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1 Introduction

• Economics is about allocating scarce resources for people with infinite
needs

• Typical economists’solution: price mechanism
...but this works well only under idealized conditions: large markets,
no frictions

• The conditions guarantee that no agent can influence the price and
hence no agent has any market power

• Conditions rarely met => outcome is a result of a bargaining process
where each of the agents has at least some bargaining power

• The bargaining set up: an identifiable group of people choose collec-
tively an outcome and unanimity about the best outcome is lacking

• How should we as outside observers see the situation?

1. How is the outcome determined?

2. Is the outcome normatively good?

3. How do the external factors affect the outcome?

4. Where does the bargaining power come from?

5. How will the number of participants affect the outcome?

6. ...
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• The fundamental problem is a feedback loop: my bargaining strategy
depends on your bargaining strategy which depends on my bargaining
strategy which...

=> the problem is open ended

• Canonical strategic problem - if we can solve this, we can solve "any"
strategic problem

• Two leading approaches, both initiated by John Nash (1951, 1953)

—Cooperative: evaluate the outcome directly in terms of the con-
ditions, "axioms", that a plausible outcome will satisfy

—Non-cooperative: apply non-cooperative game theory to analyze
strategic behavior, and to predict the resulting outcome

• An advantage of the strategic approach is that it is able to model how
specific details of the interaction may affect the final outcome

• A limitation, however, is that the predictions may be highly sensitive
to those details

1.1 The Nash Program

• Nash (1953): use cooperative approach to obtain a solution via norma-
tive or axiomatic reasoning, and justify this solution by demonstrating
that it results in an equilibrium play of a non-cooperative game

• Thus the relevance of a cooperative solution is enhanced if one arrives
at it from very different points of view

• Similar to the microfoundations of macroeconomics, which aim to
bring closer the two branches of economic theory, the Nash program
is an attempt to bridge the gap between the two counterparts of game
theory (axiomatic and strategic)

• Aumann (1997): The purpose of science is to uncover “relationships”
between seemingly unrelated concepts or approaches

• Good sources of further reading on the Nash Program are Serrano
(2004, 2005)

1.2 These lectures

• Overview of modern bargaining literature

• Emphasis in the interrelation between axiomatic and strategic models
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• Centered around the Nash bargaining solution

• Empirical interpretation

• Interpretation of the Nash Program

2 Axiomatic approach

• Let there be a player set {1, ..., n} = N , a joint utility profile from a
utility set U ⊆ Rn+

• The outcome (0, ..., 0) is the disagreement point

• Vector inequalities u ≥ v means ui ≥ vi for all i and u > v means
ui > vi for all i

• U comprehensive (u ≥ v ≥ 0 and u ∈ U implies v ∈ U), compact, and
convex

• Collection U of all utility sets U

• Solution is a function f : U →Rn+ such that f(U) ∈ U

• Denote the (weak) Pareto frontier by P (U) = {u ∈ U : u′ ≥ u implies
u′ /∈ U or u′ = u}

2.1 Nash’s solution

Pareto optimality (PO): f(U) ∈ P (U), for all U ∈ U

• Use the notation aU = {(a1u1, ..., anun) : (u1, ..., un) ∈ U}, for a =
(a1, ..., an) ∈ Rn

• Decision theoretically similar problems should induce similar solution

Scale Invariance (SI): f(aU) = af(U), for all a ∈ Rn++, for all U ∈ U

• In a symmetric situation, now player should be in an advantageous
position and hence the solution should be symmetric

Symmetry (SYM): If Uσ = {(uσ(i))i∈N : u ∈ U} = U , for any permuta-
tion σ : N → N, then fi(U) = fj(U) for all i, j

• Removing outcomes that "do not" affect bargaining should not affect
the outcome of the process

Independence of Irrelevant Alternatives (IIA): f(U ′) ∈ U and U ⊆
U ′ imply f(U ′) = f(U), for all U, V ∈ U .
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• Thus if pair f(U) is ”collectively optimal” in U , and feasible in a
smaller domain, then it should be optimal in the smaller domain, too

• Comparable to WARP in the single decision maker situation.

• IIA particularly appropriate under the interpretation that the bargain-
ing solution is proposed by an arbitrator

Theorem 1 A bargaining solution f satisfies PO, SI, IIA, and SYM on U
if and only if f is the Nash bargaining solution fNash such that

fNash(U) = arg max
u∈U

n∏
i=1

ui

Proof. Necessity: Let f satisfy the axioms. We show that f(U) is the
Nash solution. Identify fNash(U) and find scales a1, ..., an such that ai =
1/fNash(U) for all i. Then fNash(aU) = (1, ..., 1) and aU ⊆ ∆ := {v ∈
Rn++ : v1 + ... + v2 ≤ n}. By PO and SYM, fNash(∆) = (1, ..., 1). By IIA,
fNash(aU) = (1, ..., 1). By SI, f(U) = fNash(U).

• Removing SYM leads to a class of solutions

Theorem 2 A bargaining solution f satisfies PO, SI and IIA on U if and
only if f is an asymmetric Nash bargaining solution fα such that, for
some (α1, ..., αn) ∈ R+,

fα(U) = arg max
u∈U

n∏
i=1

uαii
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• The weights α1, ..., αn could now be interpreted as a reflection of the
players’bargaining power

• The higher αi is, the bigger utility i will receive under the solution

Example 3 Let n = 2 and U = {u ∈ R2
+ : u1 + u2 ≤ 1}. Let α1 = β and

α2 = 1− β, for β ∈ (0, 1). Then fα(U) = arg maxuβ1u
1−β
2 . At the optimum,

u2 = 1− u2. The first order condition

βuβ−1
1 (1− u1)1−β − (1− β)uβ1 (1− u1)−β = 0.

Thus fNash1 (U) = β and fNash2 (U) = 1− β. That is, the payoff of the agent
increases in his bargaining power.

2.2 Other solutions

• The outcome µi(U) is i’s ideal point in U , defined by µi(U) = max{ui :
u ∈ U}

Individual monotonicity (IMON): If U ⊆ U ′ and µi(U) = µi(U
′), then

fi(U
′) ≥ fi(U) for all i

Theorem 4 A bargaining solution f satisfies PO, SI, IMON, and SYM on
U if and only if f is the Kalai-Smorodinsky bargaining solution fKSsuch
that fKS(U) is the maximal point in the intersection of U and the segment
connecting 0 to (µ1(U), ..., µn(U))

Proof. Necessity: Let f satisfy the axioms. We show that f(U) is the
Kalai-Smorodinsky solution. Identify fKS(U) and find scales a1, ..., an such
that ai = 1/µi(U) for all i. Then µi(aU) = 1 for all i. Let T be the con-
vex hull of points {(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1), fKS(aU)}. Then,
since µi(T ) = µi(aU) for all i, fKS(aU) = fKS(T ). By PO and SYM,
f(T ) = fKS(T ). Since T ⊆ aU, by IMON, f(aU) = f(T ). Thus f(aU) =
fKS(aU). By SI, f(U) = fKS(U).

Strong monotonicity (SMON): If U ⊆ U ′, then fi(U ′) ≥ fi(U) for all i

Theorem 5 A bargaining solution f satisfies PO, SMON, and SYM on U
if and only if f is the Egalitarian bargaining solution fEsuch that fE(U)
is the maximal point in U of equal coordinates

Proof. Necessity: Let f satisfy the axioms. We show that f(U) is the
Egalitarian solution. Identify fE(U) = (x, ..., x). Let V be the convex
hull of {(x, 0, ..., 0), (0, x, 0, ..., 0), ..., (0, ..., 0, x), (x, ..., x)}. By PO and SYM,
f(V ) = fE(V ). Since V ⊆ U, by SMON, f(U) ≥ f(V ). Since f(V ) = fE(V )
is in the boundary of U, we have f(U) = fE(V ) = fE(U).
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• However, since the egalitarian solution does not satisfy scale invari-
ance, it is hard to justify on behavioral grounds

• Equivalently, strong monotonicity is too strong a condition

2.3 Population based axiomatization of the Nash solution

• The IIA assumption has received much criticism

—Outside alternatives may have effect on bargaining via their strate-
gic significance

—Under strategic bargaining, the single agent connotation not ap-
propriate

• A stability argument due to Lensberg (1988), and Lensberg and Thom-
son (1991)

• Based on consistency and continuity considerations

• For any K ⊆ N, denote by UK the set of utility sets restricted to the
player set (i.e. U = UN )

• Let f be defined for all UK , i.e. also for subsets the K of N

• This permits drawing connections between problems of different di-
mension => more tools to restrict the solution

• Denote uK = (ui)i∈K

• Continuity requires that for any two problems U,U ′ close to other, the
solution should also be close

• If d is a metric on X, then Hausdorff metric dH of two nonempty
subsets Y and Z of X is defined by dH(Y,Z) = max{d(Y,Z), d(Z, Y )},
where d(y, Z) = infz∈Z d(y, z) and d(Y,Z) = supy∈Y d(y, Z)

Continuity (CONT): If sequence {Uk} ⊆ US converges in Hausdorffmet-
ric to U , then f(Uk) converges to f(U)

• Consistency requires that the players continue bargaining even if some
of the players "leave" the game with their utility shares

• For X ⊂ Rn++, denote the projection at u on the player set S by
puS(X) = {vS : (vS , uN\S) ∈ X}

Bilateral stability (STAB): For any U ⊆ UN , if pv{i,j}(U) = T and
f(U) = v, then f{i,j}(U) = f(T )
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• Thus, the solution, when restricted to a two-player projection of the
game at the solution outcome, must not change the outcome

• Can be extended to the multilateral case

• The following strengthening of the symmetry condition requires that
changing the names of the players will not affect the outcome

Anonymity (ANON): if Uσ = {(uσ(i))i∈N : u ∈ U}, for any permutation
σ : N → N, then f(Uσ) = (fσ(i)(U))i∈N

• In particular, if U is a two-player problem and symmetric, then f1(U) =
f2(U)

Lemma 6 If a solution f satisfies PO, ANON, CONT, STAB, and SI, then
f{i,j}(U) = fNash(T ) where pv{i,j}(U) = T and f{i,j}(U) = v

Proof. (Sketch) Consider U ∈ U2 and normalize it such that fNash(U) =
(0.5, 0.5). By SI this normalization is without loss of generality. Our aim is to
show that f(U) = fNash(U). Assume that U contains a nondegenerate line
segment ` centered around fNash(U). By CONT, this assumption is without
loss of generality. Create player 3 and construct a problem T = {u ∈ R3

+ :
u1 + u2 ≤ 1, u3 ≤ 1}. For any ε ≥ 0, identify the smallest cone Cε that
contains {(0, 0, 1+ε)}∪{(u1, u2, 1) : (u1, u2) ∈ U}. Finally, let T ε = T∩Cε ∈
U3. By PO and ANON, f(T 0) = fNash(T 0) = (0.5, 0.5, 1). Since P (T ε)
around (0.5, 0.5, 1) contains {u : u{1,2} ∈ `, u3 = 1} it follows by CONT that
f{1,2}(T

ε) ∈ ` for small enough ε > 0. Thus, since pf(T ε)
{1,2} (T e) = U for small

enough e, STAB implies that f{1,2}(T ε) is fixed for small enough e. But then
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f{1,2}(T
ε) = (0.5, 0.5) by CONT. By STAB, f(U) = (0.5, 0.5) = fNash(U).

• Thus the solution must be consistent with the Nash solution in any of
its two-player projections

Lemma 7 If a solution f satisfies PO, ANON, CONT, and STAB, then
f{i,j}(U) = fNash(T ) such that pv{i,j}(U) = T and f{i,j}(U) = v for all

i, j ∈ N implies f(U) = fNash(U)

Proof. (Sketch) Suppose that the surface of U is differentiable. Then
U is supported by a unique hyperplane H at f(U). Let H ′ be the hyper-
plane that supports {v : Πivi ≥ Πifi(U)}. We are done if H = H ′. Sup-
pose not. Then there is {i, j} such that pf(U)

{i,j}(H) 6= p
f(U)
{i,j}(H

′). But then

f{i,j}(U) 6= fNash(T ) such that pv{i,j}(U) = T and f{i,j}(U) = v, contradict-
ing the assumption.

• Thus the solution must be consistent with the Nash solution in any of
its two-player projections
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• Combining the lemmata, we obtain the modern axiomatization of the
Nash solution

Theorem 8 A bargaining solution f satisfies PO, ANON, CONT, STAB,
and SI, on U if and only if f is the Nash bargaining solution fNash such
that, for all U ∈ US , for all K ⊆ N,

fNash(U) = arg max
u∈U

Πi∈Kui

3 Strategic approach

• A fundamental problem with the axiomatic approach to bargaining is
that many if not most of the properties of the solution are ultimately
normative

• For example, while effi ciency is an intuitive outcome of negotiation,
what is the procedure that backs up the intuition?

• It is well known that strategic behavior of the players constraints what
can be collectively achieved in bargaining scenarios

• When the players have conflicting interests, it is too optimistic to think
that the players voluntarily commit to the jointly beneficial course of
action

• Instead, they want to enhancing their own view by choosing a negoti-
ation strategy that maximizes their own surplus, even at the expense
of the others

3.1 Rubinstein’s bargaining game

• There is a set 1, ..., n of agents, distributing a pie of size 1

• The present value of i’s consumption xi at time t is

ui(xi)δ
t,

where (for time being) ui is assumed increasing, concave, and contin-
uously differentiable utility function and δ ∈ (0, 1) is a discount factor

• Thus the players’preferences reflect "risk-aversion"

• Possible allocations of the good constitute an n− 1 -simplex S = {x ∈
Rn+ : Σixi ≤ 1}

• There is a ∆ > 0 delay between bargaining stages

• Unanimity bargaining game Γ: At any stage t = 0,∆, 2∆, ...,
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— i(0) = i

—Player i(t) ∈ N makes an offer x ∈ S, where xj is the share of
player j and all other players accept or reject the offer in the
ascending order of their index

∗ If all j 6= i(t) accept, then x is implemented
∗ If j is the first who rejects, then j becomes i(t+ 1)

• Focus on the stationary subgame perfect equilibria where:

1. Each i ∈ N makes the same proposal x(i) whenever it is his turn to
make a proposal.

2. Each i’s acceptance decision in period t depends only on xi that is
offered to him in that period.

• Define a function vi such that

ui(vi(xi, t)) = ui(xi)δ
t, for all xi for all t

• Since u is continuous, vi is continuous

• By the concavity of ui, u′i(xi)/ui(xi) is decreasing, strictly positive
under all xi > 0, and hence, for all t,

∂

∂xi
vi(xi, t) ∈ (0, 1)

• Equilibrium is a consistency condition - distinct players’ proposals
must be compatible with one another in a way that all proposals are
accepted, given the consequence of the deviation

• No final period from which to start the recursion - equilibrium has to
lean on a fixed point argument

Lemma 9 (Krishna and Serrano 1996): Given ∆ > 0, there is a unique
d(∆) > 0 and x(∆) ∈ Rn++ such that

vi(xi(∆) + d(∆),∆) = xi(∆), for all i,
n∑
i=1

xi(∆) + d(∆) = 1.

Proof. Denote v−1
i (xi,∆) = yi if vi(yi,∆) = xi. Let

ci(xi) := v−1
i (xi,∆)− xi, for all xi
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ci(·) is strictly positive for xi > 0 and there is c∗i ∈ R++ ∪ {∞} such that

sup
xi≥0

ci(xi) = c∗i

Since ∂v−1
i (xi,∆)/∂xi = 1/(∂vi(xi,∆)/∂xi) > 1, the function xi 7→ v−1

i (xi,∆)−
xi = ci(xi) is continuous and monotonically increasing. Hence also its in-
verse

xi(a) := c−1
i (y) = vi(xi(a) + a,∆), for all a ∈ [0, c∗i ),

is continuous and monotonically increasing. Since 0 = xi(0) and∞ = xi(c
∗
i ),

there is, by the Intermediate Value Theorem, a unique d > 0 such that

n∑
i=1

xi(d) + d = 1.

For this d also
vi(xi(d) + d,∆) = xi(d), for all i.

• Our focus is on stationary SPE in which time does not matter: player
i makes the same offer whenever it his turn to make one, and he
accepts/rejects the same offer irrespective who makes the offer and
when

• Player i’s equilibrium offer x(i) ∈ S maximizes his payoff with respect
to this and the resource constraint

• Player i’s offer (x1(i), ..., xn(i)) is accepted in a stationary SPE by j if

xj(i) ≥ vj(xj(j),∆), for all j 6= i

Theorem 10 Γ has a unique stationary SPE. In this stationary SPE, at
any period t, (i) the offer made at t is accepted, (ii) the player i who makes
the offer at t receives xi(∆) + d(∆) and a responder j receives xj(∆), as
specified in the previous lemma.

Proof. In a stationary SPE all proposals are accepted, otherwise the propos-
ing player would speed up the process by making an offer that gives all the
other players at least the discounted payoff they get from the offer that is
eventually accepted, and little more to himself. At the optimum, all con-
straints bind:

xj(i) = vj(xj(j),∆), for all j 6= i,

and
n∑
i=1

xi(j) = 1, for all j.
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Since i’s acceptance not dependent on the name of the proposer, there is xi
such that xi = xi(j) for all j 6= i. Define d such that

d = 1−
n∑
i=1

xi.

Since
xi(i) = 1−

∑
j 6=i

xj = xi + d,

it follows that

xi = vi(xi + d,∆), for all i,
n∑
j=1

xj = 1− d.

By the previous lemma, there is a unique x and d that meet these conditions.

3.2 Removing the stationarity restriction

• Stationarity needed for the result when n ≥ 3

• With history dependent strategies, any allocation x can be supported
in SPE

• Construct an SPE in the j punishment mode where i proposes 0 to j
and 1/(n− 1) to all other players

—All players accept i’s offer

— If i proposes something else, all players reject

• If k is first to deviate, then ` who makes the offer next period takes
the role of i and k takes the role of j in the next period and the play
moves to k punishment mode

• No single player benefits from a one-time deviation

• Any outcome can now be supported in SPE by threatening to move
the j -punishment mode if j is the first to deviate

• Stationary strategies simple, and can be motivated by complexity con-
siderations (Chatterjee-Sabourian 2000)

• However, in many set ups, natural strategies are history dependent
and stationarity is automatically violated

—Punishment
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—Cooperation

• Non-stationary strategies can, in general, be welfare improving

• Krishna-Serrano (1996)

—Allow accepting players leave the game with their endowment

— Solution must be multilaterally stable (Lensberg 1983): the equi-
librium outcome for 1, ..., k remains unchanged when k + 1, ..., n
leave with their equilibrium shares

— -> Since stationary not needed for 2-player problems, by stability,
it is not needed for 3-player problems, etc.

—Rubinstein (1982): in the two-player case, stationarity not needed
when only two players

—Recall the definitions of x(∆) and d(∆) from the previous theorem

Theorem 11 Let n = 2. Then Γ has a unique SPE. In this SPE, (i) all
offers are accepted, (ii) player i who makes the offer receives xi(∆) + d(∆)
and a responder j receives xj(∆).

Proof. (sketch) The maximum share of the pie that 2 can achieve when
making the offer is π0

2 = 1.
The minimum share of the pie that 1 can guarantee himself when making

the offer is φ0
1 = 1− v2(1).

The maximum share of the pie that 2 can achieve when making the offer
is π1

2 = 1− v1(1− v2(1)).
The minimum share of the pie that 1 can guarantee himself when making

the offer is φ1
1 = 1− v2(1− v1(1− v2(1)))

The maximum share of the pie that 2 can achieve when making the offer
is π2

2 = 1− v1(1− v2(1− v1(1− v2(1)))).
...
Then φk+1

1 = 1 − v2(1 − v1(φk1)) and πk+1
2 = 1 − v1(1 − v2(πk2)) and

similarly φk+1
2 = 1 − v1(1 − v2(φk2)) and πk+1

1 = 1 − v2(1 − v1(πk1)), for all
k = 0, 1, ...

By construction, πk1 ≥ πk+1
1 and φk+1

2 ≥ φk2, and φ
k
1 ≥ φk+1

1 and πk+1
2 ≥

πk2 for all k. In a steady state, there are φi and πi such that φi = 1 −
vj(1 − vi(φi)) and πi = 1 − vj(1 − vi(πi)). By Lemma, there is a unique
x∆ and d∆ such that x∆

i = vi(x
∆
i + d∆) and x∆

1 + x∆
2 + d∆ = 1. Thus

1−x∆
i = 1−vi(1−vj(1−x∆

i )). This implies that πi = φi = 1−x∆
i . Since πi

is the maximum share of the pie that i can achieve and φi is the maximum
share of the pie that i can guarantee himself, for i = 1, 2, x∆ is the unique
SPE of the game.
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3.3 Relationship to the Nash solution

• Recall in the stationary SPE, i’s offers xi(∆) + d(∆) to himself and
xj(∆) to j 6= i under lag ∆ > 0 between two periods

• Since
vi(xi(∆) + d(∆),∆) = xi(∆)

for all ∆, and since lim∆→0 vi(xi,∆) = xi for all xi ∈ [0, 1] it follows
that d(∆)→ 0 as ∆→ 0

• Recall that ui(xi)δ∆ = ui(vi(xi,∆))

• For any {i, j} ⊆ N,

ui(xi(∆) + d(∆))uj(xj(∆)) = δ−∆ui(xi(∆))uj(xj(∆))

= ui(xi(∆))uj(xj(∆) + d(∆))

• Thus, in the problem where players i and j share the pie of size
Xij(∆) = xi(∆) + xi(∆) + d(∆), their stationary SPE proposals lie
in the same hyperbola (of dimension 2)

• Since d(∆) converges to 0 and Xij(∆) converges to some bounded
number X̄ij as ∆ tends to 0, the stationary SPE proposals converge
to the Nash bargaining solution of the two-player problem of sharing
pie of size X̄ij (Binmore-Rubinstein-Wolinsky 1986)

• Recall that if an outcome constitutes a Nash bargaining solution in
all its two player projections, then it constitutes the Nash solution
(Thomson and Lensberg, 1991)

• Denote by U(X) = {u(x) : x ∈ X} the utility set spanned by outcomes
in X

• We have proved:

Theorem 12 The payoff profile resulting from the stationary SPE of Γ con-
verges to the Nash bargaining solution fNash(U(X)) as ∆→ 0
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3.4 Patience means bargaining power

• Let now the players’ discount factors be tailored to each agent, to
reflect their relative (im)patience: if δi > δj , then i is more patient
than j

• For example, if δi = e−r, then i discounts future by the rate ri

• The players have potentially different discount factors δ1, ..., δn

• Note that nothing in the previous analysis concerning the existence
and uniqueness of the stationary SPE is changed as different discount
factors

• However, the convergence result requires a modification

• Let αi = −1/ log δi

• Then, for any i,
δ−αii = e
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• Hence, for any {i, j} ⊆ N,

ui(xi(∆) + d(∆))αiuj(xj(∆))αj = δ−∆αi
i ui(xi(∆))αiuj(xj(∆))αj

= δ
−∆αj
j ui(xi(∆))αiuj(xj(∆))αj

= ui(xi(∆))αiuj(xj(∆) + d(∆))αj

• Since d(∆)→ 0 as ∆→ 0, it follows that in the limit, the outcome is
the Nash bargaining solution all the two player projections

Theorem 13 The payoff profile resulting from the stationary SPE of Γ
converges to the Nash bargaining solution fα(U(X)) as ∆ → 0, where
αi = −1/ log δi for all i

Increasing δi increases the weight of player i and, gives him more bar-
gaining power

Example 14 Let n = 2, and linear utilities u1(x1) = x1, u2(x2) = x2. The
discount factors of the two players are δ1 = e−r1 and δ2 = e−r2 for some
"discount rates" r1 and r2. In the unique SPE, i offers xi(∆) + d(∆) and
xj(∆) to j 6= i such that

(x1(∆) + d(∆))δ∆
1 = x1(∆) and (x2(∆) + d(∆))δ∆

2 = x2(∆).

Since also x1(∆) + x2(∆) + d(∆) = 1, we can solve for x1(∆) and x2(∆):

x1(∆) =
δ∆

1 − δ∆
1 δ

∆
2

1− δ∆
1 δ

∆
2

and x2(∆) =
δ∆

2 − δ∆
1 δ

∆
2

1− δ∆
1 δ

∆
2

Finally,

x1(∆) → log δ2

log δ1 + log δ2
=

r2

r1 + r2

x2(∆) → log δ1

log δ1 + log δ2
=

r1

r1 + r2

Thus, increasing i’s personal discount rate ri decreases his payoff but in-
creasing the opponent’s j discount rate rj increases i’s payoff.

3.5 General utility set

• Let bargaining take place in a compact, convex, comprehensive utility
set U ⊆ Rn++

• Discount factors δ1, ..., δn
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Theorem 15 Γ has a stationary SPE. Any SPE is characterized by the
following properties: (i) all offers are accepted, (ii) player i who makes the
offer receives payoff uii and a responder j 6= i receives uij such that u

j
i = δ∆

i u
i
i,

for all i

• Kultti-Vartiainen (2010): all stationary SPE converge to the (asym-
metric) Nash solution where αi = −1/ log δi if the surface of the Pareto
frontier is differentiable

Theorem 16 Let the Pareto frontier of U be differentiable. For any ε > 0
there is ∆ε > 0 such that for all ∆ < ∆ε, any stationary SPE of Γ is in the
ε−neighborhood of

fα(U) = arg max
u∈U

∏
i
uαii

where αi = −1/ log δi for all i.

Proof. (sketch) Let u1, ..., un be the equilibrium offers. By the equilibrium
characterization, for any j∏

i
(uji )

αi =
∏
i 6=j

δ∆αi
i

∏
i

(uii)
αi

= e−∆(n−1)∏
i

(uii)
αi .

Thus all equilibrium offers lie in the same α−weighted hyperbola. Since
the distance of ui and uj shrinks when ∆ tends to 0, and they are linearly
independent in the limit, all ui must converge to the point in which a U is
separable by a hyperplane from the hyperbola.

• Herings and Predtetchinski (2010) generalize this to the general class
of problems where the proposing player is chosen by using a Markovian
recognition policy

• Smoothness of the Pareto frontier is critical:

Example 17 Let U = {u ∈ R3
+ : u1 + max{u2, u3} ≤ 1}. Stationary SPE

offers u1, u2, u3 ∈ U satisfy

δ∆u1
1 = u3

1 = u2
1,

δ∆u2
2 = u1

2 = u3
2,

δ∆u3
3 = u2

3 = u1
3.

Since players do not waste their own consumption possibilities when making
offers

u1
1 + u1

2 = u1
1 + u1

3 = 1

u2
1 + u2

2 = 1

u3
1 + u3

3 = 1

17



Solving the equilibrium offers for players 1, 2 and 3,

u1 =

(
1

1 + δ∆
,

δ∆

1 + δ∆
,

δ∆

1 + δ∆

)
,

u2 =

(
δ∆

1 + δ∆
,

1

1 + δ∆
,

δ∆

1 + δ∆

)
,

u3 =

(
δ∆

1 + δ∆
,

δ∆

1 + δ∆
,

1

1 + δ∆

)
.

As ∆ tends to 0, equilibrium offers converge to

u∗ =

(
1

2
,
1

2
,
1

2

)
.

However, the Nash solution is

fNash(U) =

(
1

3
,
2

3
,
2

3

)
.

3.6 Preference foundations

• The fundamental axiom of economics: only preferences can be ob-
served - utility functions only represent preferences

• Hence to relate bargaining outcomes in any meaningful way to the em-
pirical data, the solution has to be defined in terms of the preferences
rather than in terms of utilities that represent them
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• But what kind of preferences do the intertemporal utilities represent?
Does the Nash solution have an interpretation in terms of them?

• A crucial assumption in our previous analysis was that the utility
function is concave

• This guarantees that the derivative of the vi function is between 0 and
1 which is needed for the fixed point result

• Let n = 2

• Let pie be divided at any point of time T = R+ and denote by X =
{(x1, x2) ∈ R+ : x1 + x2 ≤ 1} the possible allocations of the pie

• Let (complete, transitive) preferences over X ×T satisfy, for all x, y ∈
S, for all i ∈ N, and for all s, t ∈ T, satisfy (Fishburn and Rubinstein,
1982):

A1. (x, t) �i (0, 0)

A2. (x, t) �i (y, t) if and only if xi ≥ yi

A3. If s > t, then (x, t) �i (x, s), with strict preference if xi > 0

A4. If (xk, tk) �i (yk, sk) for all k = 1, ..., with limits (xk, tk)→ (x, t) and
(yk, sk)→ (y, s), then (x, t) �i (y, s)

A5. (x, t) �i (y, t+ ∆) if and only if (x, 0) �i (y,∆), for any t ∈ T, for any
∆ ≥ 0

• Under A1-A5, there is a function vi such that (y, 0) ∼i (x, t) if vi(xi, t) =
yi, for all x, y

• For such function, vi(xi, t) = yi and vi(xi, s) = zi imply yi > zi when-
ever s < t

• Fishburn and Rubinstein (1984) show that time preferences can be
represented by a discounting model

Lemma 18 If time preferences satisfy A1-A5, then, for any δ ∈ (0, 1) there
is a utility function ui such that (y, 0) ∼i (x, t) if and only if ui(yi) = ui(xi)δ

t

• However, A1-A5 imply only little restrictions on the shape of ui

• In particular, ui need not be concave, as was critically assumed in the
previous models

• The problem: concavity of ui does not have natural meaning in terms
time-preferences - it cannot be imposed as an axiom
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• Hence the convergence results need not hold - in fact the Nash bar-
gaining solution may no longer be well defined (as the induced utility
set need not be convex)

• Our aim: to derive a Nash-like solution by using the time-preferences
alone, and show the convergence

• Fix δ and let u1 and u2 be the representations of the time preferences
of 1 and 2

• Then the Nash bargaining solution, if it exists, is defined by x∗ =
(x∗1, x

∗
2) such that u1(x∗1)u2(x∗2) ≥ u1(x1)u2(x2) for all x ∈ X

• Alternative interpretation of the Nash solution (cf. Rubinstein-Safra-
Thomson 1992):

Theorem 19 Outcome x∗ is the Nash bargaining solution if and only vi(xi, t) >
x∗i implies vj(x

∗
j , t) ≥ xj for any x and for any t > 0

• This interpretation reflects justified envy : a demand to get more by
threatening to delay consumption is not justified if the other player is
willing to delay consumption equally if he does not have to give more

• Implication: the Nash bargaining solution that is derived from time-
preferences is not dependent on the chosen discount factor δ - all
representations imply the same Nash bargaining outcome

• Recall that ui(xi)δt ≥ u(yi) if and only if vi(xi, t) ≥ yi

Proof. If: If there is x such that u1(x1)u2(x2) > u1(x∗1)u2(x∗2), then there
is t such that, for some i,

uj(xj)

uj(x∗j )
> δt >

ui(x
∗
i )

ui(xi)
.

For such t, δtui(xi) > ui(x
∗
i ) and δ

tuj(x
∗
j ) < uj(xj).

Only if: Let x∗ maximize the Nash product. For any t > 0, if δtui(xi) >
ui(x

∗
i ), then, since ui(x

∗
i )uj(x

∗
j ) ≥ ui(xi)uj(xj), also δtuj(x∗j ) > uj(xj).

• Questions:

1. Under which conditions is the Nash bargaining solution well de-
fined (unique)?

2. Under which conditions does the noncooperative bargaining game
yield, in the limit, the Nash bargaining outcome?

• Recall that ∂vi(xi, t)/∂xi ∈ (0, 1) was the critical condition for the
utility based model, and implied by the concavity of u

20



• Our approach: assume this

A6. xi − vi(xi, t) is strictly increasing in xi for all t

• Let x∗ be the convergence point such that x(∆)→ x∗ as ∆→ 0

• Recall that vi(xii, t) = xi(∆) implies vj(x
j
j , t) = xj(∆) if and only if

xii = xi(∆) + d(∆) and xjj = xj(∆) + d(∆)

• Let for any λ ∈ [0, 1], xλ = λxi + (1− λ)xj

Lemma 20 For any y and for any t > 0 it holds true that vi(yi, t) > xλi
implies vj(xλj , t) ≥ yj

Proof. vi(yi, t) > xλi implies, since vi is increasing, that yi > xii. Thus
xjj = 1− vi(xii, t) > 1− vi(yi,∆). By A6,

yi − vi(yi, t) > xii − vi(xii, t)
= xjj − vj(x

j
j , t)

> 1− vi(yi, t)− vj(1− vi(yi, t), t).

Hence,
vj(1− vi(yi, t), t) > 1− yi.

Since vi(yi, t) > xλi , we have, by x
λ
i + xλj = yi + yj = 1 and since vj is

increasing,

vj(x
λ
j , t) > vj(1− vi(yi, t), t)

> yj ,

as desired.

Lemma 21 For any t, if vi(yi, t) > xi implies vj(xj , t) ≥ yj for all y, then
there is λ ∈ [0, 1] such that x = λxi + (1− λ)xj .

Proof. It suffi ces to show xi ≤ xii for all i. Suppose, on the contrary, that
xi > xii for some i. Since vi is increasing, x

j
j = 1 − vi(xii, t) > 1 − vi(xi, t).

Thus, by A6,

xi − vi(xi, t) > xii − vi(xii, t)
= xjj − vj(x

j
j , t)

= 1− vi(xii, t)− vj(1− vi(xii, t), t)
> 1− vi(xi, t)− vj(1− vi(xi, t), t).

Hence,
vj(1− vi(xi, t), t) > 1− xi. (1)
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Since vi and vj are continuously increasing, we can choose y such that yi >
vi(xi, t) and such that

vj(1− vi(xi, t), t) > vj(1− yi, t) (2)

> 1− xi.

Thus vj(yj , t) > xj , violating the statement of the lemma.

• Thus, under A1-A6, the Nash solution does exist and is equivalent with
there being a maximizer of the product u1(x1)u2(x2), where (u1, u2)
is the representation of the time-preferences

• Since functions u1 and u2 are continuous, and P is compact, it follows
immediately that a Nash product maximizer exists

Theorem 22 Under A1-A6, the Nash bargaining solution exists, is unique,
and coincides with the limit of the SPE outcome of the bargaining game Γ
as ∆→ 0

• Convergence without additional assumptions concerning the utility
representation - nothing is assumed about the players’risk preferences

3.7 Implementing the other solutions

• But the convergence result approximate: only holds when δ → 1 (or
the time span between offers vanishes)

• Exact implementation of the Nash solution: Howard (1992)

• Implementing the other solutions

—Kalai-Smorodinsky: Moulin (1984)

— Shapley: Gul (1989), Perez-Castrillo-Wettstein (2001)

—The Core: Serrano-Vohra (1997), Lagunoff (1994)

—Bargaining set: Einy-Wettstein (1999)

—Nucleoulus: Serrano (1993)

— etc...

• Do strategic considerations put any restrictions on what can be imple-
mented?
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4 Implementation foundations

• The most natural notion of strategic interaction: the Nash equilib-
rium

• Which solutions can be implemented in Nash equilibrium?

• Implementation theory: studies general conditions under which an
outcome functions - e.g. a bargaining solution - can be implemented
non-cooperatively

4.1 Nash implementation - impossibility

• Let n = 2

• There is a pie of size 1, to be shared among the two players with
x ∈ [0, 1] denoting a typical share of player 1, and 1 − x the share of
player 2

• U comprises all continuous and strictly increasing vNM utility func-
tions ui : [0, 1]→ R normalized such that ui(0) = 0 for all ui ∈ U

• Denote the set of lotteries on [0, 1] by ∆

• Expected payoff from a lottery p ∈ ∆

u1(p) =

∫
[0,1]

p(x)u1(x)dx

u2(p) =

∫
[0,1]

p(x)u2(1− x)dx

• Bargaining solution (BS) f : U2 → [0, 1] specifies an outcome for each
pair of utility functions where f(u) is the share of player 1 and 1−f(u)
the share of 2 under profile u = (u1, u2)

• A game form Γ = (M1 ×M2, g) consists of strategy sets M1 and
M2, and an outcome function g : M1 ×M2 → ∆

• Given u = (u1, u2), the pair (Γ, u) constitutes a normal form game
with the set of Nash equilibria NE(Γ, u)

• Mechanism Γ Nash implements bargaining solution f if, for all u ∈
U2,

g(NE(Γ, u)) = f(u)

• Denote the lower contour set of i at q ∈ ∆ under u ∈ U2 by

Li(q, u) = {p ∈ ∆ : ui(q) ≥ ui(p)}
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• BS f is Maskin monotonic if for all pairs u, u′, if x ∈ f(u′) and
Li(x, u

′) ⊆ Li(x, u), for i = 1, 2, then x ∈ f(u)

• Maskin (1977): f Nash implementable only if it is Maskin monotonic

• Which bargaining solutions are Maskin monotonic?

• Maskin monotonicity implies that there has to be a preference reversal
from u to u′ if x ∈ f(u)\f(u′)

• BS f is scale invariant if f(u) = f(αu), for all α ∈ R2
++, for all

u ∈ U2

Lemma 23 Any Maskin monotonic BS f is scale invariant

• Thus BS f Nash implementable only if it scale invariant

• BS f is symmetric if u1(f(u1, u2)) = u2(1−f(u1, u2)) whenever (w1, w2) =
u(x) for some x implies that there is x′ such that (w2, w1) = u(x′)

• Note that, as we require that no pie is wasted, our BS f is automati-
cally Pareto optimal: f1(u) + f2(u) = 1 for all u ∈ U2

• Nash bargaining solution

fNash(u) = arg max
[0,1]

u1(x)u1(1− x)

Lemma 24 Let f be a (Pareto optimal and) symmetric BS. If f can be
Nash implemented, then fNash(u) = f(u) for all u ∈ U2.

• Proof: Given that f must be scale invariant, replace IIA with Maskin
monotonicity in the proof of Nash’s theorem (see Vartiainen 2007 for
details)

• Can the Nash bargaining solution be Nash implemented?

Example 25 Let u1(x) = x and u2(1 − x) = 1 − x. Then fNash(u) =
1/2. Perform a Maskin monotonic transformation of 1’s utility by choosing
uε1(x) = x for x ∈ [0, 1/3], and uε1(x) = 1/3 + ε(x − 1/3) for x ∈ (1/3, 1].
For small enough ε > 0, fNash(uε1, u2) = 1/3

Lemma 26 The Nash bargaining solution fNash cannot be Nash imple-
mented

Theorem 27 No Pareto optimal and symmetric BS f can be Nash imple-
mented
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4.2 Virtual implementation - possibility

• Thus basically nothing relevant can be implemented by using the most
appealing solution concept

• How far must one go in extending the mechanism, to implement some-
thing relevant?

• Our aim: to construct a mechanism (cf. Moore-Repullo 1988; Dutta-
Sen1988) ) that "almost" Nash implements any BS

• Let Γ∗ = (M∗, g∗) satisfy M∗1 = M∗2 = U2 × ∆ × N with typical
elements (u1, q1, k1) and (u2, q2, k2), respectively, and

1. g∗(m1,m2) = f(u) if u1 = u2 = u

2. g∗(m1,m2) = qi if qi ∈ Li(f(uj), uj), u1 6= u2, and ki > kj

3. g∗(m1,m2) = 1 if k1 > k2 > 0 and g∗(m1,m2) = 0 if k2 > k1 > 0

4. g∗(m1,m2) = (0, 0), in all other cases

• We claim that Γ∗ Nash implements any Maskin monotonic BS

• Let u = (u1, u2) be the true utility profile

— It cannot be the case that (1) holds under u1 = u2 = u′ 6= u and
k1 = k2 = 0 since, by (2), there would be qi ∈ Li(f(u′), u′)\Li(f(u), u)
such that ki > 0 that would constitute a profitable deviation for
i

— It cannot be the case that (2) holds since, by (3), kj > ki > 0
would constitute a profitable deviation for j

— It cannot be the case that (3) holds since one of the players would
have a profitable deviation

— It cannot be the case that (4) holds since, as a strictly individually
rational BS chooses f(u) ∈ (0, 1) and, hence, by (1) i would have
a profitable deviation ui = uj

• Thus the only possible Nash equilibrium is u1 = u2 = u which imple-
ments f(u)

Lemma 28 Any strictly individually rational BS f can be Nash imple-
mented if it is Maskin monotonic

• Take any strictly individually rational f and let f ε satisfy

f ε(u) = implement f(u) with probability 1− ε
and the uniform lottery over [0, 1] with prob. ε
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• The expected payoff to i

u1(f ε(u)) = (1− ε)u1(f(u)) + ε

∫
[0,1]

u1(x)dx

u2(f ε(u)) = (1− ε)u2(f(u)) + ε

∫
[0,1]

u2(1− x)dx

• We argue that f ε is Maskin monotonic for any ε > 0

• Since any implementable BS is scale invariant, we may normalize the
situation such that ui(0) = 0 and ui(1) = 1

• Take u1 6= u′1 and find an open interval (a, b) ⊆ [0, 1] such that u1(x) >
u′1(x) for all x ∈ (a, b), or u1(x) < u′1(x) for all x ∈ (a, b)

• Assume, for simplicity, that a = 0 and b = 1 (otherwise, modify f ε

only under (a, b) and not under (0, 1))

• We shall show that L1(f ε(u), u)\L1(f ε(u), u′1, u2) is not empty, imply-
ing that f ε automatically satisfies Maskin monotonicity

• There are two cases to consider

Case u1 > u′1 : Find ξ ∈ (0, 1) such that∫
[0,1]

u1(x)dx = u1(ξ)

• Construct a lottery

qξ = implement f(u) with prob. 1− ε and ξ with prob. ε

• By construction qξ ∈ L1(f ε(u), u) and qξ 6∈ L1(f ε(u), u′1, u2)

Case u1 < u′1 : Find π ∈ (0, 1) such that∫
[0,1]

u1(x)dx = π

• Construct a lottery

qπ = implement f(u) with prob. 1− ε and 1 with prob. πε}

• By construction qπ ∈ L1(f ε(u), u) and qπ 6∈ L1(f ε(u), u′1, u2)

• Thus in either case, f ε satisfies Maskin monotonicity
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• Since ε > 0 is arbitrarily small, any strictly individually rational BS
can be virtually implemented - with arbitrary precision

• Problems:

—Optimally small deviation from exact implementation?

—Mechanism uses an integer construction, and is hence "unreason-
able"

4.3 Exact implementation with a reasonable mechanism

• Miyagawa (2002): simple mechanism that implements a large class of
solutions

• Define a solution fW by

fW (u) = arg max
x∈X

W (u1(x), u2(x))

where W : [0, 1]2 → R is continuous, monotonic and quasi-concave

• The set of functions W satisfying these conditions is denoted by W

• The function W may be interpreted as the objective function of the
arbitrator

• E.g. Nash, Kalai-Smorodinsky

• Mechanism ΓW

1. In stage 1, agent 1 announces a vector p ∈ [0, 1]2 such that p1 +p2 ≥ 1

2. Having observed p, agent 2 makes a counter-proposal p′ ∈ [0, 1]2 such
that W (p1, p2) = W (p′1, p

′
2)

3. The agent who moves in the next stage, i, is then determined based
on whether 2 agrees (p = p′) or disagrees (p 6= p′)

• If 2 agrees, then he moves next (i = 2)

• Otherwise, 1 moves next (i = 1)

4. Agent i then chooses either "quit" or "stay," and then announces a
lottery ai

• If he chooses to "quit," then the game ends with p′ai as the
outcome

• If agent i chooses to "stay," then agent j 6= i either "accepts" ai,
in which case the outcome is ai, or he selects another lottery a′j
in which case the outcome is p′ja

′
j
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Theorem 29 For each W ∈ W, game form ΓW implements solution fW

in subgame-perfect equilibrium.

• Thus any reasonable solution can be implemented

• The true test is not whether a solution is consistent with rational
play, but whether its implementation can be justified with a intuitively
appealing (= simple, used in the real world,...) mechanism

• But then the question of finding a good solution is changed to one
finding a good mechanism - do the problems really differ

5 Concluding points

• Bargaining is a fundamental form of economic activity, and hence it is
central to economic theory to understand how it works

• The problem with bargaining is that players’behavior is fundamentally
interrelated, there is a feedback loop from one’s actions to one’s own
behavior which makes the problem open ended and "hard"

• The solution has to come inside the model, and be based on consistency
properties of the problem or a fixed point argument

• The former approach called as axiomatic and the latter strategic

• The Nash bargaining solution at the epicenter of both modelling tra-
ditions

• The Nash program seeks to motivate an axiomatic solution on strategic
grounds

• The problem: without any restrictions of the form the game can be,
any solution can implemented in a strategic equilibrium

• Thus the strategic dimension as such does not restrict feasible solutions
at all

• Thus to obtain any bite to the strategic approach, one has to assume
that some game forms are not appropriate - or are unnatural

• But what game forms are unnatural?

Conclusion: a researcher cannot externalize the responsibility of good
modelling to an outside principle

28



References

[1] Aumann, R. J. (1997), On the State of the Art in Game Theory, an
interview, in Understanding Strategic Interaction, Essays in Honor of
Reinhard Selten, W. Albers et al. (ed.), Springer, Berlin, 8-34

[2] Binmore K., Rubinstein A, and A.Wolinsky (1986), The Nash Bargain-
ing Solution in Economic Modeling, The Rand Journal of Economics
17, 176-188

[3] Chatterjee, K. and H. Sabourian (2000), Multiperson Bargaining and
Strategic Complexity, Econometrica 68, 1491-1510

[4] Fishburn P. and A. Rubinstein (1982), Time Preference, International
Economic Review 23, 677-694.

[5] Gul, F. (1989), Bargaining Foundations of the Shapley Value, Econo-
metrica 57, 81-95.

[6] Herings J-J and A. Predtetchinski (2010) On the Asymptotic Unique-
ness of Bargaining Equilibria, Maastricht University RM/10/010

[7] Kalai, E. and M. Smorodinsky (1975), Other Solutions to Nash’s Bar-
gaining Problem, Econometrica 43, 513-518

[8] Krishna, V. and R. Serrano (1996), Multilateral Bargaining, Review of
Economic Studies 63, 61-80

[9] Kultti, K. and H. Vartiainen (2007), Von Neumann-Morgenstern stable
sets, discounting, and Nash bargaining, Journal of Economic Theory
137, 721-728

[10] Kultti, K. and H. Vartiainen (2010), Multilateral non-cooperative bar-
gaining in a general utility space, International Journal of Game Theory
39, 677-689

[11] Lagunoff, R. (1994), A Simple Non-Cooperative Core Story, Games and
Economic Behavior 7, 54-61

[12] Lensberg, T. (1988), Stability and the Nash Solution, Journal of Eco-
nomic Theory 45, 330-341

[13] Maskin, E. (1999), Nash equilibrium and welfare optimality, Review of
Economic Studies 66:23-38.

[14] Nash, J. F. (1950), The Bargaining Problem, Econometrica 18, 155-162

[15] Nash, J. F. (1953), Two Person Cooperative Games, Econometrica 21,
128-140

29



[16] Moulin, H. (1984), Implementing the KalaiSmorodinsky Bargaining So-
lution, Journal of Economic Theory 33, 32-45.

[17] Pérez-Castrillo, D. and D. Wettstein (2001), Bidding for the Surplus: a
Non-Cooperative Approach to the Shapley Value, Journal of Economic
Theory 100, 274-294

[18] Rubinstein, A. (1982), Perfect Equilibrium in a Bargaining Model,
Econometrica 50, 97-109

[19] Rubinstein, A. , Safra Z. and W.Thomson (1992), On the Interpretation
of the Nash Bargaining Solution, Econometrica 60, 1171-1186

[20] Serrano, R. (2004), Fifty Years of the Nash Program, 1953-2003, Lec-
ture delivered at the XXVIII Spanish Symposium on Economic Analysis

[21] Serrano, R. (2005), Nash Program, The New Palgrave Dictionary of
Economics, 2nd edition, McMillan

[22] Thomson,W. and T. Lensberg (1989), Axiomatic Theory of Bargaining
with a Variable Number of Agents, Cambridge University Press

30


