

Agent-Based Process Modelling for Virtual Enterprises

By: Ratna Thanki

MRes Innovative Manufacturing

(Management & Information Systems)

Cranfield

Presentation Outline

- Introduction to Virtual Enterprises
 & Multi-Agent Systems
- Research Aim
- Research Objectives
- Methodology
- Multi-Agent Systems for VE Modelling:
 Overview of the ZEUS Toolkit
- Key Findings
- Conclusions
- Recommendations
- Future Research
- Summary

Introduction to Virtual Enterprises

- Definition of Virtual Enterprises:
 - Davidow & Malone (1992)
 - Arnold et al (1995):

'...a Virtual Enterprise is a cooperation of legally independent enterprises, institutions or individuals, which provide a service on the basis of a common understanding of business...the cooperation is maintained by using feasible information and communication technologies.'

Introduction to Virtual Enterprises

Source: Fischer et al (1996)

Introduction to Virtual Enterprises

- Examples of Virtual Enterprises:
 - F International: home-working
 - Dell Computer Corporation: masscustomisation
 - Amazon.com: competitive prices
 - British Airways (Waterside): virtual work
 - Levy Gee: virtual business consultancy

Introduction to Multi-Agent Systems

- DAI emerged 20 years ago:
 - Weiss (1999):

"...the study, construction and application of Multi-Agent Systems...in which several interacting intelligent agents pursue some set of goals.."

- What is an Agent?:
 - Ferber (1999):
 - "..a physical or virtual entity that can act, perceive its environment and communicate with others...is autonomous and has skills to achieve its goals & tendencies."

Introduction to Multi-Agent Systems

Agent Properties:

- Reactive
- Proactive
- Social Ability

Agent Types:

- Competitive
- Cooperative

Agent Standards:

- FIPA
- OMG MASIF

Agent Toolkits:

- 'sets of components'
- 'sets of tools'

Examples of Multi-Agent System Applications:

- Analysis of business processes in enterprises
- Optimisation of industrial manufacturing processes
- Virtual Reality based computer games

Research Aim

'Investigate the possibility of improving communication between enterprises, to enhance their competitive position. This will be done through exploring methods and software based on a Multi-Agent framework for the modelling of Virtual Enterprises.'

Research Objectives

- To conduct a literature review on Virtual Enterprises and Multi-Agent Systems.
- To assess the compatibility of Multi-Agent System applications for Virtual Enterprise modelling.
- Technical proficiency with the ZEUS toolkit.
- To develop a Virtual Enterprise Modelling System using a MAS methodology integrated within the ZEUS toolkit.
- To analyse and evaluate the feasibility of the ZEUS toolkit for Virtual Enterprise modelling
- To evaluate the suitability of Multi-Agent Systems for Virtual Enterprise modelling

Methodology

- Literature Review
- Industrial survey on Virtual

Enterprises

- Technical Proficiency in using

ZEUS

Analysis & evaluation of ZEUS

MAS for VE Modelling

Benefits:

- VEs are composed of distributed, autonomous and heterogeneous components
- Distributed problem solving can be tackled
- Conflict management in VEs can be modelled using MASs

Drawbacks:

- Lack of infrastructure and definitive standards
- Security & virus mechanisms

Research Gap:

Use of the ZEUS toolkit in modelling Virtual
 Enterprises

The Components of the Cranfield UNIVERS **ZEUS Tool-Kit**

Agent Component Library

Planning & Scheduling

Communication

Social Interaction

User Interface

Agent Concepts

Visualisation Tools

Society Viewer

Reports Tool

Statistics Tool

Agent Viewer

Control Tool

Agent Building Software

Visual Agent Creator

Auto Code Generator

Legacy System API

The Zeus Agent Design Methodology

CMBC Case Study

Participants & Interactions of Cranfield Manufacturing Business Consultancy

Ontology Editor

ZEUS Agent Generator

Task Definition

Lance Platfolican Donal		
Agent Definition Panel	C Resident	
		Planning Paramete
Kantecom/Norther of Statistics-geospills	ena (t	
Santer Length	20	
		Task identification
Task		Type
ServiceUtilisation	Primitive	
		Initial Agent Resource
		Mana Ayon Kessari
Fact Type	•	Instance
		SANN NEXENSIA
Attribute		Value

		ask	
	Tack Precondition		Task Ett
me, oder X to es ato		1 20 C	T (100)
Fact Type koptance Workshop/Debrery Two	Modifiers	Fact Type CustomerValue 7 custo	Instance Modifiers mercalus
Attribute oration oration oration oration oration	Value	Abrous SAL cost Sevice quality Sumber	Value
ocation unit_soil	Value	unit_cost	Yalie Talk Cork and T

Agent Organisation & Coordination

Code Generation

Society View

Key Findings – MASs for VEs

- VEs are composed of distributed, autonomous and heterogeneous components, which can easily be decomposed and mapped into MAS applications
- The similarity in characteristics of VEs and MASs allows them to be used in combination
- If fundamental standards and ontologies cannot be established, this will lead to diverse applications for diverse purposes lacking congruency

Key Findings - ZEUS

- Installing ZEUS was a time-consuming process
- The domain analysis stage of the application development process required a wider variety of role models
- In the agent realisation process, the ZEUS interface was very easy to use
- The agent creation, definition and organisation processes were simple.
- The agent coordination process resulted in using the PC Manufacture case-study as a guide
- Technical difficulties when the application was implemented using UNIX

Conclusions

- VEs are currently significant
 organisational paradigms which will
 continue to gain significance in the future
 in a versatile range of industries
- Cultural and technological infrastructures must support VEs in order for them to be successful

Conclusions

- The ZEUS toolkit has the potential to be an effective application methodology for VE modelling, however, the discrepancies within it must be addressed
- If ZEUS software support could be improved, the CMBC case-study would not merely be used for illustrative purposes, but recommendations could have been made to the CMBC on how to improve their business processes: this is where the real value of ZEUS could have been tested

Recommendations

- Installation process could be made easier, with exact detailed instructions
- Online 'live' demonstrations of case studies would also be useful and more effective as a preview of the ZEUS suite of tools

Recommendations

- Improved software support through the following:
 - Online instant messaging boxes to provide immediate assistance
 - BTExact Technologies could create a discussion database on their web-site to discuss ZEUS problems
 - E-mail response times could be improved

Future Research

- Investigations into using different open-source toolkits for VE modelling purposes
- Research into combining different systems methodologies for VE modelling, for instance, UML, system dynamics and ZEUS, to create a multi-methodology
- Comparisons into the OO and agent-based paradigms and how they can be used in complementary ways

Summary

- Introduction to VES & MASs
- Research Aim, Objectives & Methodology
- Feasibility of MAS for VE modelling:
 Overview of ZEUS Toolkit
- Key findings of VEs & MASs
- Conclusions
- Recommendations
- Future Research

QUESTIONS 7