OBJECT AND ACTION NAMING IN PATIENTS BEFORE AND AFTER GLIOMA RESECTION

Chrabaszcz A.¹, Buklina S.², Tolkacheva V.¹, Poddubskaya A.², Dragoy O.¹

1. Neurolinguistics Laboratory, Higher School of Economics, Moscow, Russia, 2. Scientific Research Neurosurgery Institute of N. N. Burdenko

1. BACKGROUND

- Frontal and temporal brain areas in the LH are classically associated with language processing [2,9,13].
- Damage to these areas causes sustained and distinct linguistic deficits in stroke patients [6], but not necessarily in tumor patients [1].
- Neuroimaging studies with healthy adults and lesion studies with aphasia patients show that objects and actions are represented in at least partly distinct neural substrates, suggesting a differential brain organization for nouns and verbs (nouns are subserved by temporal areas; verbs frontal areas) [4,5,7,10,11,12].

2. RESEARCH QUESTIONS

- 1. Are objects and actions distinctly processed in temporal and frontal brain regions, respectively, by patients with brain tumor?
- 2. Do reorganization capacities (due to neuroplasticity) of frontal and temporal areas differ for object and action processing?

3. PATIENTS

N=14 patients (native Russian, right-handed) with tumor in the temporal (n=7) and frontal (n=7) lobe.

- dysembryoplastic neuroepithelial tumor: 1
- diffuse astrocytoma (WHO II): 1
- diffuse oligoastrocytoma (WHO II): 4
- anaplastic astrocytoma (WHO III): 1
- anaplastic oligoastrocytoma (WHO III): 4
- glioblastoma (WHO IV): 3

REFERENCES

- Anderson, S. W., et al. (1990). Neuropsychological impairments associated with lesions caused by tumor or stroke. Archives of neurology, 47(4), 397-405. Berker, E. A., Berker, A. H., & Smith, A. (1986). Translation of Broca's 1865 report: localization of speech in the third left frontal convolution. Archives of
- Chang, E. F., et al. (2015). Contemporary model of language organization: an overview for neurosurgeons. Journal of neurosurgery, 122(2), 250-261. 4. Chen, S., Bates, E. (1998). The dissociation between nouns and verbs in Broca's and Wernicke's aphasics: Evidence from Chinese. Special issue on Chinese
- Damasio A. R., Tranel D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. PNAS, 90(11), 4957–4960. Goodglass, H. (1993). *Understanding aphasia*. *Academic Press*.
- Mestres-Missé, A., et al. (2010). Neural differences in the mapping of verb and noun concepts onto novel words. NeuroImage, 49(3), 2826-2835. 8. Ojemann, G. et al. (1989). Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients. *Journal of*
- 9. Poeppel, D., & Hickok, G. (2004). Towards a new functional anatomy of language. Cognition, 92(1), 1-12 10. Rapp B., Caramazza A. (2002). Selective difficulties with spoken nouns and written verbs: A single case study. *Journal of Neurolinguistics*, 15, 373-402.
- 11. Shapiro, K., et al. (2001). Grammatical distinctions in the left frontal cortex. *Journal of Cognitive Neuroscience*, 13(6), 713-720. 12. Shapiro K., Caramazza A. (2003). Grammatical processing of nouns and verbs in left frontal cortex? Neuropsychologia, 41, 1189–1198
- 13. Wernicke, W., & Kohlenbach, H. W. (1977). Versuche zur kultur isolierter mikrosporen von Nicotiana und Hyoscyamus. Zeitschrift für Pflanzenphysiologie, 81(4), 330-340.

For questions, contact achrabaszcz@hse.ru

4. METHOD AND MATERIALS

Russian Object and Action Naming Test

(administered pre-, intra-, post-operatively) routinely used in DES language mapping [8];

- appropriate for tumor patients because wordfinding difficulties are the most common linguistic symptoms;
- involves various cognitive sub-processes (object recognition, memory recall, lexical retrieval, phonological encoding, etc.) [3]

Design: 50 object & 50 action b/w pictures; controlled for psycholinguistic parameters; display interval= 3s

5a. RESULTS: OVERALL MEAN ACCURACY

5b. RESULTS: INTERPATIENT VARIABILITY

5c. RESULTS: COVARIATES

Effect	Estimate	SE	z value	p value
Familiarity	0.43	0.09	4.6	< 0.001
AoA	-1.11	0.14	-8	< 0.001
Word-to-				
image corr	-0.4	0.1	-4.1	< 0.001
Log freq	0.9	0.11	7.78	< 0.001
Syll. length	-0.17	0.07	-2.4	< 0.05

6. SUMMARY

- The mere fact of glioma in the eloquent cortices—IFG and STG—does not cause a significant deterioration of object or action naming in either frontal or temporal patient groups -> effect of neuroplasticity;
- Post-op mean accuracy rate differs in the two groups of patients: 'frontal' patients do not show a sig. accuracy drop for either action or object naming, 'temporal' patients perform worse on both nouns (a sig. drop of 26%) and verbs (a drop of 19%) → linguistic functions that are grounded in the temporal lobe are less reluctant to reorganization than those based in the frontal areas;
- **But**, much inter-group and inter-patient variability is observed (3 people showed improvement, 4 – decline in action naming; 4 – decline in noun naming; 3 – no sig. difference b/n object and action naming) → tumor location and its resection does not unambiguously predict postop recovery pattern for naming function (e.g., 'temporal' patients #1 and #14 demonstrate a directly opposite pattern);
- * The present test is the first naming test normed and adapted for the Russian language that is used intra-operatively during awake craniotomy.