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Overview

Core Stability
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Definition 1: The blue allocation is core stable if forno S € N

S S

a reallocation @ Pareto dominates @ for agents in S.

* There is no interaction between S and N \ S if S secedes.
* Agents in S do not need to know what happens in N \ S.



Overview

Absence-proofness
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After the allocation process in N\K, agents in S (S\K and K) meet behind closed doors.

S
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Total resources of S afterwards: Ps\k (N\K) = + @

Definition 2: An allocation rule ¢ 1s absence-proof (AP) if for no problem,no N, K €S S N,

S S
a re-allocation r {E——\N Pareto dominates @g(N) = @ for agents in §
L\ )




TU Games

Basics:

N € IV Set of agents

v: 2V - R, : Characteristic function, v(S) is the maximum surplus S € N can generate.
(N, v): TU cooperative game

Efficient allocation: A distribution of v(N) among agents in N.

x = (x)ien € RY s.t. Yienx; = v(N)
Core: x is in the core if  Y,esx; = v(S), VSEN

Subgame of (N,v): (T, vy) is derived by the restriction of v over agentsin T S N.

forallS € T, v (S) = v(S)

Regular domain of games: A set D of games s.t. for each game (N, v) in D all of its subgames
are also in D.

Solution @ on D assigns an efficient allocation to each game (N, v) in D.



TU Games

Motivating Example

N ={1,..,5} Workers = {1,2,3} U Firms = {4,5}
v(S) =min{|SNW|,|SNF|}, forallS €N

v(N) = 2, v({1,45}) =1

Unique core allocations for game N and subgame T = {1,4,5}:
(N,v) - x =(0,0,0,1,1)
(T ={1,4,5}, vp) » x' = (1,%,%,0,0)

Then, the set of workers W = {1,2,3} can manipulate this core selection by absence of agents 2
and 3 in the job market.

No absence-proof solution on a regular domain D that contains this game!



TU Games

Definition 3: A solution ¢ is absence-proof on a regular domain D if for all games (N, v) € D,
andall K € S S N,
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Dies @i (N, v) Yiessk @i (N \ K, vk + v(K) (1)

Definition 4: (Sprumont 1990) A solution @ is population monotonic (PM) on a regular domain
D if for all games (N,v) € Dandallie T S N

9i(T,vr) < ¢;(N,v)



TU Games

Proposition 1: If ¢ is PM on D then it is also AP on D.

Marginal contribution of agent i: MC;(T) = v(T U {i}) — v(T)

Convex games: (N,v) st. MC;(T) < MC;(T") forall TS T'S Nandi & T'.

Corollary 1: The Shapley value and the Dutta-Ray egaliatarian solution are absence-proof on
the set of convex games.

Proposition 2: The nucleolus is not absence-proof on convex games.



TU Games

Sprumont (1990): “Coalition formation is a complex process. Our concern 1s to guarantee that
once a coalition N has decided upon an allocation of v(N), no player will ever be tempted to
induce the formation of a coalition smaller than N by using his bargaining skills or by any other

means.”

LetN = {1,234}, S={1,23} S ={4)

v(S) =9 v(4) =3 v(N) = 14
@(S,vs) = (3,3,3) 0(4,v,) =3 o(N,v) = (44,1,5)

@ isnot PM  as agent 3’s share decreases from 3 to 1 when agent j shows up.

Suppose v(3) = 0. Even if agent 3 is tempted to not allow agent 4 to join group as he cannot

pay enough to convince him to stay away.



TU Games

A Normative Approach to the Core and AP Based on Merging Coalitions

S, SScN st SNnS'=0

S U S’ = N

[U(S) =9 J + {U(S’) = 3} +  sy(§5,8S)(=2) = { v(N) = 14 J

Core stability

Yies 9i(S,vs) = v(S) =09.

If Yieso;(N,v) =12>9+2 , @(N) is not a core allocation

Absence-proofness K C S

Say Yiex ©i(S,v5) = 6 Then, all the rest (N \ K) gets 12— 6 = 6 before the merger

If Yiex@i(N,v) =9 >6+ 2. Then (N \ K) gets 14 —9 =5 after the merger




TU Games

Proposition 3:

(i) @ iscorestableon D iff forall (N,v) and partition S,S’ of N
Yies(pi(N,v) —@i(S,v5)) < sy(S,S") 2)

Increase in the total share of agents in S is not more than the synergy

(il) ¢ is AP on D iff for all (N, v), for all partition S,S’ of N,and K € S
Yiek(@i(N,v) —@i(S,v5)) < sy(S,S") (3)

Increase in the total share of agents in K € S is not more than the synergy
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Exchange Economies
Exchange Economies: Allocation problems where agents exchange private endowments.

Remark on manipulation: When agents in K stay out, they just stay at home wait for S \ K to

bring their allocation at the reduced problem.

Proposition 4: There is no absence-proof allocation rule in Bohm-Bawerk’s horse market and in

house assignment problems (Shapley and Shubik (1971)).

Example 1: (Single seller auction): Seller has one good. His reservation price is 0.
4 buyers with valuations: by =1, b, =1, b3 = 4, b, = 4.
All buyers in Buyers 3 and 4 are out

Core allocations: Buyer 3 or 4 gets the good pays $4 Buyer 1 or 2 gets the good pays $1
Others pay nothing Others pay nothing

Set of all buyers can manipulate by absence of buyers 3 and 4.
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Exchange Economies

House assignment problem (Shapley and Shubik 1971):

* Each agent owns one house

Agents have valuations for each house

Utilities are quasilinear in money

Monetary transfers possible (balanced transfers adds up to 0)
Example: W = {1,2,3}, F = {4,5}

h, h, h; hy hs

u(h;)) 0 0 0 1 1
u,(h;) 0 0 0 1 1
us(h;) 0 0 0 1 1
u,(hy) 1 1 1 0 0
us(h;) 1 1 1 0 0



Exchange Economies

Classical Exchange Economies

Proposition 5: The Walrasian allocation rule ¥ 1s manipulable.

Example 2: £ = 2, N = 3, {ey,e,,e3} = {(10,10), (35,5), (15,15)}. u; = x;y; for all i.

w [h,({1,2,3},€)] = 112.5 us[s(£1,2,3}, €)] = 253.125

If agent 3 leaves the scene or never appears at the first place

Agent 1’s allocation Agent 3’s Final resources of the
at the reduced problem endowment manipulating coalition
Y, ({1,2}) = (20,6.6) + e; = (15,15) = (35,21.6)
Redistribution of total resources afterwards Pareto improvement

Z1 = (15,76), Z3 = (20,14‘) = ul(Zl) — 115, U3(Z3) = 280
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Fair Division

The General Setting

N € IV Set of agents

2 € C: Common endowment to be distributed
C: Consumption space

R; € R;: Preference of i over C

R € R: Preference profile

(IV, C, R): Fair division model

(N, 22, R): Fair division problem
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Fair Division

Remark on the manipulation: If K does not appear in the allocation process, it means they

renounce their claims.

Then, K = S is never a better outside option. Core has no bite here.

PM: (As (2 1s fixed) No one is better off when an additional agent arrives.

Theorem 1: Given a model (IV, C,R), if a PO allocation rule ¢ is PM, then it is also AP.

15



Fair Division

Proposition 8: Let everyone has strictly monotone preferences, ¢ be an allocation rule.

Initial problem Additional set K of agents claim (2
(N,2) (NUK, )
0 0
0—x 0—x
I
X X
@;i(N) =x pi(NUK) =x">x

Then, everyone except j manipulates ¢ at problem N U K by absence of K.
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Fair Division

2 € R & no money in the model

Two famous rules:

1. N-egalitarian equivalent allocation: Picks the unique efficient allocation x s.t. all agents

are indifferent to the same bundle A. (2 for A € R.

2. Competitive equilibrium with equal incomes (CEEI): First distribute {2 among agents

equally. Agents start with (£2/n). Then calculate the competitive allocation.

Corollary to Theorem: (2-egalitarian equivalent allocation rule i1s AP.
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Fair Division

Example 3: Let £ = 2, Q = (24,24), [N| = 4

u; = min{2x +8,y}, u; = min{18x + 100,25y + 132} for i = 2,3,4.

CEEL,({1,2,3}) = (1,10)  CEEI,(N) = (2,12)

Corollary to Proposition 8: CEEI is not AP.

Remark 1: Competitive idea is less vulnerable to manipulation compared to exchange

economies (See Example 4).
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Fair Division

Example 4:

N={1,..11}

2 divisible goods (beans and rice)

uy =1 + 10b4, u; =10r; + b; fori € S ={2,...,11}.

Fair Division Exchange Economy
Q=(11,11) e; = (1,1) for all i € N (private endowment)
CEEI (N,Q,R) = Y(N, e, R) (Walrasian allocation)
No coalition can manipulate S can manipulate the Walrasian rule by leaving

any proper subset K C S out of the market.
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Fair Division

0 is a single object & monetary transfers are available
Valuation: a; = 0

Problem: (N, a)

Assignment: Only one agent receives the object

Transfers: A vector of balanced money transfers: },;cyt; = 0
Allocation: Assignment & balanced transfers

Utility of i: u;(allocation) = a; +t; if i gets the object,

u; = t; otherwise
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Fair Division
Assume equal treatment of equals (final utilities of agent with same valuations are the same)

WLOG order agents s.t. 0<a,<a,<--<a,

An efficient solution yields a unique final utility distribution U s.t.

ZiEN Ui(N) a) = Aan and Ui >0

Stand-alone cooperative game: v(S, a®) = max;esq;

Corollary to Theorem: Shapley value and the Dutta-Ray egalitarian solution of the associated

stand-alone cooperative game are AP.
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Fair Division

Proposition 9: A utility distribution satisfies condition C if and only if for any problem (N, a),

when an additional agent j arrives, we have:

Cases C=AP C =PM
Ap-1 < ap < q; Utility of only agent n can increase (up to a; — a,)  No one in N gains

Otherwise No one in N gains No one in N gains

Envy-freeness: No one prefers another agent’s allocation to her own allocation

Proposition 10: AP and EF are incompatible
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Concluding Remarks

* Our manipulation idea is a generalization of the secession idea in core stability, and AP

solutions are core selections.

* AP is too demanding in exchange economies

* Thomson (2012) introduced a weaker axiom “withdrawal-proofness” in Exchange
Economies and Fair Division problems. Our negative results coincide with him. However,

we have positive results for a stronger concept.

* AP imposes core-like participation constraints in Fair Division problems where core

stability has no bites.



Concluding Remarks

* PM has been “mainly” considered as a solidarity property in TU Games and Fair Divison

problems. We show that it also has a strong stability aspect.

* AP and PM have close formal implications. It is not easy to find sensible solutions that are
not PM but AP.



