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Core Stability  

 

 

        𝜑                                                                            →     𝜑                +    

   
Definition 1: The blue allocation is core stable if for no 𝑆 ⊆ 𝑁 

 

for agents in 𝑆. a reallocation Pareto dominates 

 

 

• There is no interaction between S and N ∖ S if S secedes. 
• Agents in 𝑆 do not need to know what happens in N ∖ S. 
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Absence-proofness  

    

 

    𝜑                                    →    𝜑                  +          
   
 

After the allocation process in 𝑁\𝐾, agents in 𝑆 (𝑆\𝐾 and 𝐾) meet behind closed doors. 

  
  +         Total resources of  𝑺 afterwards:       𝜑!\! 𝑁\𝐾 =

 

Definition 2: An allocation rule 𝜑 is absence-proof  (AP) if for no problem, no 𝑁, 𝐾 ⊆ 𝑆 ⊆ 𝑁,  

 
Pareto dominates  𝜑! 𝑁 = for agents in 𝑆a re-allocation 
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Basics: 

𝑵 ∈𝓝: Set of agents 

𝒗:𝟐𝑵 → ℝ!: Characteristic function, 𝑣 𝑆  is the maximum surplus  𝑆 ⊆ 𝑁 can generate. 

𝑵,𝒗 : TU cooperative game 

Efficient allocation: A distribution of 𝑣 𝑁  among agents in 𝑁.  

𝑥 = 𝑥! !∈! ∈ ℝ!! s.t.  𝑥!!∈! = 𝑣 𝑁  

Core: 𝑥 is in the core if               𝑥!!∈! ≥ 𝑣 𝑆 ,              ∀𝑆 ⊆ 𝑁  

Subgame of 𝑵,𝒗 : 𝑇, 𝑣!   is derived by the restriction of 𝑣 over agents in 𝑇 ⊆ 𝑁. 

for all 𝑆 ⊆ 𝑇,   𝑣! 𝑆 = 𝑣 𝑆  

Regular domain of games: A set 𝐷 of games s.t. for each game 𝑁, 𝑣  in 𝐷 all of its subgames 
are also in 𝐷. 

Solution 𝝋 on 𝑫 assigns an efficient allocation to each game 𝑁, 𝑣  in 𝐷. 
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Motivating Example

𝑁 = 1,… ,5                       =                           𝑊𝑜𝑟𝑘𝑒𝑟𝑠 = 1,2,3                             ∪            𝐹𝑖𝑟𝑚𝑠 = 4,5   

𝑣 𝑆 = 𝑚𝑖𝑛 𝑆 ∩𝑊 , 𝑆 ∩ 𝐹 , for all 𝑆 ⊆ 𝑁 

𝑣 𝑁 = 2,        𝑣 1,4,5 = 1 

 

Unique core allocations for game 𝑁 and subgame 𝑇 = 1,4,5 :

𝑁, 𝑣 → 𝑥 = 0,0,0,1,1  

𝑇 = 1,4,5 ,   𝑣! → 𝑥′ = 1,∗,∗ ,0,0

Then, the set of workers 𝑊 = 1,2,3  can manipulate this core selection by absence of agents 2 
and 3 in the job market. 

No absence-proof solution on a regular domain 𝐷 that contains this game! 
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Definition 3: A solution 𝜑 is absence-proof on a regular domain 𝐷 if for all games 𝑁, 𝑣 ∈ 𝐷, 
and all 𝐾 ⊆ 𝑆 ⊆ 𝑁, 
 

  

            ≥            +       
   

    𝜑!!∊! 𝑁, 𝑣               ≥          𝜑!!∊!∖! 𝑁 ∖ 𝐾, 𝑣!∖!           +               𝑣 𝐾                    (1) 

 

Definition 4: (Sprumont 1990) A solution 𝜑 is population monotonic (PM) on a regular domain 
𝐷 if for all games 𝑁, 𝑣 ∈ 𝐷 and all 𝑖 ∊ 𝑇 ⊆ 𝑁 

𝜑! 𝑇, 𝑣! ≤ 𝜑! 𝑁, 𝑣                  
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Proposition 1: If 𝜑 is PM on 𝐷 then it is also AP on 𝐷. 

 

Marginal contribution of agent 𝒊:  𝑀𝐶! 𝑇 = 𝑣 𝑇 ∪ 𝑖 − 𝑣 𝑇  

 

Convex games: 𝑁, 𝑣  s.t. 𝑀𝐶! 𝑇 ≤ 𝑀𝐶! 𝑇′  for all 𝑇 ⊆ 𝑇′ ⊆ 𝑁 and 𝑖 ∉ 𝑇′. 

 

Corollary 1: The Shapley value and the Dutta-Ray egaliatarian solution are absence-proof on 
the set of convex games. 

 

Proposition 2: The nucleolus is not absence-proof on convex games. 
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Sprumont (1990): “Coalition formation is a complex process. Our concern is to guarantee that 

once a coalition 𝑁 has decided upon an allocation of 𝑣(𝑁), no player will ever be tempted to 

induce the formation of a coalition smaller than 𝑁 by using his bargaining skills or by any other 

means.” 

 

Let 𝑁 = 1,2,3,4 ,       𝑆 = 1,2,3      𝑆! = 4                                                 

 

         𝑣 𝑆 = 9                                        𝑣 4 = 3                                        𝑣 𝑁 = 14    

𝜑 𝑆, 𝑣! = (3,3,3)                               𝜑 4, 𝑣! = 3                              𝜑 𝑁, 𝑣 = (4,4,1,5) 

 

𝜑 is not PM      as    agent 3’s share decreases from 3 to 1 when agent 𝑗 shows up. 

 

Suppose 𝑣 3 = 0. Even if agent 3 is tempted to not allow agent 4 to join group as he cannot 

pay enough to convince him to stay away.   
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A Normative Approach to the Core and AP Based on Merging Coalitions 

𝑆,      𝑆′ ⊂ 𝑁      s.t.       𝑆 ∩ 𝑆! = ∅ 

           𝑆      ∪          𝑆!                                                      =                          𝑁     

    𝑣 𝑆 = 9         +               𝑣 𝑆′ = 3          +       𝑠𝑦 𝑆, 𝑆! (= 2)  =                   𝑣 𝑁 = 14 

 

Core stability 

𝜑! 𝑆, 𝑣!!∈! = 𝑣 𝑆 = 9.   

If   𝜑! 𝑁, 𝑣!∈! = 12 > 9+ 2   ,  𝜑 𝑁  is not a core allocation 

Absence-proofness     𝐾 ⊆ 𝑆 

Say   𝜑! 𝑆, 𝑣!!∈! = 6          Then, all the rest (𝑁 ∖ 𝐾) gets   12− 6 = 6     before the merger 

If     𝜑! 𝑁, 𝑣!∈! = 9 > 6+ 2.                 Then (𝑁 ∖ 𝐾) gets   14− 9 = 5     after the merger      
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Proposition 3: 

 

(i)        𝜑 is core stable on 𝐷    iff    for all 𝑁, 𝑣  and partition 𝑆, 𝑆! of  𝑁 

 𝜑! 𝑁, 𝑣 − 𝜑! 𝑆, 𝑣!!∈!               ≤           𝑠𝑦 𝑆, 𝑆!   (2) 

  

Increase in the total share of agents in 𝑆 is not more than the synergy 

 

(ii) 𝜑 is AP on 𝐷 iff  for all 𝑁, 𝑣 , for all partition 𝑆, 𝑆! of  𝑁, and 𝐾 ⊆ 𝑆 

 𝜑! 𝑁, 𝑣 − 𝜑! 𝑆, 𝑣!!∈!               ≤             𝑠𝑦 𝑆, 𝑆!   (3) 

 

Increase in the total share of agents in 𝐾 ⊆ 𝑆 is not more than the synergy 
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Exchange Economies: Allocation problems where agents exchange private endowments. 

Remark on manipulation: When agents in 𝐾 stay out, they just stay at home wait for 𝑆 ∖ 𝐾 to 

bring their allocation at the reduced problem. 

Proposition 4: There is no absence-proof allocation rule in Böhm-Bawerk’s horse market and in 

house assignment problems (Shapley and Shubik (1971)). 

Example 1: (Single seller auction): Seller has one good. His reservation price is 0.  

4 buyers with valuations: 𝑏! = 1, 𝑏! = 1, 𝑏! = 4, 𝑏! = 4. 

                                                   All buyers in                                  Buyers 3 and 4 are out 

Core allocations:       Buyer 3 or 4 gets the good pays $4        Buyer 1 or 2 gets the good pays $1 
                                             Others pay nothing                                    Others pay nothing 

Set of all buyers can manipulate by absence of buyers 3 and 4. 
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House assignment problem (Shapley and Shubik 1971):

• Each agent owns one house  

• Agents have valuations for each house  

• Utilities are quasilinear in money 

• Monetary transfers possible (balanced transfers adds up to 0) 

Example: 𝑊 = 1,2,3 , 𝐹 = 4,5    

 

 

 

 

 𝒉𝟏 𝒉𝟐 𝒉𝟑 𝒉𝟒 𝒉𝟓 

𝒖𝟏 𝒉𝒊  0   0   0   1   1  

𝒖𝟐 𝒉𝒊  0   0   0   1   1  

𝒖𝟑 𝒉𝒊  0   0   0   1   1  

𝒖𝟒 𝒉𝒊  1   1   1   0   0  

𝒖𝟓 𝒉𝒊  1   1   1   0   0  
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Classical Exchange Economies 

Proposition 5: The Walrasian allocation rule 𝜓 is manipulable. 

Example 2: ℓ𝓁 = 2,  𝑁 = 3, 𝑒!, 𝑒!, 𝑒! = (10,10), (35,5), (15,15) . 𝑢! = 𝑥!𝑦! for all 𝑖. 

𝑢! 𝜓! 1,2,3 , 𝑒 = 112.5                𝑢! 𝜓! 1,2,3 , 𝑒 = 253.125 

If agent 3 leaves the scene or never appears at the first place  

 Agent 1’s allocation                                Agent 3’s                                  Final resources of the 
at the reduced problem                            endowment                             manipulating coalition 

𝜓! 1,2 =    20,6. 6                             +                       𝑒! = 15,15                                   =                                      35,21. 6  

Redistribution of total resources afterwards                             Pareto improvement 

       𝑧! = 15,7. 6 ,     𝑧! = 20,14                   →           𝑢! 𝑧! = 115,      𝑢! 𝑧! = 280  
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The General Setting 

 

𝑵 ∈𝓝: Set of agents 

𝜴 ∈ 𝓒: Common endowment to be distributed 

𝓒: Consumption space 

𝑹𝒊 ∈ 𝓡𝒊: Preference of 𝑖 over 𝒞 

𝑹 ∈ 𝓡: Preference profile 

𝓝,𝓒,𝓡 : Fair division model    

𝑵,𝜴,𝑹 : Fair division problem 
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Remark on the manipulation: If 𝐾 does not appear in the allocation process, it means they 

renounce their claims. 

Then, 𝐾 = 𝑆 is never a better outside option. Core has no bite here. 

 

PM: (As 𝛺 is fixed) No one is better off when an additional agent arrives. 

Theorem 1: Given a model 𝒩,𝒞,ℛ , if a PO allocation rule 𝜑 is PM, then it is also AP. 
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Proposition 8: Let everyone has strictly monotone preferences, 𝜑 be an allocation rule. 

 

Initial problem                                                          Additional set 𝐾 of agents claim 𝛺 

𝑁,𝛺                                                                        𝑁 ∪ 𝐾,𝛺  

𝜴                                                                                                                    𝜴 

           𝜴− 𝒙                                                                  𝜴− 𝒙′ 

   𝒙                                                                           𝒙′                                

𝜑! 𝑁 = 𝑥                                                                  𝜑! 𝑁 ∪ 𝐾 = 𝑥′ > 𝑥 

 

Then, everyone except 𝑗 manipulates 𝜑 at problem 𝑁 ∪ 𝐾 by absence of 𝐾. 
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𝜴 ∈ ℝ!𝓵  & no money in the model 

Two famous rules: 

1. 𝛺-egalitarian equivalent allocation: Picks the unique efficient allocation 𝑥 s.t. all agents 

are indifferent to the same bundle 𝜆.𝛺 for 𝜆 ∈ ℝ. 

 

2. Competitive equilibrium with equal incomes (CEEI): First distribute 𝛺 among agents 

equally. Agents start with (𝛺 𝑛). Then calculate the competitive allocation.  

 

Corollary to Theorem: 𝛺-egalitarian equivalent allocation rule is AP. 
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Example 3: Let ℓ𝓁 = 2, Ω = 24,24 , 𝑁 = 4 

𝑢! = 𝑚𝑖𝑛 2𝑥 + 8,𝑦 ,              𝑢! = 𝑚𝑖𝑛 18𝑥 + 100,25𝑦 + 132  for 𝑖 = 2,3,4. 

𝐶𝐸𝐸𝐼! 1,2,3 = (1,10)        𝐶𝐸𝐸𝐼! 𝑁 = (2,12)     

 

Corollary to Proposition 8: CEEI  is not AP. 

 

Remark 1: Competitive idea is less vulnerable to manipulation compared to exchange 

economies (See Example 4).  
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Example 4:  

𝑁 = 1,… ,11   

2 divisible goods (beans and rice) 

𝑢! = 𝑟! + 10𝑏!,         𝑢! = 10𝑟! + 𝑏!  for 𝑖 ∈ 𝑆 = 2,… ,11 . 

Fair Division Exchange Economy 

Ω = (11,11) 𝑒! = (1,1) for all 𝑖 ∈ 𝑁 (private endowment) 

                          CEEI   𝑁,𝛺,𝑅                    =                     𝜓 𝑁, 𝑒,𝑅  (Walrasian allocation)         

No coalition can manipulate 𝑆 can manipulate the Walrasian rule by leaving 

any proper subset 𝐾 ⊂ 𝑆 out of the market. 
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𝜴 is a single object & monetary transfers are available 

Valuation: 𝑎! ≥ 0 

Problem: 𝑁,𝑎  

Assignment: Only one agent receives the object 

Transfers: A vector of balanced money transfers: 𝑡!!∈! = 0 

Allocation: Assignment & balanced transfers 

Utility of 𝒊: 𝑢! 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑎! + 𝑡!      if  𝑖 gets the object,        𝑢! = 𝑡! otherwise       
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Assume equal treatment of equals (final utilities of agent with same valuations are the same) 

WLOG order agents s.t.                    0 ≤ 𝑎! ≤ 𝑎! ≤ ⋯ ≤ 𝑎! 

 

An efficient solution yields a unique final utility distribution 𝑈 s.t. 

𝑈! 𝑁,𝑎!∈! = 𝑎!          and        𝑈! ≥ 0 

 

Stand-alone cooperative game: 𝑣 𝑆,𝑎! = 𝑚𝑎𝑥!∈!𝑎! 

 

Corollary to Theorem: Shapley value and the Dutta-Ray egalitarian solution of the associated 

stand-alone cooperative game are AP.  
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0 ≤ 𝑎! ≤ 𝑎! ≤ ⋯ ≤ 𝑎! 

 

Proposition 9: A utility distribution satisfies condition C if and only if for any problem 𝑁,𝑎 , 

when an additional agent 𝑗 arrives, we have: 

 

Cases C =AP C =PM 

𝑎!!! < 𝑎! < 𝑎!   Utility of only agent n can increase (up to 𝑎! − 𝑎!) No one in 𝑁 gains 

Otherwise No one in 𝑁 gains No one in 𝑁 gains 

 

Envy-freeness: No one prefers another agent’s allocation to her own allocation 

Proposition 10: AP and EF are incompatible
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• Our manipulation idea is a generalization of the secession idea in core stability, and AP 

solutions are core selections. 

 

• AP is too demanding in exchange economies 

 

• Thomson (2012) introduced a weaker axiom “withdrawal-proofness” in Exchange 

Economies and Fair Division problems. Our negative results coincide with him. However, 

we have positive results for a stronger concept. 

 

• AP imposes core-like participation constraints in Fair Division problems where core 

stability has no bites. 

 



Concluding Remarks 
	
  

	
  

 

 

• PM has been “mainly” considered as a solidarity property in TU Games and Fair Divison 

problems. We show that it also has a strong stability aspect. 

 

 

• AP and PM have close formal implications. It is not easy to find sensible solutions that are 
not PM but AP.  


