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Abstract

Danish mortgage loans have several features that make them interesting: Short-term revolving
adjustable-rate mortgages are available, as well as "xed-rate, 10-, 20- or 30-year annuities that
contain embedded options (call and delivery options). The decisions faced by a mortgagor are
therefore non-trivial, both in terms of deciding on an initial mortgage, and in terms of managing
(rebalancing) it optimally.
We propose a two-factor, arbitrage-free interest-rate model, calibrated to observable security

prices, and implement on top of it a multi-stage, stochastic optimization program with the purpose
of optimally composing and managing a typical mortgage loan. We model accurately both "xed
and proportional transaction costs as well as tax e#ects. Risk attitudes are addressed through
utility functions and through worst-case (min–max) optimization. The model is solved in up
to 9 stages, having 19,683 scenarios. Numerical results, which were obtained using standard
soft- and hardware, indicate that the primary determinant in choosing between adjustable-rate
and "xed-rate loans is the short–long interest rate di#erential (i.e., term structure steepness), but
volatility also matters. Re"nancing activity is in$uenced by volatility and, of course, transaction
costs.
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1. Introduction

In Denmark there is considerable public interest in the market for mortgage backed
securities. Spurred on by the product innovation and advice of "nancial institutions,
many home-owners manage their mortgage debt very actively. The individual mortgagor
faces a number of non-trivial decisions. He has to decide whether to use adjustable
rate loans where the debt is re"nanced on a yearly basis (or every 3 or 5 years) or
the more traditional "xed rate 20- or 30-year annuities, or some combination hereof.
The annuities have embedded options: There is a call-feature because the mortgagor
can repay the remaining principal at any time, and there is a delivery option because
he can buy back his debt at market value (a feature not present in mortgages in the
US). We use a stochastic, two-factor term structure model (calibrated to market prices
and volatilities of non-callable bonds and to prices of callable bonds) and formulate
the mortgagor’s problem of optimal debt management as a multistage stochastic pro-
gramming model that is solved with standard software. The formulation as a stochastic
programming model makes it possible to incorporate both the inherently path-dependent
aspects of mortgage management, and the optimal policy aspects. In addition, it makes
it easy to model investor speci"c risk attitudes and tax rates, as well as both "xed and
proportional transaction costs.
Results indicate that the model behaves reasonably and accurately replicates actually

observed mortgagor behavior. In particular, the model actively utilizes both ‘down-’
and ‘up-’ mortgage rebalancings in the "xed-rate loans, i.e., the embedded call and
delivery options, and it uses both adjustable- and "xed-rate loans realistically. We "nd
that the choice between using long ("xed-rate) or short (adjustable-rate) bonds depends
largely on the spread between long and short rates, but also on volatilities. These e#ects
are hard to capture with the one-factor models often employed.
The problems of mortgage prepayment behavior has been studied, e.g., by Richard

and Roll (1989), and by Kang and Zenios (1992), and of mortgage portfolio man-
agement (from the investor’s side) by e.g., Zenios (1995) and many others, but our
studies are the "rst that address the mortgagor’s side of the problem. The topics pre-
sented in this paper were, with a preliminary implementation, also addressed in Nielsen
and Poulsen (2002). However, we here present signi"cant further developments: The
interest rate model is further re"ned and implemented, its estimation to market data
and the calculation of callable bond market prices are revised, all numerical results
are new, and we further investigate e#ects of "xed transaction costs as well as the
min–max risk-averse objective function. In addition, the GAMS implementation has
been streamlined, leading to signi"cantly faster solution times.
The outline of the rest of the paper is as follows. In Section 2 we give a more

detailed description of the mortgage market, with particular emphasis on the products
available to the individual mortgagor and the choices/trade-o#s he faces. Section 3
introduces a stochastic interest rate model. We use a Gaussian two-factor model for zero
coupon bond yields formulated in the Heath–Jarrow–Morton framework. In this section
we also propose a simple, but very operational, regression approach for determining
prices of callable mortgage backed bonds from zero coupon bond yields. In Section
4 the problem that the mortgagor from Section 2 faces and the dynamic model for
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interest rates and bond prices from Section 3 are combined in a multistage stochastic
programming formulation. Section 5 presents extensive experiments with the model and
numerical results. Finally, Section 6 concludes the paper and outlines topics for future
research.

2. The Danish mortgage market and the individual mortgagor

The interest rate policy of the Danish Central Bank usually mimics that of the
European Central Bank’s short rates, and the yields on government bonds also closely
follow those in ‘Euroland’, with the addition of a spread of 25–50 bp. On several
occasions the Danes have voted ‘No’ to joining the single European currency, the
Euro, but still the exchange rate is quite stable (between DKK 7.40 and 7.50 will buy
you 1 Euro).
Though small in absolute terms, the Danish mortgage market 1 has some interesting

features. Mortgages have historically been "nanced by 20- or 30-year "xed-rate bonds
that were issued through intermediaries ("rst only dedicated mortgage companies, since
1970 also banks) to a quite liquid market. The mortgagor can repay the remaining
principal at any time, 2 in other words the bonds are callable. When interest rates
drop, the mortgagor can issue new debt at the lower rates, typically in the form of a
new "xed-rate (callable) bond with lower coupon rate, using the proceeds from this to
pay o# the old mortgage, which is ‘called’ at par. Fixed-rate bond prices actually do
increase to above 100 without being called. One such reason is that it is not possible
or worthwhile for the individual mortgagor to be a highly e%cient investor (‘optimal
behavior’ is ill-de"ned), another is transaction costs.
Conversely, if interest rates increase, the mortgagor can buy back the now relatively

cheap mortgages in the market, again funding this by issuing a new mortgage, now with
a higher coupon rate. This will make the installments larger, but reduce the principal
on the mortgage, and the mortgagor has positioned himself better if interest rates
subsequently drop. This was a strategy widely recommended by "nancial institutions
from mid-1999 to mid-2000, because there was a perception that ‘rates are high’ (since
they had recently gone up) and ‘they will come down’ (in particular, because the
common belief was that Denmark would soon join the Euro). An e#ective re"nancing
strategy therefore involves re"nancing both when rates decrease and increase, in either
case issuing bonds as close to par as possible (mortgagors are by law only allowed to
issue bonds priced at or below par).
A key question is, by how much should rates change before re"nancing is optimal?

Danish banks now o#er the so-called mortgage-watch programs, where they alert their
customers to opportunities. Of course, the banks make a sizeable pro"t (there is a "xed
cost to the bank of typically DKK 1500–2000 and a variable cost of 0.15% of the

1 Figures from late 2000: Measured by market value the size of the Danish bond market was DKK 2∗1012
(and a tiny bit more by face value); roughly 50% are mortgages, 30% government bonds, 8% in$ation-linked
bonds, and the rest are more or less exotic bonds that only constitute 3% of the turnover.
2 Actually such extraordinary prepayments can only take place on coupon payment dates (of which there

are typically 4 per year) and two months’ prior noti"cation has to be given.
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price of the new issue, in addition to taxes) when a customer re"nances, so it is in
their interest to induce re"nancing.
To the purchaser of these bonds, the credit risk is very low because the lending

institution pools and insures the issue. Only some systemic collapse, a#ecting a major
part of the economy, would present a risk that could hardly be avoided anyway. But
there are other issues that make the purchaser side interesting, in particular modeling
the prepayment behavior of the mortgagors in the bond issue. Note the asymmetry;
the mortgagor takes into account very speci"cally his own characteristics, whereas
the purchaser buys the ‘average’ mortgagor. Ideally, one should consider both sides
in detail and then arrive at (model) market prices by some equilibrium argument.
However, our model only addresses the side of the issuer in detail, the overall market
behavior is exogenous, but modeled as a stochastic system in a statistically plausible
way.
In the mid-1990s, adjustable-rate mortgages (ARMs) in the form of revolving, short-

term loans were introduced, following a legislative change. These loans were "rst
o#ered by Realkredit Danmark under the trademark FlexL&an, then (reluctantly) by most
other intermediaries. The simplest one is the F1, whereby the complete outstanding
principal is re"nanced every year by January 1st at the prevailing 1-year rate; similarly
there are F2, F3, up to F10 loans. Another option is the P-loans, for instance the
P25,0, where 25% of the debt is re"nanced every year at the 4-year rate, many other
fractions up to 50% exist. These ARMs all share two characteristics: They depend on
the short end of the yield curve, and they are very vulnerable to increases in short
rates. In a ‘normal’, positively sloped term structure they have some appeal compared
to the long-term loans, and the market for these loans, after some hesitation, is now
very large. Fig. 1 shows the Danish short and long rates during the period 1997
to early 2001. Although ARMs had an obvious appeal during the early years, there
was a signi"cant narrowing ($attening) in 2000 (due to the uncertainty of the Danish
referendum September 28 whether to join the Euro; we did not), making the situation
far from obvious for the individual mortgagor.

3. The two-factor interest model and prices of mortgage backed bonds

Our interest-rate model has two components: A classic term structure model for the
stochastic movement of zero-coupon bond prices (ZCB prices; P(t; T )) and a model
that links the ZC-yield curve (simply referred to as the term structure) to prices of
mortgage backed callable bonds, or securities (simply referred to by MBSs).

3.1. A two-factor term structure model

It is convenient to work with a model that can take today’s observed term struc-
ture directly as input. This is most easily done when we work in the Heath–Jarrow–
Morton-framework (see Heath et al., 1992). Models of this type are usually
formulated in terms of instantaneous forward rates (although a speci"cation of the
dynamics of all ZCB prices or yields is theoretically equivalent, see Bj'ork (1998,
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Fig. 1. Danish ZC-yields between September 1997 and January 2001.

Chapter 15) for a lucid exposition of di#erent approaches to continuous-time interest
rate modeling),

f(t; T ) =−9 ln P(t; T )9T ;

i.e., f(t; T ) is the forward rate seen at time t for an extremely short-term loan at time
T , 3 and P(t; T ) is the price at time t of a ZCB that matures at T .
We use the Gaussian volatility speci"cation

df(t; T ) = !(t; T ) dt + "1 dW1 + "2e−#(T−t)=2 dW2;

where W1; W2 are (uncorrelated) Brownian motions under some probability measure P
(the actual/objective/statistical/physical measure), and "1; "2 and # are positive con-
stants. In this model, changes in the term structure are caused by two factors. The
"rst factor, "1, uniformly shifts rates of all maturities, while the second factor, "2,
a#ects short rates more than long rates. The second factor can also be thought of as
a spread between long and short rates. The very short rate volatility is "1 + "2, the
long rate volatility is "1, and # controls how rapidly the volatility $attens out. If #=0,
then rates of all maturities are perfectly correlated, positive #-values mean that short
rates are less-than-perfectly correlated with long rates, and a ‘very high’ #-value means

3 When interest rates are quoted on a continuously compounded, yearly basis, then the simple forward
rate seen from time t for a loan between times T and T + h is ln(P(t; T )=P(t; T + h))=h. The f(t; T ) rate is
the ‘h→ 0’ limit of these simple forward rates.
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that the short rate ‘has a life of its own’ (to some extent at least; there is a (long,
short)-correlation lower bound of "1=("1 + "2)).
This two-factor model allows for a wider range of term structure deformations than

the (e#ectively) parallel shifts of a one-factor model. Fig. 1 depicts the Danish 1Y-,
10Y-, and 30Y-ZC-yields 4 for the period September 1997 to January 2001. Clearly,
these would be poorly "tted by a model that allowed only parallel shifts. The form
of the volatility is speci"ed such that it is easy to incorporate the empirically ro-
bust fact that long rates are less volatile than short rates; a fact caused by mean
reversion.
For the model to be arbitrage free, a risk-neutral probability measure Q (or: martin-

gale measure) must exist. This implies the existence of a two-dimensional stochastic
process $ of risk-premia such that the P-drifts of the forward rates must obey the
so-called HJM-drift condition:

!(t; T ) = ""
f (t; T )

∫ T

t
"f(t; s) ds− ""

f (t; T )$(t):

Assuming constant risk-premia $"(t) = ($1; $2) we have for s¡ t¡T that

f(t; T ) =f(s; T ) + "21(t − s)(T − (t + s)=2)

− 2"22
#2
[(e−#(T−t) − e−#(T−s))− 2(e−#(T−t)=2 − e−#(T−s)=2)]

+$1"1(t − s) + $2
2"2
#
(e−#(T−t)=2 − e−#(T−s)=2)

+ "1(W1(t)−W1(s))−+"2e−#T=2
∫ t

s
e#u=2 dW2(u): (1)

Note that in fact we have a Markovian structure, in that the entire forward rate curve
can be represented in terms of a deterministic function and the stochastic variable









"1 ×
√
t − s× n1

"2 × e−#T=2 ×

√

e#t − e#s

#
× n2









; (2)

where n1 and n2 are independent and standard normal. For practical purposes we recast
(2) in two ways; in terms of ZCB prices, and in terms of dynamics of ZC-yields. Since
P(t; T ) = exp(−

∫ T
t f(t; u) du), we "nd by integrating (2) wrt T , changing signs and

4 On any given day, the ZC-yield curve was estimated from prices of Danish government bonds by
the non-parametric smoothing technique described in Tanggaard (1997). The data were kindly supplied by
ScanRate.
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exponentiating that (not quite as elegant as E = mc2):

P(t; T ) =
P(s; T )
P(s; t)

· exp
(

−"21(t − s)(T − t)(T − s)=2

− 2"22
#3
(e−#(T−t) − 1− e−#(T−s) + e−#(t−s))

+
8"2
#3
(e−#(T−t)=2 − 1− e−#(T−s)=2 + e−#(t−s)=2)

+$1"1(t − s)(T − t)− $2
2"2
#2
(e−#(T−t)=2 − 1− e−#(T−s)=2

+ e−#(t−s)=2)− n1"1(T − t)
√
t − s− n2

2"2
#
√

#

×
√

e−#(T−t)+1− 2e−#(T−t)=2−e−#(T−s)−e−#(t−s)+2e−#((T+t)=2−s)
)

:

(3)

The ZC-yield with time % to maturity is de"ned by y(t; %) = −ln P(t; t + %)=%, so we
"nd the ZC-yield dynamics to be

dy(t; %) = : : : dt + "1 dW1 +
2"2
%#
(1− e−#%=2) dW2: (4)

3.1.1. Estimation of parameters
We want to estimate the parameters "1; "2; #; $1 and $2. The former 3 are (primar-

ily) volatility related parameters, so they can reliably be estimated from fairly frequently
sampled historical data (without the need for an immensely long time period from "rst
to last observation). Suppose we have time series observations (at ti’s that are (t = 1
day or 1 week apart) on ZC-yields 5 for maturities %i (1Y, 2Y; : : : ; 30Y; ZC-yields of
maturities shorter 1Y have considerable idiosyncratic noise and are excluded). From
(4) we see that

std: dev:
(

(y(ti; %j)√
(t

)

≈

√

"21 +
4"22
%2j #2

(1− e−#%j=2)2

and when (t is small the dt-term in (4) is small compared to the dW -terms, so
parameters can be estimated solely from observed standard deviations of yield changes.
We simply "t (using a least-squares criterion) these theoretical standard deviations to
the observed standard deviations of ZC-yields. Using daily ZC-yield changes in the
1997–2001 period we "nd the estimates shown in the upper panel of Table 3. The
observed standard deviation and the "tted curve are shown in Fig. 2. We see a fairly
good "t; in factor analysis terms the model explains about 90% of the variation in the
data. The risk premia (the $s) are estimated at the values that produce the best "t on

5 Term structure information is typically supplied in the form of a number of points on the ZC-yield
curve, not in terms of instantaneous forward rates. It is advisable to perform analytical integration (as we
did to arrive at (4)) rather than numerical di#erentiation (to get ‘observed’ instantaneous forward rates).
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Fig. 2. Theoretical (dotted line) and observed (o) standard deviations of Danish ZC-yields, when the Gaussian
two-factor model is "tted by least squares till daily ZC-yield changes from September 1997 to January 2001.

average (from September 1997 and onward and with volatility parameters "xed) to the
slope of the term structure at the 1Y and 25Y year points.

3.1.2. Discretization of the model
From (2) it is easy to see that we essentially only need a discretization of two

independent, standard normal variables. We want to do that in trinomial fashion, which
schematically looks like this:

It is easily checked that if we use the values
(

1=
√
2

√

3=2

)

;

(

−2=
√
2

0

)

; and

(

1=
√
2

−
√

3=2

)

for the (n1; n2) ‘up’, ‘middle’ and ‘down’ states, then the "rst two moments "t un-
correlated N(0; 1)-variables.
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The lattice is recombining but the actual implementation is not—because the
decisions are path-dependent. The resulting tree corresponds to a N -stage, stochastic
optimization program with decision points at (t0; t1; : : : ; tN−1) and a "nal (trivial)
horizon decision at tN . The tree has a total of

∑N
n=0 3

n nodes in its non-recombining
version.

3.2. Market prices of callable mortgage backed bonds

Of course, market participants know very well that MBSs are callable. Hence, the
bonds do not trade at prices that are the payments of the non-callable annuity discounted
by ZCB rates, but at lower prices to re$ect the value of the embedded option,

MBS = non-callable bond − call-option:

But which prices do the MBSs trade at? Or in other words, how do we get from a
dynamic model of the ZC-yields to a model for MBS prices? There are two ‘schools’
in the literature when it comes to this. The "rst tries to price the embedded call-option
(which is of American or Bermudan type, to complicate matters further) by standard
‘no-arbitrage techniques’ in stochastic interest rates. This approach can be augmented
(as in the classic paper Stanton, 1995) by introducing borrower heterogeneity (wrt
costs) and ‘bounded rationality’ (markets are ‘only checked now and again’). While
theoretically well founded, the method does not produce overly satisfactory results when
confronted with market data. The other ‘school’ focuses on ‘empirical prepayment’.
Here, a statistical model of what causes people to prepay is set up (think of this as a
regression of observed prepayments on ‘whatever could be perceived as relevant and
then some’) and this model is then linked to market prices of MBSs (typically through
the so-called option adjusted spreads). This method is quite data-intensive, but still
does not produce overwhelmingly accurate price predictions.
This motivates our use of a simple model to produce MBS prices in the stochastic

programming set-up. The model is easy to estimate and work with, performs reasonably
well out-of-sample and overall ‘does not do silly things’. The story goes as follows:
Let t denote a given day and consider an n-year MBS. We "nd the vector of cash$ows
of the corresponding non-callable bond (say cf (t + %i) at date t + %i) and calculate its
price

PVnY (t; cf ) =
∑

i

cf (t + %i) exp−y(t; %i)%i :

This price must have a very important in$uence on the price of an MBS. So important,
in fact, that we are tempted to look for functions, fn (one function for each maturity),
such that the price of the callable bond is

PnYMBS = fn(PV
nY ):

And what should fn look like? If PV is far below 100, the embedded option is far
out of the money, and the two bonds cost about the same. On the other hand, nobody
would want to pay ‘signi"cantly’ more than 100 for the MBS; whoever sells the bond
can buy it back immediately for 100. So we should have an upper limit for the price
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Fig. 3. Parameter estimates. The MBS-curve becomes $at for present values above 124.82. The maximal
model price of a MBS is 101.6. Note that this is close to ‘100 + proportional cost’.

of a MBS; presumably somewhere around ‘100 + cost incurred upon prepaying’ (see
Figs. 3 and 4). Further, the shorter the time to maturity of the underlying bond, the
closer the price of the MBS is to min(PV; 100+ costs). The fn-functions given below
posses the desired properties (see Fig. 5 to get an impression of their graphs):

f30(x) =















x for x6 c;

x − a(x − c)b for c6 x6 c + (ab)1=(1−b);

c + (ab)1=(1−b) − a(ab)b=(1−b) for x¿ (ab)1=(1−b);

f0(x) = min(x; c + (ab)1=(1−b) − a(ab)b=(1−b))

and,

fm(x) =
m
30
f30(x) +

30− m
30

f0(x):

We estimate the parameters a; b and c from market data: Given observed term struc-
tures at speci"c dates (between 1997 and 2001 in this case) and a guess of (a; b; c),
model predictions of MBS prices can be calculated. These are compared to market
prices, and we estimate (a; b; c) as the values that give the best "t (with a least-squares
criterion). The results of this analysis is given in Fig. 5, where the ‘model’ and ‘market’
prices are shown, and in Table 3 where the estimated coe%cients are given.
A few remarks:

• The lower and upper cut-o# points are implicitly estimated. We get an upper limit
of 101.6, i.e., an ‘implied cost estimate’ of 1.6%, which is very reasonable.

• By law, the borrower is only allowed to issue MBSs when the price is below 100,
so he does not particularly care, how the MBS price behaves once it gets above
100.

• We only use 30Y bonds to estimate parameters. The f0-function (giving the price of a
MBS that is just about to mature) is estimated as min(x; 100+implied cost estimate),
and the other fn’s are determined by linear interpolation between f0 and f30. This
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Fig. 4. The decision tree. The square boxes ( ) where we can actively make a decision (in other words the
k’s that we sum over in (5)). At each of these nodes we have a complete term structure and a universe of
MBSs. The bullet points (•) are other dates at which cash-$ows occur.

means that by comparing ‘model’ and ‘market’ prices of 20Y MBSs (these are also
fairly liquid, although not the primary choice of private mortgagors), we get a simple
out-of-sample test of the procedure. The result of this is also shown in Fig. 5. The
model tends to underprice the 20Y bonds, but for the purposes of this paper, the
accuracy is certainly acceptable.

4. The multistage stochastic programming model

We now present a multistage, stochastic optimization model which implements the
mortgagor’s problems of initially establishing an optimal portfolio (of bonds), and also
manages this portfolio optimally. As is typical of investment problems, the ‘portfolio’
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in question will consist of just a single instrument in the risk-neutral case, but the
model allows for risk-aversion by a suitable choice of objective. At this point we take
for given the structure of the scenario tree (i.e., a N -stage, trinomial tree), and that
there is at each node in the tree a term structure, and also a "nite set of loan types
(bonds) available. Bond (cash-$ow) present values as well as their market prices are
determined for each node using the term structure. The stochastic optimization model
itself is completely detached from the interest rate/term structure generating model
used. This model allows, for instance, a jump di#usion or a mean-reversion as the
underlying process structure.
The objective of the model is to maximize some measure of expected payments,

suitably discounted over time, and is discussed in Section 4.2. Below we discuss the
constraints of the model (balance equations), whose primary purpose is to keep track
of remaining principal versus payments, under consideration of possible rebalancing,
and across nodes in the stochastic tree.
We recall the relationship between time periods, decision points, tree nodes and their

indices: The stochastic tree covers N time periods, or stages, with decisions at times
%n; n = 0; 1; 2; N − 1 (the ‘decision’ at the horizon, %N , is trivial). Typically, %N = 30
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years; %0 = 0. The set of tree nodes, of which there are 3n at level n (corresponding
to time %n), is indexed by k; k = 1; : : : ; K =

∑N
n=0 3

n.

4.1. Principal balance equations

The balance equations manage outstanding principal amounts of each (potential)
bond (loan type), between pairs of tree nodes, (a; k), where node a is the predecessor
of node k. The only node without a predecessor is the root node. At each node k there
is a "nite universe of traded bonds, indexed by i, and given the term structure at the
node we can "nd market prices of these, I ki .
Let DFkt be the discount factor of node k’s term structure for a loan maturing at

time %k+ t, i.e., t years after the node time; PVki the present value of bond i at node k,
calculated using DFkt on the bond’s cash $ow. This would be the fair (ex-coupon) price
of the bond were it not callable; I ki the market price of bond i at node k. The bond
can be sold at this price (if it is at or below par), and can be called at min(I ki ; 100).
It is calculated as explained in Section 3.2; and ci bond i’s coupon rate (which is 0
for ARMs).
We need the following decision variables:

xki is the outstanding principal amount of bond i at node k; for a node–ancestor pair
(a; k), the balance equations given below serve to link together xai and x

k
k

ski is the amount of bond i sold at node k (to raise funds of DKK 1,000,000, bonds
can only be sold if I ki 6 100)

ppki is the scheduled payment of principal at node k, given by the annuity formulas in
Section 4.1.2

ipki is the scheduled payment of interest at node k, also given in Section 4.1.2
qki is the extraordinary pre-payment of principal when bonds priced above par are
called at par (using the embedded call option)

pki is the amount of bonds priced below par, purchased at the market price I ki and
delivered towards the outstanding loan (using the embedded delivery option)

In the absence of re"nancing or prepayments, principal is paid down by regularly
scheduled payments, ppki . However, let us clarify the di#erence between pki and qki :
Whenever interest rates increase su%ciently, it is optimal to ‘convert up’, i.e., pur-
chasing back one’s own bonds in the market, thus reducing the outstanding debt (this
happens when the bond is cheap, priced below par), which is modeled by pki . This
purchase is "nanced by issuing new, higher-coupon bonds. Similarly, when interest
rates decrease su%ciently, bonds whose prices are now above par can be called at par
(‘converting down’), which is modeled by qki .
We are now in a position to state our primary balance constraint: For bond i the

principal amounts of debt at nodes (a; k) satisfy

xai − ppki − qki + ski = xki + pki :

There is also a cash constraint enforcing that no cash is added to or removed from the
system between time 0 and 30 (except scheduled payments). An additional constraint
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in e#ect for F-year ARMs, i.e., those that are re"nanced every F years (1, 2, 3 or 5),
is that we are not allowed to prepay them during those F years; in real life, these loans
can be bought out only at a relatively high cost, or if the underlying asset (house) is
sold.

4.1.1. Initial and terminal conditions
We must raise a nominal DKK 1,000,000 (or any other, predetermined amount) at

the outset; everything must be paid back after at most 30 years, the maximum horizon
allowed for personal mortgages. This condition will be satis"ed because the annuitized
principal repayment schedule (Section 4.1.2) must be adhered to.

4.1.2. Annuity calculations
The total mortgage installments (principal and interest) are given by the standard

annuity formula:

Ai =
ci(1 + ci)n

(1 + ci)n − 1
so that this amount is paid in every period (of n periods) per unit face value, given
a coupon rate of ci on the loan (for ci = 0 we have Ai = 1=n). Of this, repayment of
principal in the jth period, j = 1; : : : ; n, is (1 + ci)−(n−j+1), and the rest is interest.
De"ne the per unit principal and interest payments during the period [%a; : : : ; %k − 1]

as

PPai = Ai
%k−1
∑

t=%a

(1 + ci)t−mi ;

IPai = Ai
%k−1
∑

t=%a

(1− (1 + ci)t−mi);

where mi is the maturity year of bond i. Principal and interest payments accrued during
this period are paid at time %k , which is enforced by the constraints

ppki = PP
a
i x
a
i ;

ipki = IP
a
i x
a
i :

Note that by keeping track of principal and interest payments separately, the model
allows proper tax treatment of interest payments (in Denmark, mortgage interest pay-
ments are tax-deductible at the current rate of 32.13% whereas principal payments are
not. Other interest payments are fully deductible at the marginal tax rate. The Danish
top marginal tax rate is currently 61%, we repeat, 61%).

4.1.3. Total payment calculation
The total payment (cash out) at node k is then

Tk =
∑

i

(ppki + q
k
i + (1− &)ipki − (1− ')I ki s

k
i + I

k
i p

k
i );

where & is the tax rate and ' is the (proportional) transaction cost on sales (and
hence on re"nancing). Proportional transaction costs are incorporated by setting the



S.S. Nielsen, R. Poulsen / Journal of Economic Dynamics & Control 28 (2004) 1267–1289 1281

parameter ' to the appropriate percentage cost of issuing (selling) bonds. Fixed costs
can be modeled using binary variables; we do this in Section 5.7.

4.2. Objective functions

We propose as the model’s basic objective to minimize expected present value of
lifetime expenses:

Minimize z =
K
∑

k=0

(k)tT k ; (5)

where k=0; : : : ; K are tree nodes indices, )t the discount factor for payments at time t
(e.g., the initial yield curve plus spread), (k the probability of state (node) k; (k=3−n

if node k is at level n, and Tk total payment at node k.
This objective function corresponds to an unlikely risk-neutral investor. In real life,

by contrast, home owners tend to be very risk-averse, given that a mortgage is typi-
cally the largest single investment one will ever make. In practice, this risk-adversion
manifests itself by a strong reluctance to fully "nance a mortgage by ARMs and could
thus be modeled by excluding such loans from the loan universe. A more rigorous
approach is to use a utility function, U, concave in its second parameter, and then

Maximize zU =
K
∑

k=0

(kU()t ; T k); (6)

where U also appropriately accounts for intertemporal utility comparisons. In Section
5.5, for instance, we use the objective

Maximize zlog =
K
∑

k=0

(k log()t(B%k − Tk)); (7)

where B%k is a budget assumed to be available for payments at time %k , to maximize
the expected present value of budget surplus.
Finally, we implement a worst case, or min–max objective which seeks to minimize

the maximum present value of lifetime expenses across all scenarios, where a scenario
is a path from the tree root to a leaf node. This objective corresponds to extreme
risk-aversion.

5. Numerical experiments

In this section, extensive numerical experiments are reported. The purpose of the
experiments presented here is to validate the model, i.e., verify that it behaves reason-
ably, and also to demonstrate its feasibility with respect to solution times for large,
non-trivial instances. With starting point in a ‘base case’ model, we investigate the
e#ects on the initial, optimal mortgages and on re"nancing behavior of varying the
number of stages, of incorporating risk-aversion, of changing the term structure steep-
ness and volatilities, and of "xed and proportional transaction costs. The model is
implemented in GAMS, using CPLEX as the linear programming solver.
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Table 1
The multistage, stochastic models: Number of stages, decision points, nodes in the resulting trinomial tree
and number of scenarios (paths from root to leaves), and solution times in seconds on a Windows XP
PC (800 MHz Pentium, 128 Mbytes RAM) and on a Linux machine (1 GHz Pentium, 128 Mbytes RAM),
using GAMS Rev 121 and CPLEX 7.0

Stages Decision points, % (years) Tree nodes Scenarios Solution Times

PC Linux

3 (0; 1; 5; 30) 40 27 1 0.5
4 (0; 1; 5; 10; 30) 121 81 3 1
5 (0; 1; 2; 5; 10; 30) 364 243 7 4
6 (0; 1; 2; 5; 10; 20; 30) 1093 729 22 11
7 (0; 1; 2; 3; 5; 10; 20; 30) 3280 2187 174 57
8 (0; 1; 2; 3; 5; 10; 15; 20; 30) 9841 6561 1881 461
9 (0; 1; 2; 3; 5; 7; 10; 15; 20; 30) 29524 19683 21309 N/A

The Linux machine had insu%cient virtual memory to solve the largest instance.

Table 2
The universe of 23 loan types used

Loan type Maturity Annuity period Coupon

Adjustable-Rate (ARMs) 1, 2, 3, 4, 5 30
Fixed-rate 10 10 4, 6, 8, 10, 12, 14
Fixed-rate 20 20 4, 6, 8, 10, 12, 14
Fixed-rate 30 30 4, 6, 8, 10, 12, 14

Each loan type has a maturity date; by this date, all of the remaining, outstanding principal has to be
payed back (or re"nanced), and a period over which payments are annuitized, both are shown in years. Note
that ARMs are annuitized over a signi"cantly longer period than their maturities, since they are scheduled
to be re"nanced in a revolving fashion.

5.1. Base case model

The experiments presented in this section use a common ‘base case’ setup. We chose
as our base case model parameters, "1; "2; #; $1; $2 the volatilities estimated in Table
3. These parameters result in a relative volatility of the 1-year rate of 18.5%, and of
the 30-year rate of 14.5%, with a correlation of 0.96. The initial yield curve used is
from January 20, 2001, with a 1-year rate of 5.14%, a 30-year rate 5.83% and ‘$at’
in between, though with a slight dip to 4.80% around year 3. Market prices of the
"xed-rate, callable bonds are estimated as explained in Section 3.2.
The model is set up to accommodate a number from 3 to 9 stages, with the values

of % shown in Table 1, and for the base case we select 5 stages; this captures the
compromise between model accuracy and speed of solution.
The universe of ARM- and "xed-rate loan types used is shown in Table 2. We

include a representative mix of ARMs and 20- and 30-year "xed rate bonds with a
range of coupon rates.
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Table 3
Base case loans: nodes where rebalancing occurs during the "rst 4 periods are shown

Note % Short Long Loan held

Root 0 5.1 5.8 Fixed30-06
M–M 2 2.8 4.1 Fixed30-04
U–U–U 5 7.3 8.1 Fixed30-08
U–U–D 5 6.9 8.1 Fixed30-08
U–M–M 5 3.2 4.2 Fixed30-04
U–D–U 5 7.4 8.1 Fixed30-08
U–D–D 5 6.9 8.1 Fixed30-08
M–U–M 5 3.2 4.2 Fixed30-04
M–D–M 5 3.2 4.2 Fixed30-04
D–U–U 5 7.3 8.1 Fixed30-08
D–U–D 5 6.9 8.1 Fixed30-08
D–M–M 5 3.2 4.2 Fixed30-04
D–D–U 5 7.3 8.1 Fixed30-08
D–D–D 5 6.9 8.1 Fixed30-08

The model actively re"nances in both directions, following movements in the long rate.

A proportional transaction cost of 1.5% is used; this rate is quite close to the actual
re"nancing costs for a DKK 1,000,000 loan. A part of this "gure is actually a "xed
cost (bank fees and taxes), and the e#ect of modeling this "xed cost is investigated in
Section 5.7.

5.2. Base case results

The base case results, against which we subsequently perform comparisons along
di#erent dimensions, are given in Table 3. This is a fairly low-volatility scenario. We
show the loans held at each node where a rebalancing occurs during the "rst 3 periods
(years 0, 1, 2 and 5). For instance, it is seen that the initial, optimal portfolio is
the 30-year 6% "xed-rate loan. In year 2, the model shifts (in the ‘middle-middle’
branch) into the 30-year 4%, etc. Note that scenario names are not directly related to
the changes in interest rates (in the base case, the short and long rates tend to increase
slightly in ‘Up’-scenarios, drop in ‘Middle’-scenarios, and drop (short) or increase
(long) slightly in ‘Down’-scenarios).
In the base case, the model does not utilize the adjustable-rate loans. Fixed loans

used range from 4% to 8%; both 20- and 30-year loans are used. Due to the somewhat
limited universe of loan possibilities included, the model has no way to shift into
ARMs after the initial decision. Also, since the objective is linear and therefore models
a risk-neutral investor, the model will never hold mixed loan portfolios: informally, this
is because, in an LP model, the marginal utility of a given loan is constant regardless
of its level in the portfolio, hence, if a loan is present at all in an optimal portfolio,
that loan alone is also optimal. Of course, if there are bounds constraints on loans
proportions, mixed portfolios may still arise.
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The interesting feature of these results is primarily that the model utilizes both the
possibility of converting up and down, and that this behavior follows, primarily, the
movements of the long rate. This clearly indicates that the possibility of converting
down (absent in, for instance, the US market) has value and further studies will allow
an estimation of this value.
During the "rst 3 periods (with 40 nodes), there were 13 rebalancing events (as seen

in Table 3, and 75 during the next period (5–10 years, with 81 nodes). In other words,
the probability that re"nancing will become optimal from years 1 to 5 is 33% (or 6.7%
per year), and from years 6 to 10 it is 93% (or 18.6% per year). These numbers are
very reasonable compared to rough "gures from the Danish National Bank, which
indicate a re"nancing rate of no less than 8% per year (or about than 2% per quarter)
when interest rates are stable, more when they change (in either direction).

5.3. Solution times

Solution times for the 3–9 stage models are shown in Table 1. These times are
measured in seconds on a Windows portable PC and on a Linux machine. The models
are expressed entirely using the General Algebraic Modeling System, GAMS, Brooke
et al. (1992), and the LP solver used was CPLEX 7.0. Standard settings for CPLEX
were used throughout. The 8-stage model contained 718,347 constraints and 1,161,239
variables, but a large part of these variables could be "xed to 0, which (by using
the GAMS ‘hold"xed = 1’ option) reduced the model size to 444,108 constraints and
465,309 variables. Of the times shown, CPLEX accounted for roughly 25%; the rest
was spend by GAMS on model generation and set-up. In fact, the 9-stage model
containing 29,524 nodes, and about 1.3M constraints and 1.3M variables, was also
solved, but was so time-consuming (about 6 h on the PC) as to be impractical to
consider further.
It is worthwhile to note that these stochastic programs of signi"cant size were solved

using standard software on o#-the-shelf hardware. However, it is also clear that by
the present state of hard- and software technologies, it would not be reasonable to at-
tempt to solve much larger instances. There are, however, special-purpose software that
might allow the solution of signi"cantly larger problems, such as IBM’s OSL/SE which
has also been integrated with GAMS. Another approach is to reduce the size of the
stochastic program without signi"cantly reducing its accuracy. This can be done through
techniques such as sampling, bundling, or pruning. See Birge and Louveaux (1997)
or Kall and Wallace (1994) for a general introduction to Stochastic Programming and
its algorithms, and Censor and Zenios (1997) for a coverage of their solution through
decomposition and parallel computing.

5.4. Varying the number of stages

The model was solved in versions having from 3 to 9 stages, using the base case
term structure and volatility parameters. The results show a remarkable stability across
the numbers of stages and hence scenarios. For any number of stages (with the excep-
tion of the 3-stage model), the optimal, initial loan is the "xed-rate, 30-year 6%. This
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is not unexpected: The term structure on the base date is very $at (short rate 5.14%,
long rate 5.83%), which favors the "xed-rate loans. Also, in none of the models were
there re"nancing until stage 3, corresponding to 5 years for 3–5 stages and 2 years for
more stages. Again, this is reasonable given the moderate volatilities of the base case
parameters: Short rate volatility "s =18:5%, long rate volatility "l =14:5%, with corre-
lation *sl =0:96. The 3-stage version had the ARM-5 as the optimal, initial investment;
this seems to be too few stages to accurately model a 30-year period.
A clear conclusion is that in the present economic environment in Denmark, with a

$at yield curve and moderate interest rate uncertainty, the optimal loan is a "xed-rate,
30-year loan, but, as we shall see later, ARMs de"nitely add value under more ‘usual’
conditions.

5.5. The risk-averse investor

A primary objection to the linear objective function is that it models an unlikely,
risk-neutral investor. We solve in this section the 5-stage model using two objectives
that address risk-aversion: An expected utility-maximization, and a worst-case mini-
mization.
In the expected utility model we assume that the investor has a "xed budget, Bt ,

available at each point %t in the future, and wants to maximize expected utility of
surplus at future times. Speci"cally, our objective is to

Maximize zlog =
K
∑

k=0

(k log()(B%k − Tk)): (8)

Of course, this is only one of many possible utility functions.
The results of this model clearly indicate risk-aversion. The initial portfolio is now a

10-year "xed-rate 6% loan instead of a 30-year loan, which is a relatively conservative
loan type (since its duration and hence interest-rate sensitivity is low). In addition, many
portfolios at later stages are diversi"ed, which is also a clear example of ‘spreading
your eggs’.
The non-linear programming solver Minos 5 was used for this experiment. The

GAMS model was set up to solve the linear case "rst, which provides the non-linear
solver with a feasible starting point. As a result, solution times were reasonable, and
models with up to 7 stages could be solved.
As yet another example of implementing risk-averse behavior, we solved the worst-

case, or min–max model which minimizes the maximum present value of lifetime
expenses across scenarios, where a scenario is a path of nodes from the root to a leaf
node. This objective corresponds to extreme risk-aversion, and can be formulated as a
linear program. See also Rustem et al. (2000) on min–max portfolio strategies.
With this objective, the "rst-stage investment is now diversi"ed into a three-way

split containing two di#erent ARMs and a "xed-rate loan! The split is 27.5% ARM-2,
28.3% ARM-5, and 44.2% Fixed30-06. At each of the 3 successor nodes (year 1), the
model rebalances, each time into a new, diversi"ed portfolio.
The results of this section show that a range of risk-aversion measures can be ad-

dressed within the framework of the model, and that the model behaves in a reasonable
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Table 4
E#ects of varying the yield curve steepness over the range of values observed 1998–2001 (Fig. 1), and more
extreme values

rs (%) rl (%) Root 2nd stage Value of ARMs (%)

0 10 ARM-5 U: ARM-5, M: ARM-5, D: ARM-5 8.7
3 6 ARM-1 U: Fixed30-06, M: Fixed30-04, D: Fixed30-06 0.16
3 7 ARM-2 U: Fixed30-06, M: ARM-2, D: Fixed30-06 0.94
3 10 ARM-5 U: ARM-5, M: ARM-5, D: ARM-5 5.3
3 14 ARM-5 U: ARM-5, M: ARM-5, D: ARM-5 11.3
4 6 Fixed30-06 U: Fixed30-06, M: Fixed30-06, D: Fixed30-06 0
4 7 ARM-1 U: Fixed30-06, M: Fixed30-06, D: Fixed30-06 0.81
5.5 6 Fixed30-06 U: Fixed30-06, M: Fixed30-06, D: Fixed30-06 0
7 10 ARM-2 U: ARM-2, M: ARM-2, D: ARM-2 4.1
7 14 ARM-2 U: ARM-2, M: ARM-2, D: ARM-2 9.9

rs; rl are the short and long rates, respectively; intermediate rates were interpolated linearly. ‘Value of
ARMs’ shows the detoriation in objective value when the ARMs were excluded from the universe.

way in this respect. They also indicate that ARMs are of value to the highly risk-averse
investor. In fact, when the ARMs are removed from the loans universe, the objective
(expected present value of life-time expenditures) of the min–max model increases
by 1.3% (the optimal portfolio changing to the Fixed30-06), giving an indication of
the value of these instruments even in the current low-volatility and $at-yield-curve
environment.

5.6. Yield curve steepness and volatilities

It is expected that the steepness of the term structure, i.e., the di#erence in short
and long rates, and the volatility of the term structure, will both have a signi"cant
impact on the optimal investment. To test this hypothesis, we perform the following
experiments.
First, steepness of the term structure was varied (Table 4). We chose values for

the short (1-year) and long (30-year) rates, then interpolate the intermediate values
linearly. The values chosen cover the observed short and long rates during the period
1998–2001 in Fig. 1, but more extreme values are also included. It is very clear that
ARMs are favored whenever short rates are more than 2–3 percentage points below
long rates, which is historically much more common in Denmark than the present, very
$at term structure.
By excluding the ARMs from the loans universe we can estimate their value to the

mortgagor. For short-long interest rate di#erentials below about 3 percentage points,
their value is below 1%, but increases very rapidly as the curve steepens.
We next varied the interest model volatility parameters around their base values of

"1 = 0:0067; "2 = 0:0216; # = 7:49. These three parameters do not directly control
the short and long volatilities or their correlation, but those quantities were calculated
separately, and shown in Table 5 together with the optimal portfolios. It appears that
ARMs are favored when interest rate volatilities are very low (not surprising), or when
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Table 5
E#ects of varying the interest model parameters, one at a time, from their base values of "1 = 0:0067;
"2 = 0:0216; # = 7:49

Experiment "s (%) "l (%) *sl Root portfolio Value of ARMs (%)

Base case 18.5 14.5 0.96 Fixed30-06 0
"1 = "2 = 0 0.0 0.0 1.00 ARM-1 0.18

"1 = 0 5.4 4.3 1.00 ARM-1 0.16
"1 = 0:003 9.6 7.6 0.84 Fixed30-06 0
"1 = 0:01 26.9 20.8 0.98 Fixed30-06 0
"1 = 0:10 218.3 58.8 1.00 Fixed30-04 0

"2 = 0:01 18.0 14.0 0.99 Fixed30-06 0
"2 = 0:05 21.4 17.1 0.83 Fixed30-06 0
"2 = 0:10 29.8 24.1 0.62 Fixed30-06 0

# = 0:10 5.9 9.5 0.97 Fixed20-04 0
# = 1:00 25.4 30.0 0.59 ARM-5 0.36
# = 10:0 18.2 14.2 0.98 Fixed30-06 0

The short and long rate volatilities ("s; "l) and their correlation (*sl) are shown, in addition to the optimal
"rst-stage loan, and the ‘Value of ARMs’.

their correlation is low. The results are not unreasonable but also do not allow for very
clear conclusions.

5.7. Fixed and proportional transaction costs

5.7.1. Fixed costs
We have up till now used only proportional transaction costs of 1.5% on bond issues.

In reality, the trading costs are composed of about 0.5% proportional costs and a "xed
cost of several thousand DKK. To investigate whether modeling "xed costs for a loan
of the magnitude used here (DKK 1M), we implemented a "xed-cost model using
binary variables: Whenever a bond is issued, a binary variable is forced to become
1, which triggers a "xed cost per issue. When varying the "xed cost we also change
the proportional cost so that they together, for a DKK 1M loan, total DKK 15,000, or
1.5%.
The inclusion of "xed costs of DKK 10,000 per issue do not lead to a di#erent

solution to the base case. This is not too surprising, since the "xed cost at this level
almost exactly replaces part of the proportional cost. If the "xed cost is increased to
DKK 50,000 (which is unrealistically high but corresponds to the realistic cost for a
loan of about DKK 200,000), there is no rebalancing until the very last period.
Solving the 5-stage mixed-integer model takes about 11 s on the Linux machine,

compared to about 4 s for the LP case. Solving the larger mixed-integer models takes
considerably longer: An attempt to solve the 6-stage model to optimality was aborted
after 15 min, solving it to an integer gap of 0.5% took 44:2 s.
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The min–max model of Section 5.5 was also solved using "xed transaction costs.
Without "xed costs the initial portfolio was diversi"ed into 3 instruments; with "xed
costs of DKK 4000, diversi"cation decreased to 2 instruments, the initial loan becoming
undiversi"ed at DKK 10,000. These runs were solved to an integrality gap of 0.5%,
but some still took several hours to solve. We could not solve the "xed-cost version
of the utility model since it is a mixed-integer, non-linear model.

5.7.2. Proportional costs
Without "xed costs, the level of proportional transaction costs was increased from

its base case value of 1.5%. At 10% there is no rebalancing until year 10 at stage 5
(the last stage where rebalancing can occur), where it occurs with 49% chance (40
of 81 nodes). At 20%, this probability drops to 20%. If transaction costs are removed
altogether, the model rebalances vigorously: 100% at year 1, 22% at year 2, 52% at
year 10, and 94% at year 20.
In conclusion, the e#ects of varying transaction costs are as expected, with less

rebalancing the higher the transaction cost is. Including "xed costs do not change the
results for the risk-neutral (undiversi"ed) case, and at realistic levels (DKK 1500–
2000) also do not seriously a#ect results for the risk-averse mortgagor, however, they
do a#ect diversi"cation at higher levels (or for smaller loans). Solving the mixed-integer
min–max models is not feasible except for the smaller versions.

6. Conclusions

We have in this paper proposed a two-factor, no-arbitrage interest-rate model that
e#ectively captures the (parallel or non-parallel) shifts of the term structure, and also
suggested a multistage, stochastic optimization model built upon this interest-rate model.
The application of the resulting, comprehensive portfolio management model to the
Danish Mortgage-Backed Security market was demonstrated.
The model has certain advantages over such traditional approaches to pricing and

portfolio management as Monte Carlo-simulation (where it is very hard to model
American-style options features), recombining trees (which have a hard time model-
ing path dependence), and Dynamic Programming (where a Markov property must be
assumed, losing path dependence, or a combinatorial explosion be su#ered). Of these,
our model is closest in nature to dynamic programming with an extended state-space,
but still gives a very appealing trade-o# between realism and size.
The stochastic model was implemented using standard modeling and optimization

software, and was shown to be e%cient in capturing the observed, real-life behavior
of mortgagors. It accurately captures the e#ects of varying the term structure and
transaction costs, and actively utilizes the embedded MBS options. It is also capable
of modeling risk-aversion through the use of a concave utility function, or worst-case
analysis. In addition, the model proved to be solvable on o#-the-shelf hardware in a
reasonable time, even for very large instances. However, combining risk-aversion and
"xed transaction costs leads to models that are currently computationally intractable,
but modeling "xed costs does not seem crucial in realistic cases.
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Future research currently planned based on this model includes operationalizing it
for real-life portfolio management (including using the full, existing security universe),
estimating the value of the various embedded options, and adapting it to be able to
establish optimal strategies for MBS portfolio management, as opposed to step-by-step
recommendations. In addition, it can be adapted to the (usually much larger) mortgage
markets in other countries.
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