Euclidean 
space n ), each q-dimensional simplex, or q-simplex q  ( q 0 ) is a convex hull of its (q+1) 
vertices, i.e. simplex 0  is a point, 1  – line segment, 2  is a triangle (with its interior), 3  – 

tetrahedron, etc. We do not put emphasis on topological spaces, therefore K can be associated 
with geometric simplicial complex as a realization of abstract complex [30,23].  

Dimensionality of complex K (dim(K)) obtained is equal to the maximum of dimensions of 
its simplexes. The aggregate of such simplexes constitutes formal representation of the system 
under study, and the analysis of such model is performed consecutively at each dimensional 
level q , q = dim(K),...,0 , through determining the number of clusters of simplexes joined by 
chains of q-connectivity. Results obtained are presented in the form of K’s structural vector 

dim(K) 1 0Q (Q ,...,Q ,Q ) . Thereafter, a measure of structural complexity (K)  of complex 

K is deduced from numeric components of vector Q on the ground of simple formula [9,13].  
Such pure «mechanistic» approach does not allow to unfold (reveal) information masked in 

vector Q, making it impossible to draw daily human cognitive abilities into the process. If this 
standpoint is accepted, then the structural complexity (connectivity) estimate  within the 
scope of used mathematical representation can be more thoroughly expressed on the strength 
of domain expert’s diverse considerations and prerequisites, i.e. George Kelly’s personal 
constructs. Propositions of the theory of personal constructs (TPC) go that none of humans 
«has neutral access to reality», anticipation of ambient events psychologically channelizes 
person’s processes [25,18]. Consequently, the impact of relativity and subjectivity factors on 
both results interpretation and carried out formal calculations becomes tangible [26]. 

As already mentioned above, the paper can be viewed as a continuation of [14] in respect of 
outline of approach aimed at construction of complex K’s structural complexity estimate  on 
the base of some propositions picked up from the field of cognitive science. The rest  of the 
paper is organized as follows: information granules (typical features) obtained through formal 
procedure of Q-analysis, their consolidation into feature vectors are discussed in Section II. 
Ideas related to psychological space (P-space), perceived similarity and geometric models of 
cognition form the basis of Section III. Example that covers proposed computational scheme 
is considered in Sections IV and V. Conclusion and final remarks are drawn in Section VI.      

 
II. Results of Q-analysis formal procedure. P-space, typical features,   

idealized cases (IC) and actual estimates of q-connectivity 
 

As it is observed in [14], Q-analysis procedure delivers demonstratively certain calculated 
values (numeric data); from the epistemological viewpoint, results summarized in structural 
vector Q can be treated as substantially masked declarative knowledge derived from facts and 
formal representation of system’s structural connectivity by means of incidence matrix and 
corresponding simplicial complex K. It means that we can treat components  of  vector  Q as 
stimuli that are mentally apprehended, «placed» and processed by humans (domain experts) in 
certain area of our mind called psychological space, or P-space for short. Following [25,40], 
such space serves in the capacity of basis for our inward representations; it doesn’t need to 
pre-exist as a touchable world, but it comes to incorporeal existence in the wake of emerging 
replications (images) of construing elements under consideration. 



In accord with [3,5,9,13], axiomatically introduced complexity estimate (K)  is based 

solely on numeric values of structural vector’s elements qQ , q dim(K),0 . In view of the fact 
that each particular qQ  stands for the number of connectivity components revealed at the level      
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q of complex K analysis, all qQ  utilized in (1) conceal the number of accountable p-simplexes 

(i.e. non-empty rows of matrix , p q ). This number is alterable when jumping between      
q-levels, and such essential information is simply disregarded. Consequently, the following 
questions can be raised naturally: will experts pay attention to those apparently «missing» 
pieces of essential information while expressing their opinions about estimate of (K)? Will 
they  attempt  to  extract  all  available  model’s  data  to  bring  them  into  play  at  the  stage  of  
personal constructs formation to replicate these percepts as dimensions in psychological 
space? Will experts proceed along the path of combining findings into some representation 
form that is convenient for both perception and comparison (a kind of anchoring), i.e. those 
mental actions that humans do with confidence? Definitely, the amount of information at the 
expert’s disposal within the scope of Q-analysis procedure is rather scanty, but nevertheless 
the number of similar questions to ask can be well expanded. 

Eventually, Q-analysis approach by itself results not only in obtaining q-connectivity vector. 
We can assert that «hidden» or concomitant with realized formal steps numeric data of full 
value are not brought into play properly; these vital information granules are as follows: 

1. qQ  – the number of connectivity components at the dimensional level q, i.e. q-th element 
of structural vector N N 1 0Q (Q ,Q ,...,Q ) , N dim(K) . As it is stressed in [3], members in 

each such component are joined by multidimensional «tubes» of simplexes that in actual 
fact «embody the local structure of complex K» as system’s model,     

2. qs  – the number of simplexes having dimension q or greater (all of them are considered 
when calculating numeric value of component qQ  of the complex K’s structural vector), 

3. s(K)  – total number of non-empty simplexes of all dimensions in complex K , 
4. q  – current dimensional level of simplicial complex’s K  analysis ( q dim(K),...,1,0 ). 

It must be specifically admitted that first three characteristics 1÷3 from the aforementioned list 
can be portrayed as typical features of a given dimensional level q, q dim(K),...,1,0  [14]. 
Their acquisition is not connected with any additional efforts on the part of domain experts, 
they are emerging parts that accompany regular steps of Q-analysis procedure. However, the 
core question to bring forward here is concerned with the way to turn these accessible portions 
of information into convenient forms qualified for storage and further processing that confine 
to conventional models used in different research fields of psychology. In the presence of 
considerable number of levels q ( q dim(K),...,1,0 ), separate use of characteristics 1÷3 may 
only lead to complete mess and perplexity. Uttering the word «separate» may involuntarily 
urge us to impose a handy structured base to simplify comprehension as a complex mental 
ability to represent, understand and interpret accumulated pieces of information. Thereupon, 
one of considerations that come to mind is related to well-known spatial representation 
allowing to take also account of grouped entities 1÷4 (i.e. peculiar tokens) as well as domain 
expert’s knowledge. Such outline of mental model(s) can be regarded as a framework that 
unites tokens and relationships found out in the course of analysis. Both the nature of P-space 



and its «geometry» are essentially distant from conventional concept of space in mathematics. 
Nevertheless, the idea to represent objects (stimuli) as points in space and estimate similarity of 
those stimuli through distance between corresponding points are firmly rooted in 
psychological studies for many decades. On one hand, such geometrical approach provides 
easy-to-use mechanism of representation of many practical psychological situations; on the 
other hand, it also endues considered space with metrics and enables to deviate from its purely 
dichotomic interpretation based on inherent differentiating/integrating functions [6,25].        

As a result, we may cautiously assume that the description of the concept of connectivity 
(estimate (K) ) can be put into effect on the strength of simple term dictionary composed of 
variable q-level ( q dim(K),...,1,0 ) feature vectors 
          

q q (1) (2)
q q q

q
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The latter are formed on the basis of granules 1÷4 in view of their rational combination that 
ensures perception and clear interpretation of vector’s qA  elements. The first component (1)

qA  

in (2) represents the fraction of non-empty simplexes considered at a given q-level, whereas 
the second one corresponds to the average number of simplexes finding themselves in one    
q-connectivity component. The output of Q-analysis as well as row vectors (2) are  solely  
numeric (integer and real numbers), so the problem of estimating these numbers in connection 
with construction of (K)  replenishes  a  range  of  questions  raised  above.  Publications  
[15,36] give a detailed account of the human mental ability («number sense») that is exhibited 
in everyday calculations. Making emphasis on basic premises and thought regulations that 
generally prevail in human perception while drawing conclusions, we may depart from the 
thesis: «... when estimating numbers, most people start with a number (anchor) that comes 
easily to mind and adjust up or down from that initial state» [42].  In  respect  to  (2), 
corresponding limiting values can be fixed as follows: 
 

               if qs s(K) , then 
(1)
qA 1     |    if qQ 1, then 

(2)
q qA 1 s     (3) 

 
What do expressions combined in (3) mean? The left part simply states that the first element 
of vector qA  is equal to unity, if all non-empty simplexes of complex K are considered 
without exception at this particular level q. The expression on the right (symbol ‘|’ in (3) serves 
as a separator) shows the case when all qs  simplexes find themselves in a single connectivity 
component qQ . In other words, under the compliance with tight condition qQ 1, the degree 
of connectivity used to express the complexity q  of level q is growing with increase of qs . 

We call 
(1)
qA  and 

(2)
qA  in (3) limiting values because they correspond to the most severe case that 

can be rarely observed in practice at particular q-level at the stage of complex K analysis. The 
overall complexity estimate (K)  should be comprised of individual «local» q . With this 
idea in mind [14], we may choose the following implication IC-rules (Idealized Case of 
connectivity-complexity correspondence at q-levels) in the capacity of peculiar anchors 
mentioned before: 
            



          
q q
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It can be called q -squiggle  rule. At the same time, the actual (i.e. computed) estimate q  of 
q-connectivity can be directly inferred from IC-rules and forms ( q -cap ) shown below 
           

           
(1) (2) q q

q q q q

q

s Q
A A ,A ,

s(K) s
    < calculated value >    (5) 

             

Both vectors (2) and left-hand side of (4) can be regarded as low-dimensional stimuli (the 
number of their components is minimal) having apparently concrete meaning to domain-expert 
within the framework of Q-analysis procedure. In addition, those stimuli may have handy 

representation as points in two-dimensional space. As appears from (4), vector qA  is associated 

with the expression of maximum (idealized) complexity q  manifested through q-connectivity 
of  complex  K.  According  to  a  theory  of  memory  retrieval,  if  patterns,  i.e. IC-rules (4), are 
stored in the memory for a time needed to analyze results at particular q-level, q N,...,1,0 , 
then cognizable stimuli in the form of q -cap  association rule resonates with them through 
«invocation» of (4)-(5) parts and assessment of their similarity. Such view is appreciably 
simplified version of the basis underlying retrieval theory that implies comparison of probe 
(stimulus) with «each item in the search set simultaneously (i.e. in parallel)» [36]. 

 
III. Perceived similarity. Prototypical exemplars. Models of similarity 

 
Perceived similarity is not evidently believed to be invariant, so up to date acknowledged 

models are proposed to measure similarity between two patterns (exemplars). In particular, 
Amos Tversky’s contrast model (CMd) [44] turns measuring of similarity to feature-matching 
process that provides for weighted accounting common and distinctive features of patterns 
(entities). In the present case of generalization of Q-analysis results such model is unlikely 
applicable, since the number of features concerned is too small. Geometric models (GMd) that 
assume inverse distance measures in a metric space as a basis of proximity (similarity) 
between exemplars remain now among the most influential and commonly used ones [22]. In 
spite of occasionally mentioned potential problems with geometric models [22,45], it must be 
admitted that their results in low-dimensional space appear to be quite convincing and 
interpretable. With regard to scheme (2), (4) and (5) utilizing two-dimensional simple vectors 
coupled with q  estimates, the cause to prefer just them seems well-grounded. 

In respect to two hypothetical equal-sized objects T (1) (n )
1 1 1x (x ,..., x )  and 

T (1) (n )
2 2 2x (x ,..., x )  

having numeric components (or, attributes) (i)
1x  and (i)

2x , i 1, n , the proximity (dissimilarity) 

between them is made conditional on corresponding distances id , i 1, n , between attributes: 
           

                             
(i) (i) (i) (i )

i 1 2 i 1 2 i
T T T T T T
1 2 i 1 2 1 2

d dist(x , x ); p prox(x , x ) (d )

D(x , x ) (d ) P(x , x ) (D(x , x ))

 f
g   f

                (6) 

             

where ip  are calculated proximities between respective attributes (i)
1x  and (i)

2x  ( i 1, n ), D is a 
distance between two objects calculated through specified functional transformation(s) of 



individual id  and ( )f  is a function (mapping) determining chosen similarity model on the 
respective space [1]. Process of similarity’s formalization suggests accounting for manifest 
entries, viz. (A) dimensions vector (object) 

T
kx  is associated with, and (B) values (i)

kx  «bound 

to» those dimensions. For the case (2)-(5) that  also  deals  with  vectors qA  and qA , we may 
notice certain resemblance to propositions of prototype theory put forward by Eleanor Rosch 
almost four decades ago [37]. Prototype as mentally represented pattern of knowledge (model 
of concept) is linked to specific characteristics; in respect to K and its subcomplexes, category 
«maximally attainable complexity (or, connectivity)» at a given q-level,  q dim(K),0 , can be 
evinced by IC-rules (4). We can treat rules q qA  as an abstract form of comprehension of 
the aforesaid category; rules can be considered as marked anchors in human comparison/ 
categorization of objects based on their perceptual resemblance. Each calculated in turn qA  is 
appraised for the purpose of its proximity to the prototypical exemplar (representation built on 

qA ). Further verbal valuation of the q-level by force of proximity degree requires utilization 
of extra conceptual categories of connectivity (e.g. «marginal», «close to medium», to name a 
few) that don’t possess sharp boundaries [7]. This fact serves as illustration of appropriateness 
of fuzzy sets/logic use as a formal cognitive modeling tool on the basis of concepts and 
related categories in the analysis of K. The paper does not attempt to form such categories for 
the reason that it is aimed at discussion of framework of approach’s alternatives.        

Making emphasis on psychological space (P-space) endued with metric, we give preference 
to specific geometric model (GMd) of cognition. Inherently it focuses on analysis of similarity 
(difference) of data objects complying with Roger Shepard’s ‘universal law of generalization’ 
that suggests to take a view of similarity as «a function of the distance between psychological 
representations» [28,39]. Calculated vector (stimulus) qA  (5) is  represented  on  two  emerged  

dimensions in P-space thus enabling to attribute 
(1)
qA  and 

(2)
qA  to corresponding values on 

psychological dimensions. As an option, category «maximal complexity (or, connectivity)» of 
K at a given q-level (4) may correspond to psychological representation in the form of point 
(

(1)
qA ,

(1)
qA ). The similarity (6) between two vectors (4)-(5) can be determined [22] inversely by 

way of the parameterized distance measures (r-Minkowski metric) as 
            

                       

1
r2 (k)(k )[r ]

q q q qq
k 1

[r ] n
q q q qq q

D (A , A ) d(q) A A

P (A , A ) exp (D (A , A )) , q dim(K),...,1,0

  r

a  

   (7)   

 

Following [14], value of q  can be obtained on the basis of (7) under the assumption of 

existence of latent dependency 
[r]

q q qq qP (A ,A ) (D )f  characterized by conditions: (1) if 
[r ]
qD 0 , then the complexity q  is equal exactly to q 1 , (2) if [r ]

qD d(q) 0 , then q  is 

decreasing gradually towards zero with the growth of d. Gaussian function 
nP exp( d )a  

with sensitivity parameter 0a  (determined by domain experts) and n 2  can be viewed as a 
potential candidate for determining complexity estimate q , q N,...,0  [19,32,39]. Generally 
speaking, geometric model ensures adequate form of information representation in cognitive 



science, and corresponding vectors (stimuli) qA  and qA  are set in motion in the capacity of 
geometrical structures (points) [22,29]. 

Discussions and arguments covered by some research studies accentuate consistently the 
impossibility to «catch» stimulus generalization gradients by means of single parameter a (7) 
often used in cognitive science and psychology. Following tendency of those publications that 
discuss geometrical models of similarity, our approach makes stress on simple transition forms 

[r ]
qq qD P  having clear expression from the viewpoint of representation of human’s 

information perception and processing. Steps of action chain «data obtained from Q-analysis 
procedure – grouping for the purpose of representation in low-dimensional conceptual space – 
conferring metric upon space – forming proximity (connectivity) estimates followed by their 
verbal interpretation» also have something in common with individual Gestalt principles of 
perception (similarity, proximity, etc.) in the sense that Q-analysis data are «organized into a 
stable and coherent form» named feature vectors (2)-(4)-(5) [43]. 

Gaussian type function 
[r ] n
qexp (D )a  (7) is commonly utilized in cognitive modeling 

[39,43], whereas corresponding dimensions in psychological (or, conceptual) space can be 

weighted (i.e. d(q)  turns into 

1
r2 (k )(k )w

q qk
k 1

d (q) A A
  r

w ); weights kw  can be treated as 

peculiar bias parameters stating certain aspects of selective attention or additional knowledge 
on values of arising dimensions [34]. Particularly, fuzzy numbers (intervals) are candidates to 
express approximate values of kw  ( i 1, 2 ).   

Within the diversity of developed formal approaches to classification and categorization 
[31,33] there are rather simple ones including light connectionist version of prototype model 

[8]. The computational process 
(k )(k) [r 2]

q q qq
k 1,2

A , A D  as described above (Fig.1); so      
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Figure 1. Calculation of q-level connectivity estimate based on connectionist model  

 
long as both dimensions of qA  and qA  describe peculiarities of particular level’s connectivity, 
we treat them as integral ones – in the broad sense, those are defining attributes that serve as a 
single holistic descriptor of the level q quality in terms of its structural complexity [19,21]. 
Under such provisions, metric 

0.5[r 2] 2 2 2 2
q q q qD (s(K) s ) s (K) (1 Q ) s  is recommended 

for use in contrast to 
[ r 1]
qD  (7) in view of capturing both dimensions together [20,22]. 

   



IV. Example (part I) – Aggregated complexity estimate 
 

To illustrate idea conveyed above consider binary (incidence) matrix  representation of 
the following relation X Y , where iX x , i=1,5  and jY y , j=1,6 , correspondingly: 

 

      

1 0 1 1 0 1

0 1 0 0 1 1

0 0 0 1 1 0

1 1 0 0 0 1
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1
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x

x

x
x
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                                                                                 Figure 2. Fragment (sub-complex) of simplicial complex K  
 
It can be noticed that s(K) 5 , and results of Q-analysis can be summarized as follows: 
   

level q 3   3Q 1  ( 3s 1 ) 1x  
level q 2   2Q 3   ( 2s 3 ) 1 2 4x , x , x  
level q 1   1Q 2   ( 1s 5) 1 2 4 5 3x , x , x , x , x  
level q 0   0Q 1  ( 0s 5 ) iall simplices x of complex K, i 1,...,5  

 

Vectors qA  ( q 0,3 ) are calculated on the basis of values shown above, i.e.  3A 0.2,1 , 

2A 0.6,1 , 1A 1,0.4  and 0A 1,0.2 . In the process, limiting values in (3)-(4) form qA  

that are 3A 1,1 , 2
1A 1,
3

 and 1 0A A 1,0.2  for respective values of q. On condition 

that r n 2  and 1.8a  in (7), we obtain the following values of [r]
qD  and q q qqP (A , A ) : 

 
[r 2] [2] [2]

3 0D D ,...,D 0.8,0.78,0.2,0   3 0,..., 0.32,0.34,0.93,1  
 

Exact-valued estimates do not seem informative with regard to explanations and discussions 
held within group of domain experts; on top of that, parameter a’s natural moderate variability 
that is typical under its judgmental choice leads to slightly floating q  values (e.g. if 2.1a , 

then 
[r 2]( ,n, D ) 0.2608,0.281,0.9194,1a ; the issue of choosing «appropriate» value (or, 

range of values) of sensitivity parameter a is discussed partially in [14]). Turning acceptable 
range of calculated 

[r ]
q q(D )f , q dim(K),0 , into unit interval affords good opportunity 

for interpretation of resultant numeric values by means of verbal terms (e.g. «weak (low)», 
«medium», «rather strong (high)», «strong (high)», «extremely strong (high)»). They can be 
associated with fuzzy intervals that enable here to characterize connectivity (complexity) of 
complex K as being likely «weak (low)» at first two higher q-levels, «rather strong (high)» or 
even closer to «strong (high)» at the level q 1  and «extremely strong (high)» at the lowest 
level of K’s analysis. Hypothetical partitioning of the unit discourse into meaningful fuzzy 
sets is shown by gray rectangles in the block under q 1  anchor in Fig.1.         



Values of components of structural vector 
*Q 2,3,1  for conjugate 

*K  ( *dim(K ) 2 ) that 

represents the relation 
* Y X  result in obtaining 

[2]D  and q
1.8a

 as 0.833,0.333,0  and 

0.287,0.819,1  giving  reasonable  cause  to  label 2  and 1  as «low» and «high (strong)», 

correspondingly. Besides, aggregation of individual q  values into single relative (subjective) 

estimate agg (K)  of K’s complexity can simply utilize standardized weights 

N

q q k
k 0

sf sfw , 

q N dim(K),0 , derived from significance factors qsf  of q-levels. To calculate the latter, 

well-interpretive function 
2(q) c q 1  can be used [14]; the value of c  is directly related to 

psychological level of human perception of q-levels significance that «manifests» in course of 
simplicial complex’s analysis. For instance, under c 0.05  , agg (K)  and 

*
agg (K )  are equal 

to appr. 0.6 and 0.68. Does it really mean that 
*K  is more complex if compared to K? 

   
V. Example (part II) – Comparing estimates. Saaty’s scale of priorities 

 
Calculated estimate agg (K)  dissembles important K’s feature – namely, its dimensionality 

that  domain  expert(s)  should  definitely  draw  attention  at  while  performing  analysis  and  
comparing agg  values obtained. With such purpose in mind, the scale of verbal priorities 
proposed by Thomas Saaty [38] can be utilized to express judgments concerning perceived 
difference between dimensionalities of arbitrary 1K  and 2K . The scale uses five base marks 
(numbers 1,3,5,7 and 9) that reflect the human ability to perform confident differentiations 
and four transitional, more «diffused» or compromise as compared to base ones, comparative 
marks (2,4,6 and 8). Base scale ticks ( iex ,i 1,3,5,7,9 ) represent differences as «virtually 
absent» (1), «insignificant» (3), «non-negligible» (5), «substantial» (7) and «absolute» (9). In 
essence, such approach exploits rough classification of stimula by three key signs «rejection- 
indifference-acceptance», each of which is endowed with specializing shades «low-average-
high» in line with known trichotomy principle. The use of limited discrete ticks preserves the 
possibility to link numbers with meaning and ease of their processing. 

With account taken of Saaty’s scale, we can introduce a semblance of adjusting coefficient 

i

1
ex

 to be applied to aggregated estimate of structural complexity. Assuming 1 1N dim(K ) , 

2 2N dim(K )  and 1 2
i

1diff (N , N ) 1
ex

 ( i 2,9 ), the adjusted agg  can be deduced on the 

base of simple multiplication operation as 
           

                                         
(corr.)
agg agg1 1 2 1(K ) diff (N , N ) (K )                   (8) 

             

With regard to the example under consideration, N dim(K) 3 , 
* *N dim(K ) N 1 2 . 

Although almost insignificant, the difference between dimensionalities N  and 
*N  is observed, 

e.g. 
*diff (N , N) 1 2  ( 2ex 2  is a transitional mark on the scale) in (8). Procedural memory 

helps to carry out standard mathemat. operations, but attempts to retrieve «familiar» enough 
results of calculations (e.g. 6 / 2 3 , 66 / 2 33 , etc.) from long-term memory may bring 



approximate output (range) [41]. The latter can be considered in the capacity of acceptable one 
in respect to a given problem, that is (as an alternative) 

* *
aggdiff (N , N) (K ) [0.32,0.35] . 

Consequently, the interval [0.32,0.35]  can be associated with support of output fuzzy set, and 
adjusted complexity of  

*K  can be interpreted roughly as «weak (low)». Most likely, it is the 
case, because at the level q 2  two simplexes 4y  and 6y  form 2 connectivity components, and 

at the following level of analysis ( q 1) all six simplexes iy  of complex 
*K , i 1,6 , are also 

not connected tightly (like it or not, but 3 components in total).   
 

VI. Conclusion. Final remarks 
 

Actually, integration of information granules (features) obtained at the stage of performing 
Q-analysis  into  compact  and  interpretive  form  clears  the  way  to  form  (calculate)  structural  
complexity (K)  estimate making partial feasible use of perception theory and ideas derived 
from cognitive science. As shown in the paper, development of geometric models proves their 
adequacy when dealing with similarity that is a base for human cognitive abilities. Such 
models are intuitive and have a good potential in being adopted in formal models of cognition 
(e.g. connectionist type of models). To the opinion of the author, even simple and general 
scheme presented in the paper sets up a weighty milestone in thorough elaboration of different 
approaches (fuzzy sets and systems, abstract mechanisms of human information processing 
described by cognitive models, pairwise comparison of simplicial complexes 1K , 2K  followed 
by making sound decisions concerning their observed differences (similarities)). Within the 
scope of Q-analysis procedure that manipulates rather scanty amount of available data, any 
endeavors to «enrich» it with both formal and intuitive procedures to expose essential 
(hidden) structural features of complex (system’s model) can be considered as a step towards 
development of fully fledged software tool to study multidimensional connectivity of 
structures.                
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