
Forecasting Financial Time Series with

Artificial Neural Networks

Elizaveta Okorokova

June 21, 2014

Abstract

Financial forecasting has always been one of the biggest challenges

in theoretical and practical Finance. Because of the specific nature

of most financial time series, which tend to be non-Gaussian, non-

stationary, chaotic and extremely noisy, most traditional models fail

to accomplish the task of efficient data fitting and forecasting and,

therefore, need to be replaced by a more powerful analytical tool.

Recently, there has been a growing belief that Neural Networks, which

are used effectively is pattern recognition and classification, might as

well be a panacea for at least some problems in financial data analysis.

In this paper we apply feed-forward multilayer Neural Network to

forecast stock prices of five largest companies in Russia and evalu-

ate the possible gains and losses of trading using our Network. We

find that, despite the outstanding ability of the Network to approx-

imate the data, the standard MLP is unable to generate abnormal

profits to an investor when it is used to forecast one-month-ahead

stock returns. Moreover, we find that increasing the running time of

the cost-minimization algorithm does not necessarily improve out-of-

sample performance of the Network.

1



Contents

1 Introduction 3

2 Literature Review 4

3 Neural Networks: From Neuron to Intelligent Systems 6

3.1 Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Biological Neuron . . . . . . . . . . . . . . . . . . . . . 7

3.1.2 Neural Interaction . . . . . . . . . . . . . . . . . . . . 8

3.1.3 The Power of Ions . . . . . . . . . . . . . . . . . . . . 9

3.1.4 Learning through Synapses . . . . . . . . . . . . . . . . 10

3.2 An Artificial Neuron . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Network Design . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Training the network . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 The Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . 17

3.5.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5.2 Information processing . . . . . . . . . . . . . . . . . . 17

3.5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Data 22

4.1 Time Series Description . . . . . . . . . . . . . . . . . . . . . 22

4.2 Training and Test Samples . . . . . . . . . . . . . . . . . . . . 23

5 Model 24

5.1 Training Algorithm and Software . . . . . . . . . . . . . . . . 24

5.2 Optimal Model Configuration . . . . . . . . . . . . . . . . . . 25

5.3 Performance Measures . . . . . . . . . . . . . . . . . . . . . . 27

5.4 Comparing Forecasts . . . . . . . . . . . . . . . . . . . . . . . 29

6 Results 30

7 Conslusion 32

A Supplementary Tables, Graphs and Figures 38

B Tips for Programmers 48

2



1 Introduction

Artificial Neural Networks (ANNs) are a universal analytical tool for par-

allel data processing. The idea behind the first Artificial Neural Networks

was to create a highly intelligent system, which would mimic the enormous

abilities of the human brain. Neural Networks have a number of distinguish-

ing features, which makes them extremely attractive to researchers in many

fields.

Firstly, as opposed to most traditional econometric models, which require

accurate prior specification as well as careful data adjustments, Neural Net-

works are adaptive, self-driven systems, which need just a small number of

highly flexible assumptions.

The ability of ANNs to learn by example makes them skilful at finding

internal relationships between variables, which may not be evident at first

sight. Because of this feature ANNs, have proved to be a useful tool in data

analysis, especially dealing with non-linear, highly volatile and noisy data.

Secondly, Artificial Neural Networks are universal approximates. It can

be shown ([18]) that even a simplest 3-layer network can approximate any

functional relationship with a high degree of accuracy. This is a goal, tra-

ditional models often fail to achieve, in that they require exact knowledge

of the relationship between the variables, which are often very complex and,

thus, hard to specify.

Thirdly, Neural Networks have an important ability to generalize data.

Once the approximation is fit, the relationship can be extrapolated out-of-

sample. Because of these valuable features of Neural Networks, it is not sur-

prising that they have become an increasingly popular method in time series

forecasting. Since the first works in the area ([35],[39]) many new methods

in artificial intelligence have been explored and successfully developed

In this paper we build a multilayer feed-forward network to forecast time

series of the Russian stock market. We use stock prices of the five largest

corporations in Russia to test the ability of our network to correctly forecast

stock prices out-of-sample. We analyse performance of our network using

several indicators, which are found in recent literature.

The particular interest of our work is the attempt to analyse practical

3



importance of accurate forecasting. After fitting the network, we evaluate

possible prospects of technical trading based on MLP Network. We use

the rolling window approach to construct the Profit and Loss account for

12 periods of 2013, based on the out-of-sample forecasting with our model.

The main hypothesis we test is, whether trading rules based on the Network

forecast can outperform the market.

Further, we investigate how changing the accuracy of training algorithm

influences the ability of the Network to forecast stock prices out-of-sample.

We suppose that increasing the number of iterations in the training algo-

rithm may lead to a better forecast performance. To test this hypothesis we

compare 2 models with different training times, using the Diebold-Mariano

test.

A great deal of this paper also relates to introducing the theory of Arti-

ficial Neural Networks to a reader, which might be a good starting point for

anyone who wish to understand the underlying concepts of ANNs.

The paper is structured as follows. Section two provides a brief overview

of recent literature in the field of forecasting using ANNs. The next section is

optional and is written to introduce the reader to Artificial Neural Networks

as well as their background from biology. Those already familiar with the

topic can proceed directly to section four, which gives an overview of the

data, descriptive statistics and figures. Section five introduces the model and

methods used in data analysis. The further section analyses the performance

of our Network using several goodness-of-fit indicators and evaluates the

two competing models with Diebold-Mariano test. Finally, the last section

summarizes the main results of the study.

In the Appendix we provide the framework for coding the multilayer

feed-forward network with variable dimensions, using R programming lan-

guage(B), as well provide supplementary graphs, figures and tables (A).

2 Literature Review

Artificial Neural Networks were known for at least half a century and have

gained popularity in many fields, including artificial intelligence, medicine

and neuroscience. Literature on Neural Network application is wide and

4



fruitful and here, we would summarize only a small fraction of all the available

works on the topic. An interested reader may find it helpful to consult some

wider literature reviews in [42], [?], [?], [32] including guides to AANs in

finance [41] and management [22]

Despite its background in neurobiology, the early development of Neural

Networks had significant contribution from physics, because ANN seemed

to be a prospective tool when dealing with non-linearities, which are one of

the main issues in physics [29]. Later on, Neural Networks became widely

known as powerful tool, applicable to a large set of problems, Therefore, its

application spread speedily to almost all spheres [?].

Of course, ANNs are used in neurobiology to model real processes hap-

pening in human and animal brain, such as the study of bird-song acquisition.

The conjunction between natural and artificial neural networks is a bit tough,

since they appear to be very different, but with the help of the latter, bi-

ologists may have a better understanding of how processes in the brain are

modelled.

One of the most interesting areas where ANNs are widely applied is Arti-

ficial Intelligence. Modern algorithms for pattern recognition and classifica-

tion enable scientists from this field to construct highly intelligent machines

and systems, which are capable of dealing with tasks such as understand-

ing hand-written text or mimicking sounds of the environment. For many

exciting papers in the field consult Andrew NG 1and others.

Nowadays Neural Networks have also gained popularity in marketing

[11],[17] and [19] and predicting consumer behaviour [40]

Neural Networks are used in bank performance [36] and bankruptcy pre-

diction [37], [25] and macroeconomic variables, such as predicting recessions

and inflation [33].

Among the interesting applications is are problems from sociology and

education, including a few works on graduate student performance prediction

based on ANNs, with a number of indicators such as GMAT scores, average

GPA. attendance and work experience as the training variables of the network

[13],[31], [12].

Since this paper deals mostly with forecasting financial time series, it

1urlhttp://cs.stanford.edu/people/ang/

5



would be useful to relate to some previous research in this direction.

One of the first works on forecasting with ANNs was made by Lapedes and

Farber (1987) [24], who used two chaotic time series and the Glass-Mackey

equation to prove the ability of ANNs to mimic the non-linear time series

with impressive accuracy. However, comparing to most other methods used

in data forecasting, neural Networks are rather new, and according to [7] are

one of the most prospective tools in the future of time series forecasting.

Adya and Collopy [1] and Hill et al [16] provide a comparative study

of all the available works in forecasting with ANNs, stressing whether the

researchers found neural networks useful in such framework.

Charkraborty at al (1992)[5] and Balkin et al [3] presented the ANN

approach to analysis of the multivariate time-series, De Groot [8] concentrate

on ANNs based on univariate time series. Ghiassi et al [6] forecast time series

events with neural networks.

A popular topic in publications is comparing ANN performance with

other statistical methods, including vast literature on empirical comparison

of Box-Jenkins ARIMA model with a Neural Network model. Foe example,

Khashei and Bijari [21] found that ANNs can significantly outperform the

linear ARIMA(p,d,q) model.

McNelis (2005) provides a good book for artificial neural networks in

Financial Applications [28].

There is also a number of good books and theoretical notes, highly recom-

mended for anyone interested in understanding Neural Networks [34], [15],

[27].

3 Neural Networks: From Neuron to Intelligent

Systems

The history of Artificial Neural Networks goes back to 1943, when a neuro-

physiologist Warren McCulloch and a logician Walter Pitts built their first

computational model of neural interaction [30], also called the threshold logic.

Since then, mathematical models of neural networks have been largely ex-

tended and modified, but the idea behind them remains inviolable. Ideal-

6



istically, it is to build a tool, no less intelligent and adept than the human

brain.

Just as their name suggests, Artificial Neural Networks were inspired by

biological nervous systems. This section serves as an introductory chapter to

Artificial Neural Networks and, hopefully, gives a reader an essence of this

fascinating topic.

Finally, there is a number of introductory textbooks on Neural Networks,

which are useful for anyone wishing t understand Artificial Neural Networks

in action.

3.1 Inspiration

3.1.1 Biological Neuron

A basic unit of a biological nervous system is called an nerve cell, or simply

a neuron. There are more than 100 billion neurons in a human body.

Neurons are very different in their shape, size and functions. Most neuron

bodies are very small and invisible to a human eye, however, ramifications

from the cell body can be disproportionately long. For example, nerve cells

in a human sciatic nerve, which starts at the bottom of the spinal cord and

goes through the buttock down the lower limb, reaching the toe, contains

cells which may have axons of up to a meter long.

Despite an enormous diversity of nerve cells in a human body, most of

them have very similar structure. Figure1 shows the main parts of a gener-

alized neuron.

The main processor of the nerve cell is the cell body. It contains a nucleus,

which stores the cell’s genetic material organised in long DNA molecules, and

other important organelles, such as mitochondria and Golgi apparatus, which

are responsible for keeping the cell alive.

The dendrites are numerous ramifications from the cell body, which serve

as the receiving wires. They pick up signals from other neurons or from

sensory organs, such as the skin, and pass them to the cell body, where

information is processed and the response is formed.

The axon is the longest and the unique ramification of the neuron. It

picks up the response from the cell body and takes it down its length to the

7



Figure 1: Generalized Neuron

axon terminals, which are also called the synapses.

3.1.2 Neural Interaction

Neurons, unlike many other types of cells, do not exist on their own. In-

stead, they are organized in layers or sequences, which form interconnections

between each other (Figure2). In Neuroscience, such structures of neurons

are called Neural Networks.

Figure 2: Neural Layers

8



Almost every process in a human body is governed by collective per-

formance of neurons in the nervous system. Neural networks are capable of

everything: beginning from the essential basics, like breathing and heartbeat,

up to the most advanced cognitive abilities, such as writing poetry.

3.1.3 The Power of Ions

Neurons ”talk” to each other by sending electrical impulses, shortly called the

spikes. But, unlike metal wires, which conduct electricity with the help of free

electrons, neural membranes have a completely different chemical structure.

The human body mainly consists of water, which fill the space inside and

outside of the cells. Salts, which are naturally present in this water solution,

dissociate into ions - charged atoms, which have either lost some electrons

on their outer energy level (positive ions), or, on the other hand, have more

electrons than necessary to balance the number of protons in their structure

(negative ions). For example, sodium chloride, mixed with water, dissolves

into positive sodium ions (Na+) and negative chloride ions (Cl−). Other

ions, like potassium (K+) and calcium (Ca2+)are also widely present in the

nervous system environment.

Importantly, the cell membrane, which is a double layer of lipids protect-

ing the cell, does not let ions flow freely between the inside and the outside of

the cell. Instead, the membrane contains a limited amount of open channels

for each specific ion. This guarantees that the cell membrane would not allow

more ions to flow in, and, therefore, keep their concentration stable.

When the cell is at rest, meaning that there is no stimulation from the

environment, it is said to be negatively charged at about -70mV with re-

spect to the inter-cellular space. Such condition is called a resting membrane

potential.

However, neurons are very rarely at rest. More realistically, they con-

stantly receive stimulation from other neurons, or from sensory organs of the

body. The signals between neurons travel by electrical impulses, called the

Action Potentials. They are so fast that they can only be detected as spikes

on the oscilloscope screen (Figure3). The more stimulation the neuron gets,

the higher is the frequency of those spikes on the screen.

9



Figure 3: Action Potential on Oscilloscope screen

3.1.4 Learning through Synapses

Action Potentials play a very important role in leaning, which is the striking

feature of Neural Networks that makes them so unique and interesting.

Figure 4: Neural Layers

Figure4 shows an enlarged synapse - an area, where the axon of one

neuron meets the dendrite of the other. This is a space, where communication

between neurons happen.

When the action potential travels down the axon, it generates the emer-

10



gence of bubbles, called vesicles, which are filled with a special chemical -

a neurotransmitter. Under electrical force, vesicles fuse with the cell mem-

brane at the end of the axon and gradually release the neurotransmitter to

the synaptic cleft, which, in turn, reaches the other cell’s membrane and

permeates through special channels inside the receiving neuron.

Depending on the type of neurotransmitter, released in the cleft, the

receiving neuron can be either aroused or inhibited. In the former case,

excitatory influence would increase the probability of action potential to arise

at the receiving cell. In the latter, the inhibitory signal would weaken the

ability of the cell to generate the action potential in response to stimulation.

Normally, neurons receive more than one signal at a time. Therefore, the

ability of the cell to generate an action potential depends on the combination

of signals coming from all dendrites. If the sum of all signals of different

intensity forms a large enough stimulation, the neuron will fire. Otherwise,

the stimulation would not have any effect. Normally, for a neuron to fire, the

potential inside a cell has to rise to about +30mV.

Mathematically, this can be represented by a so-called threshold stim-

ulation. Suppose signals are arrived at N channels, and each channel is

associated with some weight (wi), i.e. the strength of stimulation is differ-

ent at each synapse. Then the total signal received by the cell is simply a

weighted sum of all synapses:

TotalSignal =
N∑
i=1

(wi ∗ Signali) (1)

The threshold logic is then summarized by a simple activation function

of a type:

Activation =

Fire, TotalSignal ≥ S̃

Rest, TotalSignal < S̃
(2)

Because, synapses are so important in signal processing, they are said

to be the main storage of information in Neural Networks. What is more,

synaptic connections are not stable and can change with time.

Suppose, there is a synapse connecting neuron A to neuron B, and suppose

that, initially, an impulse from neuron A was too weak to stimulate neuron B

11



on its own. However, if neuron A continues firing in direction of neuron B, the

amount of neurotransmitter released into the synaptic cleft would eventually

be enough to generate an action potential in neuron B. Such process would

strengthen the synapse between the neurons. As a result, even a minor release

in neurotransmitter from cell A into the synapse, would give rise to action

potential in neuron B.

This idea of synaptic plasticity was first postulated by Donald Hebb [14]

and is still considered a fundamental principle of learning. If the synapse is

used more, it gets strengthened, and the weight associated with this synapse

increases. Similarly, synapses, which are not used for a long time, lose their

potency to pass the signal, so their weights in the network decrease.

3.2 An Artificial Neuron

Figure5 shows a single artificial neuron.

Figure 5: A Single Artificial Neuron

Just as its biological precursor, an artificial neuron receives inputs from N

incoming sources: x1, x2,..., xN . Each input enters the body of a neuron with

a weight, associated with it: w1, w2,...,w3. When the weighted summation

happens in the body processor, the neuron puts it through an activation

function φ(.). Thus, we can calculate the output of an artificial neuron with

the following expression:

12



Ouput = φ(
N∑
1

(wi ∗ xi)) (3)

In fact, activation does not need to be a binary function, described for

simplicity in the previous subsection. A typical choice of activation functions

for ANN design is a sigmoid-type function, because it has some particularly

attractive properties, such as variable marginal effect and differentiability.

3.3 Network Design

A single neuron is just an elementary processing unit, which has a built-in

rule by which to treat the signals. However, just as in biological networks,

a single neuron cannot effectively operate on its own. To create a power-

ful processing system we need to form a neural network: a combination of

neurons connected to each other by a set of predefined rules.

A typical network is shown on Figure 6. Each node illustrates a single

processing unit, which gathers signals from other units and produces a re-

sponse with a primitive activation function. Each arrow, connecting the two

nodes is associated with some weight, which is a variable parameter of the

model. By changing the weights in the network, we can adjust the model

throughout a learning algorithm to produce a desired response.

Figure 6: A typical ANN

The main fascination of Neural Networks is that they can produce a

13



desired response simply by training on set of examples. A researcher dealing

with a Neural Network does not have to specify all the parameters, since

they are found by a network on its own in the process of training.

Mathematically, the problem, solved by any ANN can be treated as map-

ping from the set of inputs from an n-dimensional space to a set of outputs

from a k-dimensional space. Because of this Neural Networks are often called

the black boxes[4], which serve as a transfer function from inputs to outputs

of the model, but keep the internal processes hidden.

Artificial Neural Networks can look very differently, and it is up to the

engineer to specify the organization of nodes and connections as well as

the rules by which the network will learn. A typical algorithm for ANN

construction would look as follows:

1) Define the topology of a network

2) Define the primitive function of each unit

3) Specify a set of training rules for the network

4) Choose a training and a test sample

5) Feed the Network with training examples and find the parameters

6) Use the parameters to estimate the Network goodness-of-fit on the test

sample

Not only the structure on neural networks matter, but the direction in

which information flows from one unit of the network to the other. There

are 2 major classes of ANNs: feed-forward networks (Figure 7), in which

information flows in one direction only, and recurrent (or feed-back) networks

(Figure 8), in which signals may loop back and generally go in any direction.

A multi-layer perceptron is a typical example of a feed-forward network

(Figure 7), while a Hebbian Network can demonstrate the structure of a

simple recurrent network. In this paper we will concentrate on feed-forward

networks only.

3.4 Training the network

Neural Networks are so unique because of their ability to learn by example.

A learning algorithm is an adaptive method which adjusts the parameters of

the Network until it is capable of performing a task with high accuracy.

14



Figure 7: A Feed-Forward Network

Figure 8: A Recurrent (Feed-back) Network

There are two classes of learning algorithms: supervised learning and

unsupervised learning.

In the former, the Network is presented with both input and output values

and it learns the rules by which the relationship between input and output

can be formed.

In unsupervised learning, only input data is fed to the network, and

it learns to identify patterns in this data and classify it by some hidden

characteristics. In this paper we would deal with supervised learning only.

Figure 9 shows a typical cycle of a supervised learning algorithm. After

the topology of a network is chosen it is fed with a sample of inputs, on

15



which the Network will learn to classify the data. At the beginning of the

algorithm, an array of random weights is assigned to the Network, i.e. each

connection in the network is defined by chance.

Using the random weights and an input array, the network computes

output and compares it to the target value by calculating a squared deviation

of output from the target. It is called a Cost of the Network.

If the Cost is very large, output is very far from the target level, so the

network is performing its task poorly, and the weights have to be adjusted.

The learning algorithm, thus, changes the weights by a small fraction, in a

direction of minimizing the error. Then the new weights are fed back into

the network and the new output is calculated. The loop goes until the error

is small enough to be tolerable.

Figure 9: Supervised Learning Algorithm

16



3.5 The Multi-Layer Perceptron

One of the most popular networks in the theory of ANNs is a multi-layer

perceptron (MLP). Because of its simplicity and universality it is often a very

good starting point to understanding how ANNs work. It is also a type of a

network considered in the empirical part of this paper. Therefore we provide

the basic topology of such networks as well as the essential mathematical

formulas for training such type of networks.

3.5.1 Topology

A multilayer perceptron (7) is a feed-forward network, which is organized

in layers. Each layer consists of a set of units (neurons), each of which

is connected to all units in the previous layer as well as all units on the

subsequent layer. The layers in the middle of the network, between the

input layer and the output layer, are called hidden layers, and the neurons in

those layers, are by analogy, hidden units. A network with only one hidden

layer is also known as a single-layer perceptron (SLP).

Each node in the MLP Network, except for the inputs, is associated with

an activation function, which is computed, once all the inputs are accumu-

lated at the node. A typical activation functions for such networks are:

threshold, linear or sigmoid-type function (logistic or hyperbolic tangent).

Importantly, the units inside one layer are not connected to each other and

perform their basic computation in parallel.

3.5.2 Information processing

To understand the learning algorithm of a multilayer network, consider a

3-layer Network, with 4 input units (x1,x2,x3,x4) , 3 hidden units (a
(2)
1 ,a

(2)
2 ,

a
(2)
3 ) and one output unit (a

(3)
1 ). For the sake of simplicity, assume for the

first time that we are dealing with only one training example, i.e. we run the

network only once to determine one the output of a unique example. Latter

on we will extend the example to multiple training examples.

Note that information received at each neuron is not the same as the

information passed by it to the subsequent layer, so be careful not to mix the

notations. In this example, information received at each ith node in layer

17



Figure 10: Our Network

l, is defined as a
(l)
i , while information passed by same node, except for the

nodes in the input layer, is denoted by ϕ(a
(l)
i ), where y = ϕ(a) is a primitive

activation function of the network.

Also, remember that each two connected nodes are associated with a

weight, which is an unknown parameter before the network is trained.

Let w
(l)
ij be a weight parameter, which projects unit i in layer l to unit j

in layer (l+ 1). Then, denote a projection matrix from input layer to hidden

layer by w1. In our example, the dimension of w1 is 4 by 3, because 4 inputs

have to be projected to 3 hidden units, while the dimension of w2 is 3 by 1,

since 3 hidden units are projected to one output unit. Concretely,

w(1) =


w

(1)
11 w

(1)
12 w

(1)
13

w
(1)
21 w

(1)
22 w

(1)
23

w
(1)
31 w

(1)
32 w

(1)
33

w
(1)
41 w

(1)
42 w

(1)
43

 and w(2) =

w
(2)
11

w
(2)
21

w
(2)
31

 (4)

Now, when the notations are specified, we start computing the network

with the first layer - the input layer. Information, which goes from the input

layer is not modified by the activation function, so

18



a(1) =


a1(1)
a
(1)
2

a
(1)
3

a
(1)
4

 =


x1

x2

x3

x4

 (5)

All inputs project to each of the three hidden units with a corresponding

weight. The incoming information at each hidden unit, therefore, accumu-

lates as a weighted sum of all the incoming signals

a
(2)
j =

4∑
i=1

w
(1)
ij ∗ a

(1)
i

or, in vector form

a(2) = (w(1))T ∗ a(1)

(6)

At each node in the hidden layer, information passes through an activation

function and goes out of a neuron to the third layer, the output layer. The

unit in the output layer gathers information through all units in the hidden

layer and therefore receives a total signal of

a
(3)
1 =

3∑
i=1

(w(2))Ti1 ∗ ϕ(a
(2)
i ) (7)

An output layer produces a response with an activation function:

Output = ϕ(a(3)) (8)

Carefully plugging expression 6 into 7 and 7 into 8 we get an expression

for the response of the output layer:

Output = ϕ[(w(2))T ∗ ϕ((w(1))T ∗ x)] (9)

Then if we are interested in how far the target output (the actual one)

is from the one estimated through the network, we can compute the Error

E(w(1), w(2)) with the expression:

E(w(1), w(2)) = (Output(w(1), w(2))− Target)2 (10)

19



If we now want to extend calculations to multiple training examples, the

Cost of the Network would be computed as an average error for each training

example. Thus, the Error function for a sample of size m would be as follows:

Em(w(1), w(2)) =
1

2m
∗

m∑
i=1

(Outputm(w)− Targetm)2 (11)

Note that adding ”2” in the denominator of the error function in no more

than a convenient scaling of the expression. Later on, we would be dealing

with the derivatives of the Error function, so ”2s” would cross out and lead

a neater derivative expression. Such update is just a tradition in neural

networks computing, but is definitely not a rule, since it does not change

anything except for the scale.

3.5.3 Training

Now that we know how information is processed throughout the Network, it

is useful to understand the logics behind training the network.

As already mentioned, a supervised learning algorithm is aimed at min-

imizing the cost of the ANN, i.e. the mean-squared error of computation.

Therefore, any learning algorithm, dealing with cost minimization would ac-

tually serve as training technique for an ANN.

However, Neural Networks most often have a large set of parameters,

which make a problem of function minimization a tough one. Even in our

example with only 3 layers and a small number of neurons, there are 15

weights we would have to find with the learning algorithm. Dealing with

such problems is technically hard, time consuming and simply daunting for

a researcher. Therefore, there need to be powerful tool, which can deal with

such kind of problems as multi-variable function minimization.

There wasn’t much progress in implementation of Artificial Neural Net-

works before the discovery of the back-propagation algorithm [35]. It proves

to be a rather simple method of computing feed-forward networks, which is

used in combination with any of the optimization methods known up to date.

In recent years there have been numerous extensions proposed to clas-

sical back-propagation algorithm, which try to deal with its imperfections.

Such extensions normally propose new and more reliable methods of error

20



minimization. In this section we consider 2 optimization methods, which are

applicable to back-propagation method. The first is the widely known gradi-

ent descent. The other one is an alternative method, called the Newton-type

optimization, which we implement later in the empirical part of the paper.

Consider the same network topology we used in the previous subsection.

To simplify notation, again consider only one training example. Then, the

cost function of the network is summarized by 10.

The first step to finding a critical point of the function is to compute its

gradient, which is an array of partial derivatives of the function with respect

to each of its parameters. In out example, the gradient of the Error function

consists of 15 partial derivatives computed for each weight in the network.

∇E = (
∂E

∂w
(1)
11

,
∂E

∂w
(1)
12

,
∂E

∂w
(1)
13

, ...,
∂E

∂w
(2)
31

) (12)

Since 10 is a composite function of weights, we have to use the chain rule

to calculate the partial derivatives for each weight. Concretely, each element

of the gradient vector is split into several partial derivatives.

For example, a derivative with respect to a weight connecting neuron j in

hidden layer of our network to the unique neuron in output layer, would be

calculated in 3 steps:

∂E

∂w
(2)
j1

=
∂E

∂Output
∗ ∂Output

∂(ϕ(a
(3)
1 ))

∗ ∂(ϕ(a
(3)
1 ))

∂w
(2)
j1

(13)

Computing weights, which connect the input layer and the hidden layer

is a bit more complex, but the logics remains the same.

Generalizing, for the each weight connecting layer l to layer (l + 1), we

need to compute 2∗ (L− l) + 1 partial derivatives in order to apply the chain

rule, where L is the total number of layers in the network.

Once we have computed the derivatives, which are no more than the rate

of change of the function with respect to each of the parameters, we can use

them to form a learning rule, which would minimize the error function.

In Gradient Descent method, each weight is adjusted proportionately to

the negative derivative of error with respect to this weight, i.e.

21



4w(l)
ij = −λ ∗ ∂E

∂w
(l)
ij

(14)

The Newton-type minimization has a rather modified version of weight

adjustment:

4w(l)
ij = −δ ∗ ∂(Error)

∂w
(l)
ij

/
∂2Error

∂w
(l)
ij

2 (15)

In both methods, λ and δ are learning rates, which are normally pre-

defined by a researcher. The algorithm runs until the error becomes small

enough to be tolerable.

4 Data

4.1 Time Series Description

In the present paper we consider five Russian stocks, which are among the

most liquid 2 assets, listed on the Moscow Interbank Currency Exchange

(MICEX). The five chosen companies represent the major sectors of the Rus-

sian economy and therefore contribute a significantly to the Nation’s income.

The three internationally recognized corporations specialize in resource

extraction: Gazprom (gaz), Lukoil (oil) and MMC Norilsk Nickel (nickel and

palladium). The other two companies are Mobile TeleSystems (MTS), which

is one of the leading telecommunication agent, and Sberbank Rossii - the

largest bank in Russia and Eastern Europe. All five companies were on the

list 3of 100 most capitalized public companies in 2014 in Russia.

Table 1 includes the basic descriptive statistics of the 5 time series, taken

from 1st January 2011 until 31st December 2013. Plots of tte time series,

histograms and QQ-plots are available in the Appendix A.

The analysis of the histograms and the QQ plots, as well as the results

of the Jarque-Berra tests indicate that none of the five time series is nor-

mal. The fluctuations of the time series (graphs) suggest that they are non-

stationary.

2http://moex.com
3http://riarating.ru/corporate_sector_rankings/

22

http://moex.com
http://riarating.ru/corporate_sector_rankings/


Table 1: Descriptive Statistics and Normality Test

Stock GAZPROM LUKOIL MTS SBERBANK GMKN

Min 107.2 1537 169.5 62.65 4105

Median 156.2 1894 241.8 95.44 5269

Mean 163.0 1877 247.0 94.48 5649

Max 244.0 2136 351.5 110.70 7818

St.Dev 29.5059 129.488 36.1867 8.67248 990.6903

Skewness 0.50728 -0.30526 0.66326 -0.66729 0.7843

Kurtosis 2.56156 2.22768 3.362481 3.13559 2.22347

Jarque-Bera 38.3261 30.409 59.3318 56.4596 96.1176

Probability 4.76e-09 2.493e-07 1.307e-13 5.494e-13 2.2e-16

4.2 Training and Test Samples

A total period of 3 years is considered in this paper, starting from 1st January

2011 until 31st December 2013.

We use a rolling window approach to yield 12 test samples, each one

month long. The procedure of fitting and testing the model is as follows. We

train the network on 2 years of data and then use the estimated parameters

of the Network to forecast one subsequent month after of the training period.

The number of observations in the test sample, thus, depend on the number

of trading days in a corresponding month.

We repeat the procedure 12 times, each time shifting the training and

the test periods one month ahead. For example, we start with the training

period from 1st January 2011 to 31st December 2012, and test the model

on the data from 1st January to 31 January. In the next trial, the training

period would be from 1st February 2011 until 31 January 2013, while the

testing period would be from 1st February 2013 until 28th February 2013.

Generally, we provide the forecast for the whole year 2013.

23



5 Model

5.1 Training Algorithm and Software

Using R software environment 4, we developed a set of functions to compute

a feed-forward multilayer network with flexible parameters, in which the

amount of layers and neurons can be freely chosen, depending on the context

of the problem (Appendix B).

The initial version of the program was designed for fitting univariate

models, with lagged values as inputs. However, the program can be easily

extended to multivariate time series as well. The program works the following

way:

Step 1: A researcher sets the topology of a network: number of inputs,

outputs, hidden layers and neurons in each hidden layer.

Step 2: A time series is introduced to the model. Normally about 80%

of the data is used to train the network (steps 3-6), while the remaining data

is used for verifying goodness-of-fit of the network (step 7).

Step 3: The program sets an array of random weights according to the

dimension of the network. The output value is forward-propagated using the

array of random weights.

Step 4: Output of the network (step 3) is compared to the target value

(real data output) and the mean squared error (MSE) is calculated as a

function of network weights:

MSE =
N∑
1

(Outputi − Targeti)2 (16)

Step 5: An algorithm optimizes the weights of the network, decreasing

MSE on each subsequent iteration of the algorithm. Minimization problem

is solved by a Newton-type optimization algorithm. A maximum of number

of iterations can be set exogenously through the function. After exceeding

the limit of iterations, the algorithm stops to determine the final array of

weights, which are considered the optimal weights.

Step 6: Optimal weights are used to fit the expected output for the

4http://www.r-project.org/

24

http://www.r-project.org/


training set, then both real values of the time series and the estimated values

are visualized on the graph for comparison.

Step 7: Verification data (remaining 20%) is used to determine the good-

ness of fit of the network, out-of-sample.

Note that the activation function of the network is a sigmoid, which is

defined on the interval (0,1). Therefore, initial time series has to be adjusted

before it is introduced to the network. In this paper we adjusted the data

by first normalizing the data set and then putting it through the sigmoid

transformation:

x̃ =
1

1 + e−(x−µx
σx

)
(17)

For further comments and coding instructions, consult the Appendix B.

5.2 Optimal Model Configuration

Choosing a network dimension is one of the most challenging parts of ANN

modelling. Some empirical rules have been previously proposed([20],[38],[26])

to determine the optimal number of hidden layers and neurons in the network.

In this paper we avoid empirical rules available in literature on Neural

Networks and instead use a standard approach of sorting out models based

on their performance. We called this approach ”The Network Grid Search”.

We fit several networks with different configurations, each time either

increasing the dimension of the network, or the number of neurons in the

layers.

We compare the models based on 3 criteria: mean squared error of

the training sample, which is a standard measure of goodness-of-fit, mean-

squared error of the test sample, which is an indicator of forecasting ability

of the network, and the running time of the algorithm - one of the most

daunting part of network fitting.

To avoid haphazard results, each configuration was run 10 times on the

same stock and the same estimation period and then the average MSE and

running time were stated for each network configuration. Then we chose a

suitable model based on the optimal cost and benefit combination.

25



Table 2 presents an extract from our grid search analysis, showing perfor-

mance of several combinations of networks run on MTS stock. The number

of digits in brackets indicate the number of layers of the network, while each

digit shows the amount of neurons in a corresponding layer. For example, a

network indicated by (3,2,1) is a three-layer network with 3 input units, 2

hidden units and one output unit.

The sample estimation period runs from 1st January 2011 until 31st De-

cember 2012 and the forecast period is from 1st January 2013 to 31st January

2013. In-MSE is the mean squared error computed on the estimation period,

while out-MSE is the mean squared error for out-of-sample forecast. The

number of parameters indicate the dimension of the weight vector, which is

estimated to fit the network. Running time estimates the amount of time in

seconds or minutes, needed for the CPU to handle the Error Minimization

problem and determining the parameters of the network.

Table 2: Network Configuration Grid Search

Configuration Parameters In MSE Out MSE Running Time

(3.1.1) 4 278.635 258.3314 12.02656 sec

(3.2.1) 8 12.3410 5.8673 52.7406 sec

(4.3.1) 15 12.34661 5.73758 1.54732 min

(5.3.1) 18 12.28980 5.95265 1.84865 min

(4.4.1) 20 12.24035 5.64919 2.01464 min

(3.6.1) 24 12.15218 5.58951 2.45013 min

(4.2.2.1) 14 12.26358 6.19697 1.87956 min

(3.3.3.1) 21 12.21255 5.81322 2.82013 min

(5.5.5.1) 55 12.0738 5.6294 7.1624 min

The purpose of the grid search was to determine an optimal model, which

would provide a forecast with a good fit (low In-MSE) and forecasting power

(low Out-MSE) and at the same time would not overload the CPU. In other

words, the desire to optimize the MSE by increasing the number of layers

and units may only seem reasonable as long as we can tolerate the running

time of the algorithm.

26



We were interested in network configurations with no less than 3 regres-

sors (long memory) and at least one hidden layer. Generally, the grid search

for our data (Table 2) shows that any configuration with two or more hidden

units does a good job in fitting and forecasting the data. A network with

just one hidden unit stands out significantly and provides evidence that a

single neuron is not capable of efficient problem solving in this context.

Increasing the number of parameters, while keeping the number of lay-

ers fixed, does not necessarily increase efficiency, while the estimation time,

surely, rises. Increasing the number of layers does not provide evidence of

better fit, either, and, moreover, prolongs estimation. For example, compare

(4.2.2.1) with 14 parameters to estimate and (4.3.1) with 15 parameters.

Despite the decrease in the number of unknown parameters, the estimation

time has increased, which shows that the algorithm actually deals better with

fewer layers.

Following the results of the grid search, we found it reasonable to avoid

undue complexity and optimize the running time of the algorithm without,

actually harming the results.

A network considered in this paper is a three layer feed-forward network

with 4 input units and a single hidden layer with 3 units in it (Figure10) A

total number of parameters to be estimated is 15: 12 weighs for mapping

from input layer to hidden layer and 3 weights to associate the hidden layer

with the output layer.

5.3 Performance Measures

To evaluate performance of our Network we propose several goodness-of-fit

indicators, which are also found widely in literature on financial forecasting

[23],[2].

To begin with, we examine out-of sample performance by mean-squared-

error (MSE) measure, which is one of the most widely used verification

method in model fitting. For a network with training period from from 1

to N and a test period from N+1 to N+k, MSE would be calculated as:

27



MSE =
N+k∑
N+1

(Forecasti − Pricei)2 (18)

However, calculating MSE might not give a good overview of how effective

the forecast is.

In financial forecasting it is often very useful to correctly identify the di-

rection of the forecast rather than the concrete value. Therefore, we propose

a binary function, which we called the Hit Sequence, which can take either

of the 2 values: 1, if the forecast guesses the direction of the time series

correctly, 0 otherwise:

Hiti =

1, Forecasti ∗ Pricei ≥ 0

0, otherwise
(19)

Then, we find a proportion of correct guesses of the forecast direction and

call this measure the Hit Ratio. For a forecast window of length k, the Hit

Ratio would be

HitRatio =
k∑

i=1

(Hiti)/k (20)

Finally, our work would have been useless if we do not consider practical

implication of our forecasts. Therefore, we introduce a trading strategy and

evaluate Profit-and-Loss account for a hypothetical trader, who pursues this

strategy.

The details of trading are as follows. A trader enters the market on 1st

January 2013 with hypothetical money of 100. At the beginning of each

month, he builds a network based on a learning sample of 2 years of data,

and then uses the parameters of the network to evaluate one month ahead

forecast. Then, using the forecast values he uses the following strategy for

each trading day in the current month: he goes long when the model forecasts

the price to rise and to goes short otherwise. At the end of each month,

cumulative profit (of loss) is calculated as a percentage of the starting money.

Trading performance is evaluated for each month in 2013, independently

for each of the 5 assets considered in this paper.

28



5.4 Comparing Forecasts

The second hypothesis of our paper deals with comparing the models with

different iterations in the learning algorithm. Denote MSE100 the mean-

squared error of the model with 100 iterations in the learning algorithm, and

MSE100 the MSE of the model with 200 iterations.

We use the standard Diebold-Mariano test [10] for forecast comparison.

The Error of each forecast is denoted by mean-squared error. Then the null

hypothesis tested is

Ho : MSE100 = MSE200

againnst the alternative

H1 : MSE100 6= MSE200

(21)

We denote d the difference between the MSE of the first model and MSE

of the second model, i.e.

d = MSE100 −MSE200 (22)

Diebold-Mariano statistics is calculated as

DM =
d ∗
√
n

sd
,

where d =
1

n

n∑
i=1

di and

sd =

√√√√ 1

n− 1
∗

n∑
i=1

(di − d)2

(23)

Then the result of the test is compared to student t-statistics with n− 1

degrees of freedom at a predefined level of significance.

In our test, we had MSE estimates for each of the 12 months of 2013,

thus the sample consists of only 12 observations.

29



6 Results

We first consider the Network trained with 100 iterations of the Error func-

tion adjustments. Figures 16,17 in The Appendix A show the results of

training such a network on the 5 stocks.

Clearly, the in-sample fit appears to be outstandingly accurate (red dot-

ted line as opposed to black line of the real time series). The graphs 17b,

16b show almost one-to-one relationship between the forecast and the stock

price. However, such seemingly amazing results do not grantee that we can

reproduce the direction of the time series with great certainly using the fore-

cast. A relatively low MSE(Figure3) is attained for all stocks out-of-sample,

but may be a rather confusing sign of accuracy. While being a good indicator

in theory, it does not grant practical success.

In fact, if we build a graph, showing the relationship between the change

of time series xt−xt−1 and the change in forecast value ft−ft−1, we see that

there is almost no pattern in the data. Observations tend to fill the graph

randomly, and the best-fitting line has a slope close to zero and an R-squared

of below 1 %. Such tendency is shown for each of the 5 considered stocks.

What this means for the data analysis, is that we cannot confidently predict

the time path of the time series, judging by the time path of the forecast.

The relatively poor forecasting power of the ANN is supported by the

results of Hit ratio (Figure 4) and the P&L Account of a trader (Figure 5).

The average Hit Ratio throughout the year 2013 appears to be close to 0.5

for all five time series, which means that the network correctly predicts the

direction of the time series almost randomly. This is equivalent to forecasting

with tossing a fair coin, which would definitely be a quicker and simpler way

to attain the same accuracy of results.

The P&L Account measure is somewhat more complicated to understand

at first sight, since there are both positive and negative profit values through-

out stocks and time periods. In each forecast window, which lasts for about

20 trading days (one month), the forecast correctly predicts the stock price

direction for about half of the days, in which the P&L is increased. The

remaining half of the month leads to a loss in the P&L Account. The cu-

mulative value earned by the end of each month is determined primarily by

30



the magnitude of price change in each of the 2 periods: when the forecast

predicts correctly - good days, and when it does not - bad days. If the price

fluctuations on the good days is higher than those of the bad days, then

the trader is expected to enjoy his gain, otherwise, the bad days would play

havoc.

After yielding such unsatisfactory results with our initial model, we tried

to investigate the possible ways to increase the forecasting ability of the net-

work. Going back to the theory of ANNs, it may be a good idea to review

the learning algorithm of the network. In most cases, minimizing the error

of the cost function may lead to an infinite loop, since the dimension of the

parameter vector is very large for the algorithm to easily cope with error min-

imization. Therefore, an ANN engineer should always specify the maximum

number of iterations , which the algorithm runs in the error-minimization

problem. Clearly, the higher the number of iterations, the more precise

would be the in-sample network fit.

Our idea at this step was to analyse the change of forecasting power of the

ANN with the increase in the number of iterations of the learning algorithm.

In other words, would a better training give us neater forecasts?

The forecasting power was estimated as a coefficient of determination

in the regression, in which delta time series xt − xt−1 is regressed on delta

forecast values ft−xf−1. For each stock we associated the number of learning

steps with the R-squared (figure 18 in Appendix A). For all 5 stock we clearly

see an increase in forecasting power with the increase in training iterations

(even though R-squared still remains very low).

Nevertheless, such idea forced us to evaluate the same performance mea-

sures as before, but for a network with a higher number of iterations. We

repeated the calculations for 200 iterations of the learning algorithm and

computed the MSE of each forecasting window 5. Then we apply Diebold-

Mariano test to compare the results with those gathered with the initial

set-up.

Table 6 shows the results of the tests. Clearly, the test does not reject

the hypothesis that the forecasts are the same. So, under this framework,

changing the quality of the training is not a remedy for a poor forecasting

5The results for P&L, Hit Ratio and MSE are available on demand

31



model.

7 Conslusion

In this paper we considered performance of an MLP Neural Network on

forecasting stock time series of the 5 Russian companies. It is clear that

a network of this kind cannot be an ideal tool for practical problems, such

as constructing a trading strategy. However, we still see the undeniable

ability of such networks to fit the data with great precision, which, I am

sure, can be exploited with a wiser and deeper analysis of the problem. The

possible directions of the study of financial forecasting through ANNs might

be different from merely applying the conventional networks such as the MLP.

The basic feed-forward network can be extended and modified to serve the

researcher’s needs.

Another direction to look at is a careful examination of output data re-

ceived from the network as well as analysing the patterns in time series before

applying them to neural networks. It might also be the case that a less prim-

itive trading strategy is available with the use of ANNs, which may yield a

much more valuable result.

32



References

[1] Adya, M., & Collopy, F. (1998). How effective are neural networks at

forecasting and prediction? A review and evaluation. J. Forecasting,

17, 481-495.

[2] de A Araújo, R. (2012). A morphological perceptron with gradient-

based learning for Brazilian stock market forecasting. Neural Networks,

28, 61-81.

[3] Balkin, S. D., & Ord, J. K. (2000). Automatic neural network modeling

for univariate time series. International Journal of Forecasting, 16(4),

509-515.

[4] Beńıtez, J. M., Castro, J. L., & Requena, I. (1997). Are artificial neural

networks black boxes?. Neural Networks, IEEE Transactions on, 8(5),

1156-1164.

[5] Chakraborty, K., Mehrotra, K., Mohan, C. K., & Ranka, S. (1992).

Forecasting the behavior of multivariate time series using neural net-

works. Neural networks, 5(6), 961-970.

[6] Ghiassi, M., Saidane, H., & Zimbra, D. K. (2005). A dynamic artificial

neural network model for forecasting time series events. International

Journal of Forecasting, 21(2), 341-362.

[7] De Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series

forecasting. International journal of forecasting, 22(3), 443-473.

[8] de Groot, C., & Würtz, D. (1991). Analysis of univariate time series

with connectionist nets: A case study of two classical examples. Neu-

rocomputing, 3(4), 177-192.

[9] Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Un-

constrained Optimization and Nonlinear Equations. Prentice-Hall, En-

glewood Cliffs, NJ.

[10] Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accu-

racy. Journal of Business & economic statistics, 20(1).

33



[11] Dutta, S., Shekhar, S., & Wong, W. Y. (1994). Decision support in non-

conservative domains: generalization with neural networks. Decision

Support Systems, 11(5), 527-544.

[12] Gorr, W. L., Nagin, D., & Szczypula, J. (1994). Comparative study of

artificial neural network and statistical models for predicting student

grade point averages.International Journal of Forecasting, 10(1), 17-34.

[13] Hardgrave, B. C., Wilson, R. L., & Walstrom, K. A. (1994). Predicting

graduate student success: a comparison of neural networks and tradi-

tional techniques. Computers & Operations Research, 21(3), 249-263.

[14] Hebb, D. O. (2005). The organization of behaviour: A neuropsycho-

logical theory. Psychology Press.

[15] Haykin, S. (1992). Neural Networks: A Comprehensive Foundation,

2nd Edition, Prentice-Hall.

[16] Hill, T., Marquez, L., O’Connor, M., & Remus, W. (1994). Artificial

neural network models for forecasting and decision making. Interna-

tional Journal of Forecasting, 10(1), 5-15.

[17] Hippert, H. S., Bunn, D. W., & Souza, R. C. (2005). Large neural

networks for electricity load forecasting: Are they overfitted?. Interna-

tional Journal of forecasting, 21(3), 425-434.

[18] Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feed-

forward networks are universal approximators. Neural networks, 2(5),

359-366.

[19] Hruschka, H. (1993). Determining market response functions by neural

network modeling: A comparison to econometric techniques. European

Journal of Operational Research, 66(1), 27-35.

[20] Kang, S. Y. (1992). An investigation of the use of feedforward neural

networks for forecasting.

34



[21] Khashei, M., & Bijari, M. (2010). An artificial neural network (p, d,

q) model for time series forecasting. Expert Systems with Applica-

tions,37(1), 479-489.

[22] Krycha, K. A., & Wagner, U. (1999). Applications of artificial neural

networks in management science: a survey. Journal of Retailing and

Consumer Services, 6(4), 185-203.

[23] Kumar, M. (2009). Nonlinear Prediction of the Standard & Poor’s 500

and the Hang Seng Index Under a Dynamic Increasing Sample. Asian

Academy of Management Journal of Accounting and Finance, 5(2),

101-118.

[24] Lapedes, A., & Farber, R. (1987). Nonlinear signal processing using

neural networks.

[25] Lee, K., Booth, D., & Alam, P. (2005). A comparison of supervised

and unsupervised neural networks in predicting bankruptcy of Korean

firms. Expert Systems with Applications, 29(1), 1-16.

[26] Lippmann, R. P. (1987). An inuction to computing with neural nets.

ASSP Magazine, IEEE, 4(2), 4-22.trod

[27] MacKay, D. J. (2003). Information theory, inference, and learning al-

gorithms (Vol. 7). Cambridge: Cambridge university press.

[28] McNelis, P. D. (2005). Neural networks in finance: gaining predictive

edge in the market. Elsevier Acad. Press.

[29] Webb, A. R., & Lowe, D. (1990). The optimised internal representa-

tion of multilayer classifier networks performs nonlinear discriminant

analysis. Neural Networks, 3(4), 367-375.

[30] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas

immanent in nervous activity. The bulletin of mathematical biophysics,

5(4), 115-133.

35



[31] Paliwal, M., & Kumar, U. A. (2009). A study of academic performance

of business school graduates using neural network and statistical tech-

niques. Expert Systems with Applications, 36(4), 7865-7872.

[32] Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical

techniques: A review of applications. Expert systems with applications,

36(1), 2-17.

[33] Qi, M. (2001). Predicting US recessions with leading indicators via neu-

ral network models. International Journal of Forecasting, 17(3), 383-

401.

[34] Rojas, R. (1996). Neural networks: a systematic introduction. Springer.

[35] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning

representations by back-propagating errors. Cognitive modelling.

[36] Sharma, S., & Shebalkov, M. (2013). Application of Neural Network

and Simulation Modeling to Evaluate Russian Banks’ Performance.

Journal of Applied Finance & Banking, 3(5), 19-37.

[37] Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural

networks: the case of bank failure predictions. Management science,

38(7), 926-947.

[38] Tang, Z., & Fishwick, P. A. (1993). Feedforward neural nets as models

for time series forecasting. ORSA Journal on Computing, 5(4), 374-385.

[39] Werbos, P. J. (1990). Backpropagation through time: what it does and

how to do it. Proceedings of the IEEE, 78(10), 1550-1560.

[40] West, P. M., Brockett, P. L., & Golden, L. L. (1997). A comparative

analysis of neural networks and statistical methods for predicting con-

sumer choice. Marketing Science, 16(4), 370-391.

[41] Wong, B. K., & Selvi, Y. (1998). Neural network applications in fi-

nance: a review and analysis of literature (1990–1996). Information &

Management, 34(3), 129-139.

36



[42] Zhang, G., Eddy Patuwo, B., & Y Hu, M. (1998). Forecasting with

artificial neural networks:: The state of the art. International journal

of forecasting, 14(1), 35-62.

37



A Supplementary Tables, Graphs and Fig-

ures

Table 3: Normalized Out-of-Sample MSE

Month GAZPROM LUKOIL MTS SBERBANK GMKN

January 0.0038 0.0184 0.0142 0.0473 0.0050

February 0.0046 0.0071 0.0136 0.0210 0.0066

March 0.0059 0.0183 0.0544 0.0277 0.0049

April 0.0060 0.0332 0.0331 0.0250 0.0095

May 0.0122 0.0506 0.0338 0.0549 0.0211

June 0.0333 0.0497 0.0266 0.0425 0.0117

July 0.0081 0.0229 0.0194 0.0337 0.0075

August 0.0058 0.0271 0.0336 0.0154 0.0138

September 0.0147 0.0319 0.0325 0.0329 0.0095

October 0.0090 0.0319 0.4248 0.0192 0.0099

November 0.0167 0.0174 0.0145 0.0292 0.0070

December 0.0061 0.0121 0.0144 0.0181 0.0150

Average 0.0105 0.0267 0.0596 0.0306 0.0101

38



Table 4: Hit Ratio

Month GAZPROM LUKOIL MTS SBERBANK GMKN

January 0.471 0.471 0.471 0.529 0.294

February 0.526 0.474 0.474 0.474 0.368

March 0.684 0.684 0.474 0.500 0.632

April 0.619 0.524 0.571 0.524 0.476

May 0.700 0.700 0.400 0.600 0.450

June 0.556 0.556 0.500 0.556 0.667

July 0.773 0.636 0.500 0.636 0.545

August 0.429 0.476 0.667 0.810 0.714

September 0.550 0.450 0.650 0.600 0.750

October 0.409 0.545 0.409 0.364 0.545

November 0.474 0.474 0.474 0.474 0.368

December 0.800 0.650 0.579 0.600 0.600

Average 0.582 0.553 0.514 0.555 0.534

Table 5: Profit and Loss Account

Month GAZPROM LUKOIL MTS SBERBANK GMKN

January -1.09% -2.64% 2.59% 12.24% -5.14%

February -1.37% -1.52% 1.39% -0.72% -6.50%

March 8.02% 6.52% 5.39% 1.08% 5.03%

April 9.59% 4.62% 2.78% 7.51% -3.93%

May 5.44% 1.62% -5.45% -1.53% 2.37%

June 2.79% 5.15% -5.93% 4.79% 13.18%

July 17.21% 1.14% -3.99% -0.67% -1.18%

August -3.23% -2.20% -0.19% 10.63% 9.12%

September 7.23% -8.94% 5.06% 5.42% 9.13%

October -2.36% 1.93% -6.40% -7.30% 6.96%

November -4.17% -5.17% -2.68% -6.18% -1.40%

December 7.23% 6.94% 3.15% 1.02% 5.82%

Year’s PNL 52.74% 6.30% -5.20% 27.18% 36.17%

39



Table 6: Diebold-Mariano Test Results

Stock GAZPROM LUKOIL MTS SBERBANK GMKN

DM-stat -1.042935 1.02694 1.29907 -1.01985 -1.08548

p-value 0.31936 0.32651 0.2991 0.31737 0.27268

(a) Time Series (b) Returns

(c) Histogram (d) QQ plot

Figure 11: GAZPROM Descriptive Statistics

40



(a) Time Series (b) Returns

(c) Histogram
(d) QQ plot

Figure 12: LUKOIL Descriptive Statistics

41



(a) Time Series
(b) Returns

(c) Histogram
(d) QQ plot

Figure 13: MTS Descriptive Statistics

42



(a) Time Series (b) Returns

(c) Histogram
(d) QQ plot

Figure 14: SBERBANK Descriptive Statistics

43



(a) Time Series
(b) Returns

(c) Histogram (d) QQ plot

Figure 15: GMKN Descriptive Statistics

44



(a) Real Price vs Forecast

(b) Goodness of Fit

(c) Price Change Predictability

Figure 16: Gazprom Network Fit and Predictability

45



(a) Real Price vs Forecast

(b) Goodness of Fit

(c) Histogram

Figure 17: Lukoil Network Fit and Predictability

46



(a) Gazprom
(b) Lukoil

(c) MTS

(d) Sberbank

(e) GMKN

Figure 18: Explanatory Power of the Forecast as a Function of the Number

of Iterations

47



B Tips for Programmers

1 ### Packages: "xts", "pracma"

2
3
4 #################### Preliminary steps #######################

5
6
7 ### A useful function , which transforms a vector to a matrix

8
9 vec2mat <- function(w,row ,col){ matrix(w,row ,col ,byrow=T)}

10
11
12 ### Error function for 1 obserbation

13
14 Error.fun.1obs <- function(input ,output ,w,dim.nn){

15
16 d2 <- dim.nn[-1]

17
18 d1 <- dim.nn[-length(dim.nn)]

19
20 boundary <- c(0,cumsum(d1*d2))

21
22 temp <- input

23 for (m in 2: length(dim.nn)){

24
25 temp <- sigmoid(vec2mat(w[(1+ boundary[m-1]):boundary[m]],dim.nn[m],dim.

nn[m-1])%*%temp)

26 }

27
28 Error <- sum((as.vector(temp)-sigmoid(output))^2)

29
30 return(Error)

31 }

32
33
34 ### Error function for the whole training sample

35
36 Error.fun.allobs <- function(tr.ts,w,dim.nn){

37
38 Error <- 0

39
40 for( i in (dim.nn [1]+1) :( length(tr.ts)-dim.nn[length(dim.nn)])){

41
42 Error <- Error + Error.fun.1obs(tr.ts[(i-dim.nn[1]):(i-1)],tr.ts[i:(i+

dim.nn[length(dim.nn)]-1)],w,dim.nn)

43 }

44
45 return(Error/length(tr.ts))

46
47 }

48



48
49
50 ### Forecast function

51
52 Forecast.fun <- function(input ,w,dim.nn){

53
54 d2 <- dim.nn[-1]

55
56 d1 <- dim.nn[-length(dim.nn)]

57
58 boundary <- c(0,cumsum(d1*d2))

59
60 temp <- input

61 for (m in 2:( length(dim.nn) -1)){

62
63 temp <- sigmoid(vec2mat(w[(1+ boundary[m-1]):boundary[m]],dim.nn[m],dim.

nn[m-1])%*%temp)

64 }

65
66 temp <- vec2mat(w[(1+ boundary[length(dim.nn) -1]):boundary[length(dim.nn)

]],dim.nn[length(dim.nn)],dim.nn[length(dim.nn) -1])%*%temp

67
68 return(temp)

69 }

70
71
72 ################ Feed the data to the Network ###################

73
74 data <-read.csv("here should be the directory of your csv file.csv")

75
76 dates <- as.Date(as.vector(data [,3]),"%d/%m/%y") #This makes R convert your

dates into day -month -year format

77 # a third column shall be the dates in your csv file

78
79 ts <- xts(sber[,5],order.by=as.POSIXct(dates)) #This treats stock prices as

time series related to dates

80 #index 5 indicates that your price series is in the 5th column of csv file

81
82 #Take some estimation window

83 real.training.ts<-ts["2011 -01/2012 -12"]

84
85 #And this is an estimation window plus one month test window

86 real.plot.ts <- ts["2011 -01/2013 -01"]

87
88
89 ###Set the parameters of the Network

90
91 dim.nn <- c(4,3,1)

92
93 d2 <- dim.nn[-1]

94 d1 <- dim.nn[-length(dim.nn)]

49



95
96 N <- sum(d1*d2)

97
98 w <- rnorm(N) #random weight vector

99
100
101 real.training.ts <-as.vector(real.training.ts)

102
103 lag <-length(real.training.ts) #number of observations in a training sample

104
105 real.plot.ts <- as.vector(real.plot.ts)

106
107 window <- length(real.plot.ts) - length(real.training.ts) #number of days to

forecast ahead

108
109
110 ### Normalize the data

111
112
113 training.ts <-(real.training.ts -mean(real.training.ts))/sd(real.training.ts)

114
115 plot.ts <- (real.plot.ts-mean(real.training.ts))/sd(real.training.ts)

116
117
118 ### Find the minimum of Error function (Newton -type algorithm)

119
120 min.func <- function(x,t1 = training.ts,dims=dim.nn){

121
122 return(Error.fun.allobs(t1 ,x,dims))

123 }

124
125 global.min <-nlm(f=min.func ,p=as.vector(w),print.level=2,iterlim = 100)

126
127 w.min <- global.min$estimate #Here is the trained weight vector

128
129
130 ### Evaluate Forecast

131
132 forecast.ts <- plot.ts

133
134 for (i in (dim.nn [1]+1) :( length(plot.ts)-dim.nn[length(dim.nn)])){

135
136 tf <- Forecast.fun(as.vector(plot.ts[(i-dim.nn[1]):(i-1)]),w.min ,dim.nn)

137
138 forecast.ts[i] <- tf[1]

139
140 }

141
142 ### Now you can plot the forecast vs the real price

script.R

50


	Introduction
	Literature Review
	Neural Networks: From Neuron to Intelligent Systems
	Inspiration
	Biological Neuron
	Neural Interaction
	The Power of Ions
	Learning through Synapses

	An Artificial Neuron
	Network Design
	Training the network
	The Multi-Layer Perceptron
	Topology
	Information processing
	Training


	Data
	Time Series Description
	Training and Test Samples

	Model
	Training Algorithm and Software
	Optimal Model Configuration
	Performance Measures
	Comparing Forecasts

	Results
	Conslusion
	Supplementary Tables, Graphs and Figures
	Tips for Programmers

