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Abstract

We build a model of team production where complementarity of work-
ers’ efforts depends on size of the firm. As the workers become more
specialized, their incentives improve by virtue of a decrease in free-riding.
Firms become larger up to the point where specialization effect is over-
whelmed by market size effect. We show that usually size of the firm
increases when switching from effort maximization to workers’ utility max-
imization and from the last one to output maximization. Then we provide
comparative statics on the effect of ouside equity, market size, importance
of “learning by doing” on the firm size.
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1 Introduction

In 1914, Ford Motor started using conveyor to assemble its famous Model T. This
dramatically decreased time to assemble a car. Only 11 cars per month were
produced before the conveyor, while after its introduction a car was assembled
within 83 minutes. This led to one of the greatest commercial successes in
history: in a few years, half of the cars used in the world were Fords. In
our view, we interpret this increase in productivity as a respond to increase in
specialization of workers. Greater specialization meant harder substitution of
efforts at differen specialities across workers, as a failure of one worker could stop
production of the whole conveyor. Smaller elasticity of substitution provides
better incentives in case of imperfectly monitorable individual efforts and hence
amplified the increase in their productivity. This story motivates our “Model
T” theory of firms size: the size of the firm grows up to a point where the gain
from incentives fostered by the complementarity of efforts is outweighted by
decreasing returns to scale or market size effects.

Most models find that provision of effort in teams is suboptimal due to pro-
duction externalities and point out the mechanisms that mitigate such problems,
such as optimal contracting and peer-pressure. Our approach is different: we
find out how effort provision is related to the technology and the size of the
partnership. We argue that as long as degree of speceialization, and hence,
complementarity of efforts is related to the size of the team, the size can pro-
vide incentives. On the other hand, after some point, the workers start being
allocated to the same tasks, which reduces complementarity of efforts and hence
spoils the incentives. Hence, we derive conditions the optimal size of the team,
depending on the degree of complementarity of workers’ efforts.

2 Literature

The paper contributes to two strands of the literature. The first strand is moral
hazard in teams introduced by Holmstrom (1982). He showed that provision
of effort in teams will be generally suboptimal due to externalities in produc-
tion and impossibility of monitoring individual efforts perfectly. Legros and
Matthews (1993) showed that the problem might be effectively mitigated in
some special cases. Kandel and Lazear (1992) suggest peer-pressure to miti-
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gate what they call 1/N effect: increased number of workers suggests smaller
shares of output per worker which results in smaller motivation. When the firm
is getting larger, they argue, the output is divided between larger quantity of
workers, while they bear the same individual costs. Hence, the effort of each
worker should be decreasing as firms grow larger. Adams (2006) showed that the
1/N effect may not occur if the efforts of workers are complementary enough.
However, as he uses CES production function, his model predicts trivial, either
unit or infinite, firm sizes, depending on the value of elasticity of substitution.
Winter (2004) shows that excessive complementarity and increasing returns to
scale can result in asymmetic discriminatory equilibria which might have non-
trivial effects on firm size.

Theories of firm boundaries are classified as technological, organizational
and institutional (the classification is borrowed from Kumar, Rajan and Zin-
gales (1999)). This separation is, of course, quite discrete, and most theories lie
in between, combining elements of the approaches. This paper is to present a
purely technological argument, however it is originally motivated by organiza-
tional one by Alchian and Demsetz (1972). As they noted:

Team production is used if it yields an output enough larger than
the sum of separable production to cover the costs of organizing and
disciplining team members.

Moreover, our paper can be easily connected to other theories, which would
result in richer insights.

The technological theories explain the firm size by the productive inputs, and
ways the valuable output is produced. Basically, there are five technological fac-
tors that are taken into account describing the firm size: market size, gains from
specialization, management control constraints, limited workers’ skills, loss of
coordination. For example, Adam Smith (1776) explained the firm size by ben-
efits from specialization limited by the market size. By his logic, workers can
specialize and invest in narrower scope of skills, hence economizing on the costs
of skills. Becker and Murphy (1992) focus on the tradeoff between specializa-
tion and coordination costs. The larger is the firm, the larger are the costs of
management to put them together to produce the valuable output.

Williamson (1971), Calvo and Wellisz (1978) and Rosen (1982) use loss of
control for explaining firm size. Williamson points out that a size of hierarchi-
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cal organization may be limited by loss of control, assuming the intentions of
managers are not fully transmitted downwards from layer to layer. Calvo and
Wellisz (1978) show that the effect of the problem is largely dependent on the
structure of monitoring. If the workers do not know when the monitoring occurs,
the loss of control doesn’t hinder the firm size, while it may if the monitoring is
scheduled. Rosen (1982) highlights the tradeoff between increasing returns to
scale in management and the loss of control. As highly qualified managers fos-
ter the productivity of their workers, managers with higher abilities should have
larger firms firm. However, the attention of managers is limited, hence having
too much workers results in loss of control and decreases the productivity of
their team substantially. The optimal firm size in this model is when the value
produced by the new worker is less than the losses due to attention diverted
from his teammates.

Kremer (1993) focuses on the tradeoff between specialization and probability
of failure associated with low skill of workers. He assumes that the the value
of output is directly proportional to the number of tasks needed to produce
it. Larger number of workers and hence tasks tackled allows to produce more
valuable output, but each additional worker is a source of risk of spoiling the
whole product. Hence, the size of the firm is explained by the probability of
failure by the workers which is proportional their skill.

3 The Model

Production is conducted in firms of size N . Workers are identical. Each
worker contributes effort ei ∈ R+, i ∈ {1, ..., N}. Efforts of workers e1, ..., eN are
aggregated by the aggregator function g(e1, ..., eN |N). The output is f(g(e1, ..., eN |N)),
which is split equally among the workers.

Assumption 1 g(e1, ..., eN |N) is differentiable, symmetric and homogeneous
of degree 1 in efforts for each given N .

Assumption 2 f(·), c(.) are twice differentiable, f ′ > 0, c′ > 0, c′′ > 0

Hence the worker’s maximization problem is:
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max
ei

1

N
f(g(e1, ..., eN |N))− c(ei)

4 Equilibrium

The equilibrium concept is Nash. It is a collection of efforts ei, i ∈ {1, ..., N} .
The workers simultaneously decide on their effort during production. The first
order condition for workers’ problem is:

1

N
f ′(g(e1, ..., eN |N)) · g′i(e1, ..., eN |N) = c′(ei). (4.1)

Assumption 3 f(·), g(·), c(·) are such that there is one solution of the FOC
and there is a symmetric equilibrium, ei = e∗ ∀i ∈ {1, ..., N}.

Hence the equilibrium effort e∗ is given by the condition:

1

N
f ′(g(e∗, ..., e∗|N)) · g′i(e∗, ..., e∗|N) = c′(e∗).

Denote g(1, ..., 1|N) = h(N). This function characterizes the economy of
scale in workers’ effort. In the following analysis, we will assume that h(N)

can be completed for non-integer N as a continuous, differentiable, increasing
function.

Fact 1. The first order conditions can be expressed as

1

N2
f ′(e∗ · h(N)) · h(N) = c′(e∗). (4.2)

Proof. By homogeniety, g(e∗, ..., e∗|N) = e∗ · g(1, ..., 1|N) = e∗ · h(N). More-
over, h(N) = g(1, ..., 1|N) = (e∗ · g(1, ..., 1|N))′ = (g(e∗, ..., e∗|N))′ = N ·
g′i(e

∗, ..., e∗|N).

(4.2) gives the equilibrium effort as a function of quantity of workers N . We use
e∗(N) to denote the solution of (4.2) even when the argument is not integer.
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e∗(N) is continuous and differentiable by virtue of implicit function theorem and
assumptions 2-3. (4.2) is refered to thereafter as Equilibrium Effort Condition
(EEC).

5 Comparative Statics

We consider three possible targets: setting the number of workers to maxi-
mize the utility of the group members, their efforts, total output or some com-
bination of those.

Maximizing utility would be a kernel allocation if we considered the two
stage game: the workers first form partnerships then produce and split output
equally. It might be also regarded as a solution of a firm problem in case of
price taking on labor market and its inability to monitor individual efforts.

Effort maximization is important in case of significant “learning by doing”
effects. This may be the case in education or industries where the human capital
is of greatest importance (such as consulting).

Output maximization might be the case if the payoff of the manager is a
function of target output only. This might be the case for “red directors” in the
Soviet Union, Economics department heads, empire building top managers and
others. Of course, many real objective functions, will have some combination of
the listed motives.

It worth noting two facts that will be used extensively throughout the rest
of the paper:

Fact 2. Let u(x), v(x) > 0 for x 6= 0 and differentiable. Denote the elasticity
of q at the point x as εq(x) = xq′(x)

q(x) . Than εv(x)·u(x)(x) = εv(x) + εu(x) and
εv(u(x))(x) = εv(u(x)) · εu(x).

Fact 3. For each v(x) such that v(x) > 0 and x > 0 implies that the sign
elasticity of v(x) equals the sign of its derivative sgn(εv(x)) = sgn(v′(x)).
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Fact 3 implies that we can use elasticities instead of derivatives for solving
maximization problems. Denote εf (x) =

xf ′(x)
f(x) the elasticity of function f taken

at the point x and rf (x) = −xf
′′(x)

f ′(x) is the relative-risk aversion of f taken at

the point x and rc(x) =
xc′′(x)
c′(x) .

To ensure single crossing we have to assume:

Assumption 4. rf (·) is increasing, εh(·) is decreasing, and at least one of them
is strictly decresing or increasing. Moreover, rc(e∗) > −rf (e∗(N) · h(N)).

5.1 Effort maximization

The formal statement of the effort maximization problem is:

max
N

e∗(N)

We denote the solution of this problem for continuous argument N1. Here
and thereafter we consider optimal sizes up to a continuity correction, i. e. if
we found “optimal size” N1, the real optimal size N∗1 is either [N1] or [N1] + 1,
where [·] denotes the integer part.

The elasticity of equilibrium effort with respect to N is found by taking the
full elasticity of the equilibrium effort condition and rearranging (see Appendix
for details):

εe∗(N) =
[1− rf (e∗(N) · h(N))] · εh(N)− 2

rc(e∗(N)) + rf (e∗(N) · h(N))
, (5.1)

As the sign of elasticity is equal to the sign of derivative, the necessary
condition for effort maximization is:

[1− rf (e∗(N1) · h(N1))] · εh(N1)− 2 = 0.

5.2 Output maximization

max
N

f(e∗(N) · h(N))

Denote the output maximizing size as N2 and the amount of efficient effort
as E = e∗(N) · h(N). It’s elasticity is

8



εE(N) = εe∗(N) + εh(N) = (5.2)

[1− rf (e∗(N) · h(N))] · εh(N)− 2

rc(e∗(N)) + rf (e∗(N) · h(N))
+ εh(N) =

[1− rf (e∗(N) · h(N))] · εh(N)− 2 + εh(N) · [rc(e∗) + rf (e
∗(N) · h(N))]

rc(e∗(N)) + rf (e∗(N) · h(N))
=

εh(N) · [rc(e∗(N) · h(N)) + 1]− 2

rc(e∗(N)) + rf (e∗(N) · h(N))
.

Output f(e∗h(N)) is just a monotonic transformation of efficient effort
e∗(N) · h(N), hence the necessary condition for output maximization is:

εh(N2) · [rc(e∗(N2)) + 1]− 2 = 0

To show that N2 is unique, we note that εE(N) = εe∗(N) + εh(N) is de-
creasing in N as both εe∗(N) and εh(N) are decreasing. Moreover, εE(1) =

εe∗(1)+ εh(1) > 0 and εE(∞) = εe∗(∞)+ εh(∞) < 0, hence εE(N) changes sigh
only once, hence N2 exists and unique.

5.3 Utility maximization

Maximizing the utilitise subject to the equilibrium effort condition results
in a problem:

max
N

1

N
f ′(e∗(N) · h(N))− c(e∗(N))

Taking the first order conditions:

1

N
f ′(e∗·h(N))·[(e∗(N))′·h(n)+e∗(N)·h′(N)]−c′(e∗)·(e∗(N))′− 1

N2
f(e∗·h(N)) = 0

Plugging c′(e∗) from the EEC:

1

N
f ′(e∗ · h(N)) · [(e∗(N))′ · h(n) + e∗(N) · h′(n)]−
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1

N2
f ′(e∗ · h(N)) · h(N) · (e∗(N))′ =

1

N2
f(e∗ · h(N))

Rewriting in terms of elasticities and canceling f(e∗(N) · h(N)) out:

εf (e
∗(N) · h(N)) · [εh(N) + εe∗(N)]− 1

N
εf (e

∗(N) · h(N))·εe∗(N) = 1

Finally, we obtain the condition for utility maximizing size N3:

εf (e
∗(N3) · h(N3))[εh(N3) +

N3 − 1

N3
εe∗(N3)] = 1 (5.3)

To ensure that there is a uniqueN3 satisfying (5.3), we assume that εf (e∗(N)·
h(N)) is small enough, i. e.

εf (e
∗(N) · h(N))[ε′h(N) +

N − 1

N
ε′e(N) +

1

N2
εe∗(N)]+ (5.4)

+ε′f (e
∗(N) · h(N))[εh(N) +

N − 1

N
εe∗(N)] < 0

5.4 Synthesis

The comparative statics results can be summarized by following propositions.

Proposition 4. The output maximizing team is larger than effort maximizing,
N1 < N2.

Proof. εE(N2) = εe∗(N2) + εh(N2) = 0, while εh(N2) > 0, hence εe∗(N2) < 0.
εe∗(N) is monotonic in N by Assumption 4 and (5.1), hence N2 > N1.

Proposition 5. Suppose that f(x) = xα, the production function has constant
elasticity and N2 > 2 . Than N1 < N3 < N2.

Proof. See Appendix.
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5.5 Changes in productivity

Suppose that payoffs for the workers change relatively to the costs:

max
ei

L

N
f(g(e1, ..., eN |N))− c(ei)

Proposition 6. An increase in relative revenue L leads to a decrease of optimal
N for utility maximizing, effort maximizing and revenue maximizing firm.

Updating the EEC , one gets:

L

N2
f ′(e∗ · h(N)) · h(N) = c′(e∗). (5.5)

Equilibrium effort is increasing in relative implortance of revenue for every
size N. By implicit function theorem one might see that:

εe(L) =
1

rc(e∗) + rf (e∗h(N))
> 0.

The maximizing sizes N1, N2, N3 do not depend on the revenue importance
L other than though equilbrium effort.

Using the maximizing firm size condition from above:

εh(N1) · [1− rf (e∗(N1, L)h(N1))]− 2 = 0

As L increases, by IFT one obtains that firm size decreases:

dN1

dL
=
εh(N1)r

′
f (e
∗(N1, L)h(N1))h(N1)

F

de

dL
< 0

where
F = ε′h(N1) · [1− rf (e∗(N1, L)h(N1))]+

εh(N1) · r′f (e∗(N1, L)h(N1))[e
∗(N1, L)

′
1h(N1) + e∗(N1, L)h

′(N1)]] < 0

Similar analysis results in dN2

dL < 0 and dN3

dL < 0
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6 Discussion

6.1 Assumptions

6.1.1 Production function

There are two possible set of factors affecting the production function: tech-
nology and market power. Technological factors are usual arguments on returns
to scale.

The market argument looks as follows. Let f(x) = x · P (x) be the revenue
from selling x units, where is P (x) is the inverse demand for firms output. In
this case the elasticity of f is εf (x) = 1 + εp(x) and rf (x) = εp(x)

rp(x)−2
1+εp(x)

> 0

for rp(x) < 2.

6.1.2 The aggregator

Setting the structure of aggregator function lets us to incorporate most of
the models in the literature. For example, if g(e|N) =

∑
ei we have per-

fectly substitutable efforts, which leads to rapidly decreasing incetives as firm
size grows. On the other hand, g(e|N) = v(N) · minei{e} results in per-
fect complementarity of efforts, hence inducing optimal effort supply. More-
over, having g(e|N) = v(N) · (

∏N
i=1 ei)

1/N will result in Kremer-like Cobb-
Douglas production function. Equally, one can have CES production function
g(e|N) = (

∑
eρi )

1/ρ which would be in line with Adams (2006).

6.2 Implications

Our framework and comparative statics results might be useful to analyse
how the incentives of the social planner will determine firm size. For example,
one could obtain that larger market size increases the firm size for large enough
elasticities of marginal revenue, while it might decrease for small ones. The
inverse holds for outside equity. Importance of “learning by doing” will decrease
firm size when the elasticities of marginal revenue are low, but increase other-
wise. This, for example, implies that younger or longer contracted workers will
work in smaller and larger teams for low and high elasticities respectively.

7 Conclusion

We build a specialization-based model of team production and find out op-
timal sizes of teams given different objectives of the social planner. We show
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that effort maximizing social planner will choose smaller firm sizes than output
maximizing one. Moreover, we show that while usually utility maximizing size
lies between those, this relationship might mix up for too large or too small re-
turns to scale. This framework enables us to explain team and, hence, firm size
depending by either planner’s target function or technology used in production.
However, we admit it lacks detailization: the impact of particular factors such
as worker skills, market size and contracting is a topic for future research.
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8 Appendix

8.1 Elasticity of effort derivation

Take the full elasticity w. r. t. N of the EEC:

1

N2
f ′(e∗(N)·h(N))·h(N) = c′(e∗)⇒ εf ′(e

∗·h(N))[εh(N)+εe(N)]+εh(N)−2 = εc′(e
∗)εe(N)⇒

−rf (e∗ · h(N))[εh(N) + εe(N)] + εh(N)− 2 = rc(e
∗)εe(N)⇒

εe =
[1− rf (e∗(N) · h(N))] · εh(N)− 2

rc(e∗) + rf (e∗(N) · h(N))
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8.2 Proof of Proposition 5

f(x) = xα ⇒ rf (e
∗(N) · h(N)) = 1 − α, rc(e∗(N)) > −rf (e∗(N) · h(N)) =

α − 1, εf (e∗(N) · h(N))) = α. The FOCs for the optimal size can be rewritten
as

α · εh(N1)− 2 = 0

εh(N2) · [rc(e∗(N2)) + 1]− 2 = 0

α[εh(N3) +
N3 − 1

N3
εe(N3)]− 1 = 0

The first equation implies εh(N1) = 2/α. The third expression is a derivative
of individual worker’s utility up to a positive factor. If we plug N1:

sgn(u′(N1)) = sgn(α[εh(N1) +
N1 − 1

N1
εe(N1)]− 1) = sgn(2− 1) = 1

. Hence utility is increasing in N at N1, hence N1 < N3.

εh(N2) =
2

[rc(e∗(N2)) + 1]
<
2

α

Similarly,

sgn(u′(N2)) = sgn(α[εh(N2) +
N2 − 1

N2
εe(N2)]− 1) =

sgn(α[
1

N2
εh(N2) +

N2 − 1

N2
εE(N2)]− 1) =

sgn(α
1

N2
εh(N2)− 1) ≤ sgn( 2

N2
− 1) = −1.

Hence, utility is decreasing at N2. Combining with Proposition 1 we obtain
N1 < N3 < N2.
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