Absence-proofness: A new cooperative stability concept

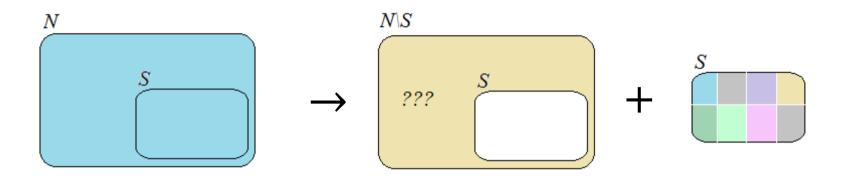
Emre Doğan

17.09.2014

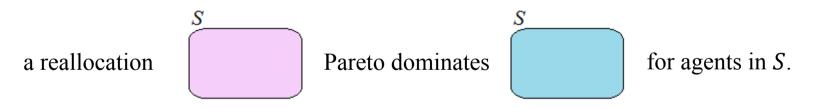
HSE – DeCAn Lab

Overview

Core Stability



Definition 1: The blue allocation is core stable if for no $S \subseteq N$



- There is no interaction between S and $N \setminus S$ if S secedes.
- Agents in *S* do not need to know what happens in $N \setminus S$.

Overview

Absence-proofness

 $\varphi \xrightarrow{K} \rightarrow \varphi \xrightarrow{K} K + \kappa$

After the allocation process in $N \setminus K$, agents in $S(S \setminus K \text{ and } K)$ meet behind closed doors.

Total resources of *S* afterwards:
$$\varphi_{S\setminus K}(N\setminus K) = \begin{bmatrix} S \\ K \\ \vdots \end{bmatrix} + \begin{bmatrix} K \\ \vdots \end{bmatrix}$$

Definition 2: An <u>allocation rule φ is *absence-proof* (*AP*) if for no problem, no $N, K \subseteq S \subseteq N$,</u>

S Pareto dominates
$$\varphi_S(N) =$$
 for agents in S

Basics:

 $N \in \mathcal{N}$: Set of agents

 $v: 2^N \to \mathbb{R}_+$: Characteristic function, v(S) is the maximum surplus $S \subseteq N$ can generate. (*N*, *v*): TU cooperative game

Efficient allocation: A distribution of v(N) among agents in N.

$$x = (x_i)_{i \in \mathbb{N}} \in \mathbb{R}^N_+$$
 s.t. $\sum_{i \in \mathbb{N}} x_i = v(\mathbb{N})$

Core: x is in the core if $\sum_{i \in S} x_i \ge v(S)$, $\forall S \subseteq N$

Subgame of (N, v): (T, v_T) is derived by the restriction of v over agents in $T \subseteq N$.

for all $S \subseteq T$, $v_T(S) = v(S)$

Regular domain of games: A set D of games s.t. for each game (N, v) in D all of its subgames are also in D.

Solution φ on **D** assigns an efficient allocation to each game (N, v) in **D**.

Motivating Example

 $N = \{1, ..., 5\}$ = $Workers = \{1, 2, 3\}$ \cup $Firms = \{4, 5\}$

 $v(S) = min\{|S \cap W|, |S \cap F|\}, \text{ for all } S \subseteq N$

$$v(N) = 2, \quad v(\{1,4,5\}) = 1$$

Unique core allocations for game N and subgame $T = \{1,4,5\}$:

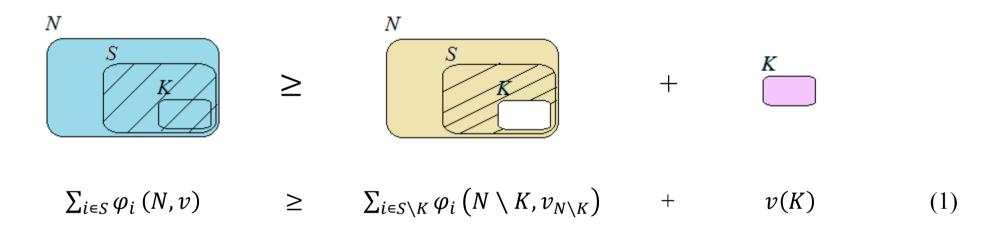
$$(N, v) \rightarrow x = (0, 0, 0, 1, 1)$$

 $(T = \{1, 4, 5\}, v_T) \rightarrow x' = (1, *, *, 0, 0)$

Then, the set of workers $W = \{1,2,3\}$ can manipulate this core selection by absence of agents 2 and 3 in the job market.

No absence-proof solution on a regular domain *D* that contains this game!

Definition 3: A solution φ is absence-proof on a regular domain *D* if for all games $(N, v) \in D$, and all $K \subseteq S \subseteq N$,



Definition 4: (*Sprumont 1990*) A solution φ is *population monotonic* (*PM*) on a regular domain *D* if for all games $(N, v) \in D$ and all $i \in T \subseteq N$

$$\varphi_i(T, v_T) \le \varphi_i(N, v)$$

Proposition 1: If φ is PM on *D* then it is also AP on *D*.

Marginal contribution of agent i: $MC_i(T) = v(T \cup \{i\}) - v(T)$

Convex games: (N, v) s.t. $MC_i(T) \leq MC_i(T')$ for all $T \subseteq T' \subseteq N$ and $i \notin T'$.

Corollary 1: The Shapley value and the Dutta-Ray egaliatarian solution are absence-proof on the set of convex games.

Proposition 2: The nucleolus is not absence-proof on convex games.

Sprumont (1990): "Coalition formation is a complex process. Our concern is to guarantee that once a coalition *N* has decided upon an allocation of v(N), no player will ever be tempted to induce the formation of a coalition smaller than *N* by using his bargaining skills or by any other means."

Let $N = \{1, 2, 3, 4\}, S = \{1, 2, 3\} S' = \{4\}$

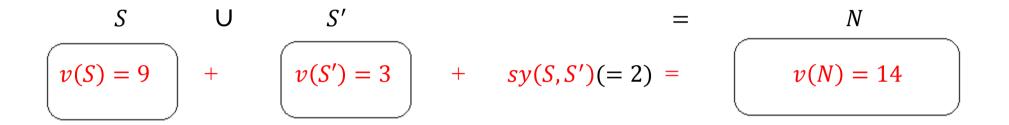
v(S) = 9v(4) = 3v(N) = 14 $\varphi(S, v_S) = (3,3,3)$ $\varphi(4, v_4) = 3$ $\varphi(N, v) = (4,4,1,5)$

 φ is not PM as agent 3's share decreases from 3 to 1 when agent j shows up.

Suppose v(3) = 0. Even if agent 3 is tempted to not allow agent 4 to join group as he cannot pay enough to convince him to stay away.

A Normative Approach to the Core and AP Based on Merging Coalitions

S, $S' \subset N$ s.t. $S \cap S' = \emptyset$



Core stability

 $\sum_{i\in S}\varphi_i(S,v_S)=v(S)=9.$

If $\sum_{i \in S} \varphi_i(N, v) = 12 > 9 + 2$, $\varphi(N)$ is not a core allocation

Absence-proofness $K \subseteq S$

Say $\sum_{i \in K} \varphi_i(S, v_S) = 6$ Then, all the rest $(N \setminus K)$ gets 12 - 6 = 6 before the merger If $\sum_{i \in K} \varphi_i(N, v) = 9 > 6 + 2$. Then $(N \setminus K)$ gets 14 - 9 = 5 after the merger

Proposition 3:

(i) φ is core stable on D *iff* for all (N, v) and partition S, S' of N $\sum_{i \in S} (\varphi_i(N, v) - \varphi_i(S, v_S)) \leq sy(S, S')$ (2)

Increase in the total share of agents in *S* is not more than the synergy

(ii) φ is AP on *D* iff for all (N, v), for all partition S, S' of N, and $K \subseteq S$ $\sum_{i \in K} (\varphi_i(N, v) - \varphi_i(S, v_S)) \leq sy(S, S')$ (3)

Increase in the total share of agents in $K \subseteq S$ is not more than the synergy

Exchange Economies

Exchange Economies: Allocation problems where agents exchange private endowments.

Remark on manipulation: When agents in *K* stay out, they just stay at home wait for $S \setminus K$ to bring their allocation at the reduced problem.

Proposition 4: There is no absence-proof allocation rule in Böhm-Bawerk's horse market and in house assignment problems (Shapley and Shubik (1971)).

Example 1: (Single seller auction): Seller has one good. His reservation price is 0.

4 buyers with valuations: $b_1 = 1, b_2 = 1, b_3 = 4, b_4 = 4$.

	All buyers in	Buyers 3 and 4 are out
Core allocations:	Buyer 3 or 4 gets the good pays \$4	Buyer 1 or 2 gets the good pays \$1
	Others pay nothing	Others pay nothing

Set of all buyers can manipulate by absence of buyers 3 and 4.

Exchange Economies

House assignment problem (Shapley and Shubik 1971):

- Each agent owns one house
- Agents have valuations for each house
- Utilities are quasilinear in money
- Monetary transfers possible (balanced transfers adds up to 0)

Example: $W = \{1, 2, 3\}, F = \{4, 5\}$

	h_1	h_2	h_3	h_4	h_5
$u_1(h_i)$	0	0	0	1	1
$u_2(h_i)$	0	0	0	1	1
$u_3(h_i)$	0	0	0	1	1
$u_4(h_i)$	1	1	1	0	0
$u_5(h_i)$	1	1	1	0	0

Exchange Economies

Classical Exchange Economies

Proposition 5: The Walrasian allocation rule ψ is manipulable.

Example 2: $\ell = 2, N = 3, \{e_1, e_2, e_3\} = \{(10, 10), (35, 5), (15, 15)\}. u_i = x_i y_i \text{ for all } i.$ $u_1[\psi_1(\{1, 2, 3\}, e)] = 112.5 \qquad u_3[\psi_3(\{1, 2, 3\}, e)] = 253.125$

If agent 3 leaves the scene or never appears at the first place

Agent 1's allocation at the reduced problem	<u>Agent 3's</u> endowment		Final resources of the nanipulating coalition	
$\psi_1(\{1,2\}) = (20,6.\overline{6}) +$	<i>e</i> ₃ = (15,15)	=	(35,21. 6)	
Redistribution of total resources af	Pareto improvement			
$z_1 = (15, 7, \overline{6}), z_3 = (20, 14)$	4) →	$u_1(z_1)=115,$	$u_3(z_3) = 280$	

The General Setting

- $N \in \mathcal{N}$: Set of agents
- $\boldsymbol{\Omega} \in \boldsymbol{C}$: Common endowment to be distributed
- **C**: Consumption space
- $R_i \in \mathcal{R}_i$: Preference of *i* over \mathcal{C}
- $R \in \mathcal{R}$: Preference profile
- $(\mathcal{N}, \mathcal{C}, \mathcal{R})$: Fair division model
- (*N*, *Ω*, *R*): Fair division problem

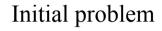
Remark on the manipulation: If *K* does not appear in the allocation process, it means they renounce their claims.

Then, K = S is never a better outside option. Core has no bite here.

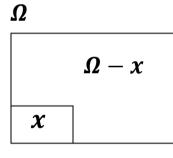
PM: (As Ω is fixed) No one is better off when an additional agent arrives.

Theorem 1: Given a model $(\mathcal{N}, \mathcal{C}, \mathcal{R})$, if a PO allocation rule φ is PM, then it is also AP.

Proposition 8: Let everyone has strictly monotone preferences, φ be an allocation rule.

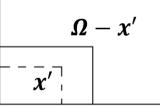


 (N, Ω)



 $\varphi_j(N)=x$

Additional set K of agents claim Ω $(N \cup K, \Omega)$



 $\varphi_j(N\cup K)=x'>x$

Then, everyone except *j* manipulates φ at problem $N \cup K$ by absence of *K*.

$\boldsymbol{\Omega} \in \mathbb{R}^{\ell}_+$ & no money in the model

Two famous rules:

- 1. Ω -egalitarian equivalent allocation: Picks the unique efficient allocation x s.t. all agents are indifferent to the same bundle λ . Ω for $\lambda \in \mathbb{R}$.
- 2. Competitive equilibrium with equal incomes (CEEI): First distribute Ω among agents equally. Agents start with (Ω/n) . Then calculate the competitive allocation.

Corollary to Theorem: Ω -egalitarian equivalent allocation rule is AP.

Example 3: Let $\ell = 2, \Omega = (24,24), |N| = 4$ $u_1 = min\{2x + 8, y\}, \quad u_i = min\{18x + 100,25y + 132\}$ for i = 2,3,4. $CEEI_1(\{1,2,3\}) = (1,10) \quad CEEI_1(N) = (2,12)$

Corollary to Proposition 8: CEEI is not AP.

Remark 1: Competitive idea is less vulnerable to manipulation compared to exchange economies (See Example 4).

Example 4:

 $N = \{1, ..., 11\}$

2 divisible goods (beans and rice)

 $u_1 = r_1 + 10b_1,$ $u_i = 10r_i + b_i$ for $i \in S = \{2, ..., 11\}.$

Fair DivisionExchange Economy $\Omega = (11,11)$ $e_i = (1,1)$ for all $i \in N$ (private endowment) $CEEI(N, \Omega, R)$ $= \psi(N, e, R)$ (Walrasian allocation)

No coalition can manipulate

S can manipulate the Walrasian rule by leaving any proper subset $K \subset S$ out of the market.

 Ω is a single object & monetary transfers are available

Valuation: $a_i \ge 0$

Problem: (*N*, *a*)

Assignment: Only one agent receives the object

Transfers: A vector of balanced money transfers: $\sum_{i \in N} t_i = 0$

Allocation: Assignment & balanced transfers

Utility of *i*: $u_i(allocation) = a_i + t_i$ if *i* gets the object, $u_i = t_i$ otherwise

Assume equal treatment of equals (final utilities of agent with same valuations are the same)

WLOG order agents s.t. $0 \le a_1 \le a_2 \le \dots \le a_n$

An *efficient solution* yields a unique final utility distribution U s.t.

 $\sum_{i \in N} U_i(N, a) = a_n$ and $U_i \ge 0$

Stand-alone cooperative game: $v(S, a^S) = max_{i \in S}a_i$

Corollary to Theorem: Shapley value and the Dutta-Ray egalitarian solution of the associated stand-alone cooperative game are AP.

$0 \le a_1 \le a_2 \le \dots \le a_n$

Proposition 9: A utility distribution satisfies condition C if and only if for any problem (N, a), when an additional agent j arrives, we have:

Cases
$$C = AP$$
 $C = PM$ $a_{n-1} < a_n < a_j$ Utility of only agent n can increase (up to $a_j - a_n$)No one in N gainsOtherwiseNo one in N gainsNo one in N gains

Envy-freeness: No one prefers another agent's allocation to her own allocation

Proposition 10: AP and EF are incompatible

Concluding Remarks

- Our manipulation idea is a generalization of the secession idea in core stability, and AP solutions are core selections.
- AP is too demanding in exchange economies
- Thomson (2012) introduced a weaker axiom "withdrawal-proofness" in Exchange Economies and Fair Division problems. Our negative results coincide with him. However, we have positive results for a stronger concept.
- AP imposes core-like participation constraints in Fair Division problems where core stability has no bites.

Concluding Remarks

• PM has been "mainly" considered as a solidarity property in TU Games and Fair Divison problems. We show that it also has a strong stability aspect.

• AP and PM have close formal implications. It is not easy to find sensible solutions that are not PM but AP.